

 65C/735/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJET DE COMITÉ POUR VOTE (CDV)
Project number IEC 62734/Ed.1
Numéro de projet
IEC/TC or SC: SC65C
CEI/CE ou SC:

Secretariat / Secrétariat
FRANCE

Submitted for parallel voting in
CENELEC

Soumis au vote parallèle au
CENELEC

Date of circulation
Date de diffusion
2013-07-05

Closing date for voting (Voting
mandatory for P-members)
Date de clôture du vote (Vote
obligatoire pour les membres (P))
2013-09-13

Also of interest to the following committees
Intéresse également les comités suivants
SC17B, SC22G, TC57, ISO TC184/SC5

Supersedes document
Remplace le document
65C/714/CDV & 65C/733/RVC

Proposed horizontal standard
Norme horizontale suggérée

 Other TC/SCs are requested to indicate their interest, if any, in this CDV to the TC/SC secretary
 Les autres CE/SC sont requis d’indiquer leur intérêt, si nécessaire, dans ce CDV à l’intention du secrétaire du CE/SC
Functions concerned
Fonctions concernées

 Safety
 Sécurité

 EMC
 CEM

 Environment
 Environnement

 Quality assurance
 Assurance qualité

CE DOCUMENT EST TOUJOURS À L'ÉTUDE ET SUSCEPTIBLE DE
MODIFICATION. IL NE PEUT SERVIR DE RÉFÉRENCE.

LES RÉCIPIENDAIRES DU PRÉSENT DOCUMENT SONT INVITÉS À
PRÉSENTER, AVEC LEURS OBSERVATIONS, LA NOTIFICATION DES
DROITS DE PROPRIÉTÉ DONT ILS AURAIENT ÉVENTUELLEMENT
CONNAISSANCE ET À FOURNIR UNE DOCUMENTATION EXPLICATIVE.

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO CHANGE. IT
SHOULD NOT BE USED FOR REFERENCE PURPOSES.

RECIPIENTS OF THIS DOCUMENT ARE INVITED TO SUBMIT, WITH THEIR
COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF
WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING
DOCUMENTATION.

Titre : CEI 62734/Ed.1: Réseaux de
communication industriels – Réseau de
communication sans fil et profils de
communication – ISA100.11a

Title : IEC 62734/Ed.1:Industrial communication
networks – Wireless communication network and
communication profiles – ISA 100.11a

Note d'introduction

Introductory note

This 2CDV has been drafted according to the comment resolution prepared during the
65C/WG16 meeting end January 2013 and issued as 65C/733/RVC. Please note that in order
to take into account summer vacation schedule in some National Committees, and allow them
sufficient time for review, the circulation of this 2CDV has been extended until September
13th, 2013. In addition, to facilitate review by National Committees, an auxiliary document
(65C/739/INF) is circulated at the same time, showing the changes made between the first
CDV (65C/714/CDV) and this second CDV. Any comments on this second CDV will be solved
during the next meeting scheduled on September 25th-27th, 2013 in Switzerland.

ATTENTION
VOTE PARALLÈLE

CEI – CENELEC
L’attention des Comités nationaux de la CEI, membres du

CENELEC, est attirée sur le fait que ce projet de comité pour vote
(CDV) de Norme internationale est soumis au vote parallèle.
Un bulletin de vote séparé pour le vote CENELEC leur sera

envoyé par le Secrétariat Central du CENELEC.

ATTENTION
IEC – CENELEC

PARALLEL VOTING
The attention of IEC National Committees, members of CENELEC,
is drawn to the fact that this Committee Draft for Vote (CDV) for an

International Standard is submitted for parallel voting.
A separate form for CENELEC voting will be sent to them by the
CENELEC Central Secretariat.

Copyright © 2013 International Electrotechnical Commission, IEC. All rights reserved. It is
permitted to download this electronic file, to make a copy and to print out the content for the sole
purpose of preparing National Committee positions. You may not copy or "mirror" the file or
printed version of the document, or any part of it, for any other purpose without permission in
writing from IEC.

®

 – 2 – 62734/2CDV © IEC(E)

CONTENTS

FOREWORD ... 23
0 Introduction .. 25

0.1 General ... 25
0.2 Document structure ... 25
0.3 Potentially relevant patents ... 25

1 Scope ... 27
2 Normative references ... 27
3 Terms, definitions, abbreviated terms, acronyms, and conventions 28

3.1 Terms and definitions .. 28
3.2 Abbreviated terms and acronyms ... 55
3.3 Conventions .. 61

4 Overview .. 63
4.1 General ... 63
4.2 Interoperability and related issues ... 63
4.3 Quality of service ... 64
4.4 Worldwide applicability .. 64
4.5 Network architecture .. 64
4.6 Network characteristics ... 70

5 Systems ... 77
5.1 General ... 77
5.2 Devices ... 77
5.3 Networks ... 85
5.4 Protocol suite structure .. 96
5.5 Data flow ... 98
5.6 Time reference .. 104
5.7 Firmware upgrades .. 105
5.8 Wireless backbones and other infrastructures .. 105

6 System management role ... 105
6.1 General ... 105
6.2 DMAP .. 107
6.3 System manager ... 131

7 Security .. 185
7.1 General ... 185
7.2 Security services ... 186
7.3 PDU security ... 190
7.4 Join process .. 223
7.5 Session establishment ... 255
7.6 Key update .. 260
7.7 Functionality of the security manager role.. 267
7.8 Security policies .. 269
7.9 Security functions available to the AL .. 272
7.10 Security statistics collection, threat detection, and reporting 275
7.11 DSMO functionality .. 276

8 Physical layer ... 283
8.1 General ... 283
8.2 Default physical layer .. 283

62734/2CDV © IEC(E) – 3 –

9 Data-link layer .. 285
9.1 General ... 285
9.2 DDSAP .. 354
9.3 Data DPDUs and ACK/NAK DPDUs ... 357
9.4 DL management information base ... 383
9.5 DLE methods ... 432
9.6 DL alerts .. 434

10 Network layer ... 437
10.1 General ... 437
10.2 NL functionality overview ... 437
10.3 NLE data services ... 457
10.4 NL management object .. 460
10.5 NPDU formats ... 467

11 Transport layer ... 476
11.1 General ... 476
11.2 TLE reference model ... 476
11.3 Transport security entity .. 477
11.4 Transport data entity ... 478
11.5 TPDU encoding ... 482
11.6 TL model ... 484

12 Application layer ... 495
12.1 General ... 495
12.2 Energy considerations ... 495
12.3 Legacy control system considerations ... 495
12.4 Introduction to object-oriented modeling .. 496
12.5 Object model ... 498
12.6 Object attribute model ... 499
12.7 Method model .. 502
12.8 Alert model .. 502
12.9 Alarm state model.. 503
12.10 Event state model .. 504
12.11 Alert reporting ... 504
12.12 Communication interaction model .. 506
12.13 AL addressing ... 516
12.14 Management objects ... 520
12.15 User objects .. 520
12.16 Data types ... 551
12.17 Application services provided by application sublayer .. 558
12.18 AL flow use of lower layer services .. 594
12.19 AL management .. 595
12.20 Process control industry standard data structures .. 613
12.21 Additional tables .. 616
12.22 Coding ... 617
12.23 Syntax ... 640
12.24 Detailed coding examples (INFORMATIVE) ... 652

13 Provisioning ... 653
13.1 General ... 653
13.2 Terms and definitions for devices with various roles or states 654

 – 4 – 62734/2CDV © IEC(E)

13.3 Provisioning procedures .. 656
13.4 Pre-installed symmetric keys ... 656
13.5 Provisioning using out-of-band mechanisms .. 657
13.6 Provisioning networks .. 657
13.7 State transition diagrams ... 660
13.8 Device management application protocol objects used during provisioning 664
13.9 Management objects ... 667
13.10 Device provisioning service object ... 673
13.11 Provisioning functions [INFORMATIVE] ... 680

Annex A (informative) User layer / application profiles ... 684
A.1 Overview ... 684
A.2 User layer .. 684
A.3 Application profile .. 684

Annex B (normative) Role profiles .. 686
B.1 Introduction ... 686
B.2 System .. 687
B.3 System manager ... 687
B.4 Security manager .. 688
B.5 Physical layer .. 689
B.6 Data-link layer ... 689
B.7 Network layer .. 694
B.8 Application layer .. 695
B.9 Provisioning... 696
B.10 Gateway (informative) ... 696

Annex C (informative) Background information .. 698
C.1 Industrial needs ... 698
C.2 Usage classes ... 698
C.3 The Open Systems Interconnection Basic Reference Model 700

Annex D (normative) Configuration defaults ... 704
D.1 General ... 704
D.2 System management ... 704
D.3 Security ... 705
D.4 Data-link layer ... 705
D.5 Network layer .. 707
D.6 Transport layer .. 707
D.7 Application layer .. 707
D.8 Provisioning... 709
D.9 Gateway (informative) ... 710

Annex E (informative) Use of backbone networks .. 711
E.1 General ... 711
E.2 Recommended characteristics ... 711
E.3 Internet protocol backbones... 711

Annex F (normative) Basic security concepts – Notation and representation 713
F.1 Strings and string operations ... 713
F.2 Integers, octets, and their representation ... 713
F.3 Entities .. 713

Annex G (informative) Using certificate chains for over-the-air provisioning 714
Annex H (normative) Security building blocks .. 715

62734/2CDV © IEC(E) – 5 –

H.1 Symmetric key cryptographic building blocks ... 715
H.2 Asymmetric-key cryptographic building blocks ... 716
H.3 Keying information ... 716
H.4 Key agreement schemes ... 718
H.5 Keying information schemes .. 718
H.6 Challenge domain parameter generation and validation 719
H.7 Challenge validation primitive .. 720
H.8 Secret key generation (SKG) primitive ... 720
H.9 Block-cipher-based cryptographic hash function .. 721
H.10 Elliptic curve cryptography manual certificate scheme 722

Annex I (informative) Definition templates .. 725
I.1 Object type template .. 725
I.2 Standard object attributes template ... 725
I.3 Standard object methods ... 726
I.4 Standard object alert reporting template .. 727
I.5 Data structure definition .. 728

Annex J (informative) Operations on attributes... 730
J.1 Operations on attributes .. 730
J.2 Synchronized cutover .. 734

Annex K (normative) Standard object types ... 735
Annex L (informative) Standard data types .. 740
Annex M (normative) Identification of tunneled legacy fieldbus protocols 742
Annex N (informative) Tunneling and native object mapping .. 743

N.1 Overview ... 743
N.2 Tunneling .. 743
N.3 Foreign protocol application communication .. 743
N.4 Native object mapping ... 744
N.5 Tunneling and native object mapping tradeoffs .. 744

Annex O (informative) Generic protocol translation .. 745
O.1 Overview ... 745
O.2 Publish .. 745
O.3 Subscribe .. 746
O.4 Client ... 747
O.5 Server ... 748

Annex P (informative) Exemplary GIAP adaptations for this standard 749
P.1 General ... 749
P.2 Parameters .. 749
P.3 Session ... 749
P.4 Lease .. 749
P.5 Device list report ... 750
P.6 Topology report ... 750
P.7 Schedule report ... 750
P.8 Device health report .. 750
P.9 Neighbor health report ... 750
P.10 Network health report .. 750
P.11 Time .. 750
P.12 Client/server .. 750
P.13 Publish/subscribe .. 751

 – 6 – 62734/2CDV © IEC(E)

P.14 Bulk transfer .. 752
P.15 Alert .. 752
P.16 Gateway configuration ... 753
P.17 Device configuration .. 753

Annex Q (informative) Exemplary GIAP adaptations for IEC 62591 754
Q.1 General ... 754
Q.2 Parameters .. 755
Q.3 Session ... 755
Q.4 Lease .. 756
Q.5 Device list report ... 756
Q.6 Topology report ... 756
Q.7 Schedule report ... 757
Q.8 Device health report .. 757
Q.9 Neighbor health report ... 758
Q.10 Network health report .. 758
Q.11 Time .. 758
Q.12 Client/server .. 759
Q.13 Publish/subscribe .. 760
Q.14 Bulk transfer .. 761
Q.15 Alert .. 761
Q.16 Gateway configuration ... 762
Q.17 Device configuration .. 762

Annex R (informative) Host system interface to standard-compliant devices via a
gateway .. 763
R.1 Background ... 763
R.2 Device application data integration with host systems .. 764
R.3 Host system configuration tool ... 764
R.4 Field device / distributed control systems integration ... 766
R.5 Gateway .. 767
R.6 Asset management application support ... 767

Annex S (informative) Symmetric-key operation test vectors .. 769
S.1 DPDU samples .. 769
S.2 TPDU samples .. 770

Annex T (informative) Data-link and network headers for join requests 771
T.1 Overview ... 771
T.2 MAC header (MHR) ... 771
T.3 DL header (DHR) ... 771
T.4 NL header ... 772

Annex U (informative) Gateway role ... 773
U.1 General ... 773
U.2 Notional GIAP .. 777
U.3 Example uses of WISN standard services and objects 821

Annex V (informative) Country-specific and region-specific provisions 841
V.1 General ... 841
V.2 Operation within a fixed regulatory regime ... 841
V.3 Operation on a platform that moves between regulatory regimes 841
V.4 Compliance with EN 300 328 [INFORMATIVE] .. 842

Bibliography .. 845

62734/2CDV © IEC(E) – 7 –

Figure 1 – Standard-compliant network ... 66
Figure 2 – Typical single-layer PDU without fragmenting or blocking..................................... 67
Figure 3 – Full multi-layer PDU structure used by this standard .. 67
Figure 4 – Physical devices versus roles .. 80
Figure 5 – Notional representation of device phases ... 84
Figure 6 – Simple star topology .. 87
Figure 7 – Simple hub-and-spoke topology ... 88
Figure 8 – Mesh topology .. 89
Figure 9 – Simple star-mesh topology ... 90
Figure 10 – Example where network and D-subnet overlap ... 91
Figure 11 – Example where network and D-subnet differ... 92
Figure 12 – Network with multiple gateways .. 93
Figure 13 – Basic network with backup gateway ... 94
Figure 14 – Network with backbone .. 95
Figure 15 – Network with backbone – device roles .. 96
Figure 16 – Reference model used by this standard .. 97
Figure 17 – Basic data flow ... 98
Figure 18 – Data flow between I/O devices ... 99
Figure 19 – Data flow with legacy I/O device ... 100
Figure 20 – Data flow with backbone-resident device .. 101
Figure 21 – Data flow between I/O devices via backbone subnet .. 102
Figure 22 – Data flow to standard-aware control system ... 103
Figure 23 – Management architecture ... 106
Figure 24 – DMAP .. 109
Figure 25 – Example of management SAP flow through standard protocol suite 111
Figure 26 – System manager architecture concept .. 132
Figure 27 – UAP-system manager interaction during contract establishment 154
Figure 28 – Contract-related interaction between DMO and SCO .. 157
Figure 29 – Contract source, destination, and intermediate devices 169
Figure 30 – Contract establishment example... 177
Figure 31 – Contract ID usage in source ... 178
Figure 32 – Contract termination ... 181
Figure 33 – Contract modification with immediate effect.. 183
Figure 34 – Examples of DPDU and TPDU scope ... 185
Figure 35 – Keys and associated lifetimes .. 187
Figure 36 – Key lifetimes .. 189
Figure 37 – DPDU structure .. 192
Figure 38 – DLE and DLS processing for a D-transaction initiator 193
Figure 39 – Received DPDUs – DLE and DSC .. 195
Figure 40 – TPDU structure and protected coverage ... 208
Figure 41 – TMIC parameters ... 209
Figure 42 – TL and TSC interaction, outgoing TPDU ... 210

 – 8 – 62734/2CDV © IEC(E)

Figure 43 – TL and TSC interaction, incoming TPDU .. 211
Figure 44 – Example: Overview of the symmetric-key join process 228
Figure 45 – Example: Overview of the symmetric-key join process of a backbone

device .. 229
Figure 46 – Asymmetric-key-authenticated key agreement scheme 239
Figure 47 – Example: Overview of the asymmetric-key join process for a device with a

DL .. 242
Figure 48 – Example: Overview of the asymmetric-key join process of a backbone

device .. 243
Figure 49 – Device state transitions for join process and device lifetime 255
Figure 50 – High-level example of session establishment ... 256
Figure 51 – Key update protocol overview... 261
Figure 52 – Device key establishment and key update state transition 267
Figure 53 – DL protocol suite and PhPDU/DPDU structure .. 286
Figure 54 – Graph routing example ... 289
Figure 55 – Inbound and outbound graphs .. 291
Figure 56 – Slotted-channel-hopping .. 295
Figure 57 – Slow-channel-hopping .. 296
Figure 58 – Hybrid operation ... 296
Figure 59 – Radio spectrum usage ... 297
Figure 60 – Predefined channel-hopping-pattern1 ... 299
Figure 61 – Two groups of DLEs with different channel-hopping-pattern-offsets 300
Figure 62 – Interleaved channel-hopping-pattern1 with sixteen different channel-

hopping-pattern-offsets... 301
Figure 63 – Example timeslot allocation for slotted-channel-hopping................................... 302
Figure 64 – Example timeslot allocation for slow-channel-hopping 303
Figure 65 – Hybrid mode with slotted-channel-hopping and slow-channel-hopping 304
Figure 66 – Combining slow-channel-hopping and slotted-channel-hopping 304
Figure 67 – Example of a three-timeslot superframe and how it repeats 305
Figure 68 – Superframes and links .. 305
Figure 69 – Multiple superframes with aligned timeslots.. 306
Figure 70 – Example superframe for slotted-channel-hopping ... 310
Figure 71 – Example superframe for slow-channel-hopping .. 311
Figure 72 – Components of a slow-channel-hopping superframe... 311
Figure 73 – Example configuration for avoiding collisions among routers 312
Figure 74 – Hybrid configuration ... 313
Figure 75 – Timeslot allocation and message queue ... 315
Figure 76 – 250 ms alignment intervals ... 318
Figure 77 – Timeslot durations and timing ... 319
Figure 78 – Clock source acknowledges receipt of a Data DPDU .. 324
Figure 79 – Transaction timing attributes .. 326
Figure 80 – Dedicated and shared transaction timeslots ... 327
Figure 81 – Unicast transaction .. 328
Figure 82 – PDU wait time (PWT) ... 331

62734/2CDV © IEC(E) – 9 –

Figure 83 – Duocast support in the standard ... 332
Figure 84 – Duocast transaction ... 333
Figure 85 – Shared timeslots with active CSMA/CA .. 334
Figure 86 – Transaction during slow-channel-hopping periods .. 335
Figure 87 – DL management SAP flow through standard protocol suite 338
Figure 88 – PhPDU and DPDU structure ... 357
Figure 89 – Typical ACK/NAK DPDU layout .. 365
Figure 90 – Relationship among DLMO indexed attributes .. 403
Figure 91 – Address translation process ... 440
Figure 92 – Fragmentation process ... 442
Figure 93 – Reassembly process .. 443
Figure 94 – Processing of a NSDU received from a TLE ... 445
Figure 95 – Processing of a received NPDU ... 446
Figure 96 – Processing of a NPDU received by a NLE from the backbone 448
Figure 97 – Delivery of a received NPDU at its final destination NLE 449
Figure 98 – Routing from a field device direct to a field-connected gateway without

backbone routing .. 450
Figure 99 – Protocol suite diagram for routing from a field device direct to a field-

connected gateway without backbone routing ... 451
Figure 100 – Routing a NPDU from a field device to a gateway via a backbone router 452
Figure 101 – Protocol suite diagram for routing an APDU from a field device to a

gateway via a backbone router ... 453
Figure 102 – Routing from a field device on one D-subnet to another field device on a

different D-subnet ... 454
Figure 103 – Protocol suite diagram for routing from an I/O device on one D-subnet to

another I/O device on a different D-subnet ... 455
Figure 104 – Example of routing over an Ethernet backbone network 456
Figure 105 – Example of routing over a fieldbus backbone network 457
Figure 106 – Distinguishing between NPDU header formats ... 468
Figure 107 – TLE reference model .. 476
Figure 108 – UDP pseudo-header for IPv6 .. 478
Figure 109 – TPDU structure .. 482
Figure 110 – User application objects in a UAP .. 498
Figure 111 – Alarm state model .. 503
Figure 112 – Event model ... 504
Figure 113 – A successful example of multiple outstanding requests, with response

concatenation ... 509
Figure 114 – An example of multiple outstanding unordered requests, with second

write request initially unsuccessful .. 510
Figure 115 – An example of multiple outstanding ordered requests, with second write

request initially unsuccessful .. 511
Figure 116 – Send window example 1, with current send window smaller than

maximum send window ... 513
Figure 117 – Send window example 2, with current send window the same size as

maximum send window, and non-zero usable send window width 514

 – 10 – 62734/2CDV © IEC(E)

Figure 118 – Send window example 3, with current send window the same size as
maximum send window, and usable send window width of zero 514

Figure 119 – General addressing model .. 516
Figure 120 – UAP management object state diagram .. 523
Figure 121 – Alert report reception state diagram ... 525
Figure 122 – Alert-reporting example .. 525
Figure 123 – Upload/Download object download state diagram ... 541
Figure 124 – Upload/Download object upload state diagram ... 541
Figure 125 – Publish sequence of service primitives ... 561
Figure 126 – client/server model two-part interactions .. 566
Figure 127 – client/server model four-part interactions: Successful delivery 566
Figure 128 – client/server model four-part interactions: Request delivery failure 567
Figure 129 – client/server model four-part interactions: Response delivery failure 567
Figure 130 – AlertReport and AlertAcknowledge, delivery success...................................... 582
Figure 131 – AlertReport, delivery failure .. 582
Figure 132 – AlertReport, acknowledgment failure .. 583
Figure 133 – Concatenated response for multiple outstanding write requests (no

message loss) .. 590
Figure 134 – Management and handling of malformed APDUs received from device X 596
Figure 135 – The provisioning network.. 658
Figure 136 – State transition diagrams outlining provisioning steps during a device

lifecycle .. 660
Figure 137 – State transition diagram showing various paths to joining a secured

network .. 663
Figure 138 – Provisioning objects and interactions ... 665
Figure C.1 – OSI Basic Reference Model .. 700
Figure O.1 – Generic protocol translation publish diagram .. 745
Figure O.2 – Generic protocol translation subscribe diagram .. 746
Figure O.3 – Generic protocol translation client/server transmission diagram 747
Figure O.4 – Generic protocol translation client/server reception diagram 748
Figure R.1 – Host integration reference model .. 763
Figure R.2 – Configuration using an electronic device definition.. 765
Figure R.3 – Configuration using FDT/DTM approach ... 766
Figure U.1 – Gateway scenarios ... 775
Figure U.2 – Basic gateway model .. 776
Figure U.3 – Internal sequence of primitives for session interface 780
Figure U.4 – Internal sequence of primitives for lease management interface 780
Figure U.5 – Internal sequence of primitives for system report interfaces 781
Figure U.6 – Internal sequence of primitives for time interface .. 781
Figure U.7 – Internal sequence of primitives for Client/server interface initiated from

gateway to an adapter device ... 782
Figure U.8 – Internal sequence of primitives for publish interface initiated from gateway

to an adapter device ... 782
Figure U.9 – Internal sequence of primitives for subscribe interface initiated from an

adapter device .. 783

62734/2CDV © IEC(E) – 11 –

Figure U.10 – Internal sequence of primitives for publisher timer initiated from gateway
to an adapter device ... 783

Figure U.11 – Internal sequence of primitives for subscriber timers initiated from an
adapter device .. 783

Figure U.12 – Internal sequence of primitives for the bulk transfer interface 784
Figure U.13 – Internal sequence of primitives for the alert subscription interface 784
Figure U.14 – Internal sequence of primitives for the alert notification interface 785
Figure U.15 – Internal sequence of primitives for gateway management interfaces 785
Figure U.16 – Tunnel object model ... 821
Figure U.17 – Distributed tunnel endpoints ... 822
Figure U.18 – Multicast, broadcast, and one-to-many messaging .. 823
Figure U.19 – Tunnel object buffering ... 824
Figure U.20 – publish/subscribe publisher CoSt flowchart ... 827
Figure U.21 – publish/subscribe publisher periodic flowchart .. 827
Figure U.22 – publish/subscribe subscriber common periodic and CoSt flowchart 828
Figure U.23 – Network address mappings ... 829
Figure U.24 – Connection_Info usage in protocol translation ... 830
Figure U.25 – Transaction_Info usage in protocol translation .. 831
Figure U.26 – Interworkable tunneling mechanism overview diagram 832
Figure U.27 – Bulk transfer model ... 835
Figure U.28 – Alert model ... 836
Figure U.29 – Alert cascading ... 837
Figure U.30 – Native publish/subscribe and client/server access .. 838

Table 1 – Standard management object types in DMAP .. 110
Table 2 – Metadata_attribute data structure .. 112
Table 3 – Alert types for communication diagnostic category .. 114
Table 4 – Alert types for security alert category .. 114
Table 5 – Alert types for device diagnostic alert category.. 114
Table 6 – Alert types for process alert category .. 114
Table 7 – ARMO attributes .. 116
Table 8 – ARMO alerts ... 119
Table 9 – Alarm_Recovery method ... 120
Table 10 – DMO attributes .. 122
Table 11 – DMO alerts .. 130
Table 12 – System management object types ... 133
Table 13 – DSO attributes... 135
Table 14 – Address_Translation_Row data structure .. 136
Table 15 – Read_Address_Row method ... 136
Table 16 – Input argument usage for Read_Address_Row method 138
Table 17 – Output argument usage for Read_Address_Row method 138
Table 18 – Attributes of SMO in system manager .. 140
Table 19 – Proxy_System_Manager_Join method ... 142
Table 20 – Proxy_System_Manager_Contract method .. 144

 – 12 – 62734/2CDV © IEC(E)

Table 21 – Effect of different join commands on attribute sets .. 146
Table 22 – Attributes of DMSO in system manager ... 146
Table 23 – System_Manager_Join method .. 147
Table 24 – System_Manager_Contract method ... 149
Table 25 – Attributes of STSO in system manager .. 153
Table 26 – Attributes of SCO in system manager .. 156
Table 27 – SCO method for contract establishment, modification, or renewal...................... 160
Table 28 – Input argument usage for SCO method for contract establishment,

modification, or renewal.. 167
Table 29 – Output argument usage for SCO method for contract establishment,

modification, or renewal.. 168
Table 30 – Contract_Data data structure ... 171
Table 31 – New_Device_Contract_Response data structure ... 174
Table 32 – SCO method for contract termination, deactivation and reactivation 180
Table 33 – DMO method to notify of contract termination .. 181
Table 34 – DMO method to notify of contract modification ... 183
Table 35 – Security levels ... 190
Table 36 – Structure of the security control field ... 190
Table 37 – Sec.DpduPrep.Request elements .. 196
Table 38 – Sec.DpduPrep.Response elements ... 197
Table 39 – Sec.DAckCheck.Request elements .. 198
Table 40 – Sec.DAckCheck.Response elements ... 199
Table 41 – Sec.DInitialCheck.Request elements ... 200
Table 42 – Sec.DInitialCheck.Response elements .. 201
Table 43 – Sec.DAckPrep.Request elements .. 202
Table 44 – Sec.DAckPrep.Response elements ... 203
Table 45 – Structure of the WISN DPDU nonce .. 204
Table 46 – Structure of the 32-bit truncated TAI time used in the D-nonce 204
Table 47 – TSC pseudo-header structure .. 209
Table 48 – Sec.TpduOutCheck.Request elements .. 212
Table 49 – Sec.TpduOutCheck.Response elements .. 212
Table 50 – Sec.TpduSecure.Request elements ... 213
Table 51 – Sec. TpduSecure.Response elements ... 214
Table 52 – Sec.TpduInCheck.Request elements ... 215
Table 53 – Sec.TpduInCheck.Response elements .. 216
Table 54 – Sec.TpduVerify.Request elements ... 217
Table 55 – Sec.TpduVerify.Response elements .. 218
Table 56 – Structure of TL security header ... 218
Table 57 – Structure of the TPDU nonce ... 219
Table 58 – Structure of 32-bit truncated nominal TAI time used in the T-nonce 219
Table 59 – Proxy_Security_Sym_Join method .. 231
Table 60 – Security_Sym_Join method ... 232
Table 61 – Security_Confirm method .. 232
Table 62 – Security_Sym_Join_Request data structure ... 233

62734/2CDV © IEC(E) – 13 –

Table 63 – Security_Sym_Join_Response data structure .. 234
Table 64 – Structure of compressed security level field ... 235
Table 65 – Master key security level ... 236
Table 66 – Security_Sym_Confirm data structure .. 236
Table 67 – Implicit certificate format ... 238
Table 68 – Usage_serial_number structure ... 238
Table 69 – Proxy_Security_Pub_Join method ... 245
Table 70 – Security_Pub_Join method .. 246
Table 71 – Proxy_Security_Pub_Confirm method ... 247
Table 72 – Security_Pub_Confirm method .. 247
Table 73 – Network_Information_Confirmation method ... 248
Table 74 – Format of asymmetric join request internal structure ... 249
Table 75 – Format of the protocol control field .. 249
Table 76 – Format of asymmetric join response internal structure 250
Table 77 – Format of first join confirmation internal structure .. 251
Table 78 – Format of join confirmation response internal structure...................................... 252
Table 79 – Join process and device lifetime state machine ... 254
Table 80 – Security_New_Session method ... 257
Table 81 – Security_New_Session_Request data structure ... 258
Table 82 – Security_New_Session_Response data structure .. 259
Table 83 – New_Key method .. 262
Table 84 – Security_Key_and_Policies data structure ... 263
Table 85 – Security_Key_Update_Status data structure .. 265
Table 86 – T-key and D-key state transition .. 266
Table 87 – Attributes of PSMO in the system manager ... 267
Table 88 – Structure of policy field .. 270
Table 89 – Key_Type .. 270
Table 90 – Key_Usage .. 271
Table 91 – Granularity .. 271
Table 92 – DSMO attributes .. 276
Table 93 – KeyDescriptor .. 278
Table 94 – T-keyLookupData OctetString fields .. 279
Table 95 – Delete key method .. 280
Table 96 – Key_Policy_Update method ... 281
Table 97 – DSMO Alerts ... 282
Table 98 – Timing requirements .. 284
Table 99 – Graph table on ND20 ... 290
Table 100 – Graph table on ND21 ... 290
Table 101 – Approximating nominal timing with 32 KiHz clock .. 320
Table 102 – DL_Config_Info structure ... 346
Table 103 – CountryCode ... 352
Table 104 – DD-DATA.request parameters .. 355
Table 105 – DD-DATA.confirm parameters ... 356

 – 14 – 62734/2CDV © IEC(E)

Table 106 – Value set for status parameter ... 356
Table 107 – DD-DATA.indication parameters ... 356
Table 108 – ExtDLUint, one-octet variant .. 359
Table 109 – ExtDLUint, two-octet variant .. 359
Table 110 – Data DPDU MHR ... 360
Table 111 – Data DPDU DHDR ... 361
Table 112 – Data DPDU DMXHR .. 362
Table 113 – DROUT structure, compressed variant .. 363
Table 114 – DROUT structure, uncompressed variant ... 364
Table 115 – DADDR structure ... 365
Table 116 – ACK/NAK DPDU MHR ... 366
Table 117 – ACK/NAK DPDU DHR ... 367
Table 118 – ACK/NAK DPDU DHDR ... 368
Table 119 – Advertisement DAUX structure .. 369
Table 120 – Advertisement selections elements .. 370
Table 121 – Advertisement selections ... 370
Table 122 – Advertisement time synchronization elements ... 371
Table 123 – Advertisement time synchronization structure .. 371
Table 124 – Join superframe information subfields ... 372
Table 125 – Join superframe information structure .. 373
Table 126 – Superframe derived from advertisement .. 373
Table 127 – Join information elements .. 374
Table 128 – Join information structure .. 374
Table 129 – Defaults for links created from advertisements .. 376
Table 130 – dlmo.Neighbor entry created from advertisements ... 377
Table 131 – dlmo.Graph entry created from advertisements.. 377
Table 132 – dlmo.Route entry created from advertisements .. 377
Table 133 – Solicitation header subfields .. 380
Table 134 – Solicitation header structure .. 380
Table 135 – Solicitation DAUX fields ... 380
Table 136 – Solicitation DAUX structure ... 381
Table 137 – Activate link DAUX fields ... 382
Table 138 – Activate link DAUX structure .. 382
Table 139 – Report received signal quality DAUX fields .. 383
Table 140 – Report received signal quality DAUX structure .. 383
Table 141 – DLMO attributes .. 384
Table 142 – D-subnet filter octets ... 393
Table 143 – dlmo.TaiAdjust OctetString fields ... 393
Table 144 – dlmo.TaiAdjust OctetString structure ... 394
Table 145 – dlmo.EnergyDesign OctetString fields .. 394
Table 146 – dlmo.EnergyDesign OctetString structure .. 394
Table 147 – dlmo.DeviceCapability OctetString fields ... 395
Table 148 – dlmo.DeviceCapability OctetString structure .. 395

62734/2CDV © IEC(E) – 15 –

Table 149 – dlmo.DiscoveryAlert fields ... 397
Table 150 – dlmo.DiscoveryAlert structure .. 397
Table 151 – dlmo.Candidates OctetString fields .. 398
Table 152 – dlmo.Candidates structure ... 399
Table 153 – dlmo.SmoothFactors OctetString fields .. 400
Table 154 – dlmo.SmoothFactors structure ... 400
Table 155 – dlmo.QueuePriority fields .. 401
Table 156 – dlmo.QueuePriority structure ... 401
Table 157 – dlmo.ChannelDiag fields .. 402
Table 158 – dlmo.ChannelDiag structure .. 402
Table 159 – dlmo.Ch fields ... 405
Table 160 – dlmo.Ch structure .. 405
Table 161 – Transaction receiver template fields .. 408
Table 162 – Transaction receiver template structure ... 408
Table 163 – Transaction initiator template fields ... 409
Table 164 – Transaction initiator template structure .. 409
Table 165 – Default transaction responder template, used during join process 410
Table 166 – Default transaction initiator template, used during join process 410
Table 167 – Default transaction responder template, used during join process 411
Table 168 – dlmo.Neighbor fields .. 413
Table 169 – dlmo.Neighbor structure .. 414
Table 170 – ExtendGraph fields .. 415
Table 171 – ExtGraph structure .. 415
Table 172 – dlmo.NeighborDiagReset fields.. 416
Table 173 – dlmo.NeighborDiagReset structure .. 416
Table 174 – dlmo.Superframe fields .. 417
Table 175 – dlmo.Superframe structure .. 418
Table 176 – dlmo.SuperframeIdle fields .. 422
Table 177 – dlmo.SuperframeIdle structure ... 422
Table 178 – dlmo.Graph ... 423
Table 179 – dlmo.Graph structure ... 423
Table 180 – dlmo.Link fields ... 424
Table 181 – dlmo.Link structure .. 425
Table 182 – dlmo.Link[].Type structure .. 426
Table 183 – Allowed dlmo.Link[].Type combinations .. 427
Table 184 – Values for dlmo.Link[].Schedule ... 428
Table 185 – dlmo.Route fields .. 428
Table 186 – dlmo.Route structure ... 429
Table 187 – dlmo.NeighborDiag fields... 430
Table 188 – Diagnostic summary OctetString fields .. 430
Table 189 – Diagnostic summary OctetString structure ... 431
Table 190 – Diagnostic ClockDetail OctetString fields ... 431
Table 191 – Diagnostic ClockDetail OctetString structure ... 432

 – 16 – 62734/2CDV © IEC(E)

Table 192 – Read_Row method .. 433
Table 193 – Write_Row method .. 433
Table 194 – Write_Row_Now method ... 434
Table 195 – dlmo.AlertPolicy fields ... 435
Table 196 – dlmo.AlertPolicy OctetString structure ... 435
Table 197 – DL_Connectivity alert .. 436
Table 198 – DL_Connectivity alert OctetString .. 436
Table 199 – NeighborDiscovery alert .. 437
Table 200 – Link-local address structure ... 438
Table 201 – Address translation table (ATT) ... 439
Table 202 – Example of a routing table ... 444
Table 203 – N-DATA.request elements .. 458
Table 204 – N-DATA.confirm elements... 459
Table 205 – N-DATA.indication elements ... 460
Table 206 – NLMO attributes .. 461
Table 207 – Contract table structure ... 464
Table 208 – Route table elements ... 464
Table 209 – Address translation table structure .. 465
Table 210 – NLMO structured MIB manipulation methods ... 466
Table 211 – Alert to indicate dropped PDU/PDU error ... 467
Table 212 – Common header patterns .. 469
Table 213 – Basic NL header format ... 469
Table 214 – Contract-enabled NL header format ... 471
Table 215 – 6LoWPAN_IPHC encoding format .. 471
Table 216 – IPv6 NL header format .. 472
Table 217 – Full NL header in the DL .. 473
Table 218 – NL header format for fragmented NPDUs .. 474
Table 219 – Format of first fragment header ... 474
Table 220 – Format of second and subsequent fragment headers 475
Table 221 – UDP header encoding ... 479
Table 222 – UDP 6LoWPAN_NHC-for-UDP encoding octet ... 483
Table 223 – Optimal UDP header encoding... 483
Table 224 – UDP header encoding with checksum and compressed port numbers 484
Table 225 – T-DATA.request elements ... 485
Table 226 – T-DATA.confirm elements ... 486
Table 227 – T-DATA.confirm status codes ... 487
Table 228 – T-DATA.indication elements ... 488
Table 229 – TLMO attributes... 489
Table 230 – TL management object methods – Reset ... 490
Table 231 – TL management object methods – Halt .. 491
Table 232 – TL management object methods – PortRangeInfo .. 491
Table 233 – TL management object methods – GetPortInfo .. 492
Table 234 – TL management object methods – GetNextPortInfo ... 493

62734/2CDV © IEC(E) – 17 –

Table 235 – TL management object alert types – Illegal use of port 493
Table 236 – TL management object alert types – TPDU received on unregistered port 494
Table 237 – TL management object alert types – TPDU does not match security

policies ... 494
Table 238 – State table for alarm transitions ... 503
Table 239 – State table for event transitions ... 504
Table 240 – UAP management object attributes .. 521
Table 241 – State table for UAP management object .. 522
Table 242 – UAP management object methods ... 523
Table 243 – Alert-receiving object attributes ... 524
Table 244 – State table for handling an AlertReport reception ... 524
Table 245 – AlertReceiving object methods .. 525
Table 246 – UploadDownload object attributes ... 527
Table 247 – UploadDownload object methods ... 531
Table 248 – UploadDownload object StartDownload method ... 532
Table 249 – UploadDownload object DownloadData method ... 533
Table 250 – UploadDownload object EndDownload method .. 535
Table 251 – UploadDownload object StartUpload method ... 536
Table 252 – UploadDownload object UploadData method ... 537
Table 253 – UploadDownload object EndUpload method .. 538
Table 254 – Download state table for unicast operation mode ... 539
Table 255 – Upload state table for unicast operation mode ... 542
Table 256 – Concentrator object attributes.. 544
Table 257 – Concentrator object methods ... 545
Table 258 – Dispersion object attributes ... 546
Table 259 – Dispersion object methods .. 547
Table 260 – Tunnel object attributes ... 548
Table 261 – Tunnel object methods .. 550
Table 262 – Interface object attributes .. 551
Table 263 – Interface object methods ... 551
Table 264 – Data type: ObjectAttributeIndexAndSize .. 552
Table 265 – Data type: Communication association endpoint .. 553
Table 266 – Data type: Communication contract data ... 555
Table 267 – Data type: Alert communication endpoint ... 556
Table 268 – Data type: Tunnel endpoint .. 556
Table 269 – Data type: Alert report descriptor ... 557
Table 270 – Data type: Process control alarm report descriptor for analog with single

reference condition ... 557
Table 271 – Data type: ObjectIDandType .. 558
Table 272 – Data type: Unscheduled correspondent ... 558
Table 273 – AL services ... 559
Table 274 – Publish service .. 563
Table 275 – Read service ... 569
Table 276 – Write service ... 574

 – 18 – 62734/2CDV © IEC(E)

Table 277 – Execute service ... 578
Table 278 – AlertReport service .. 584
Table 279 – AlertAcknowledge service .. 587
Table 280 – Tunnel service ... 591
Table 281 – Application flow characteristics .. 594
Table 282 – AL service primitive to TL service primitive mapping .. 595
Table 283 – ASLMO attributes .. 597
Table 284 – Application sublayer management object methods ... 598
Table 285 – Reset method .. 599
Table 286 – ASLMO alerts .. 600
Table 287 – Analog input object attributes .. 603
Table 288 – Analog input object methods.. 604
Table 289 – Analog input alerts .. 605
Table 290 – Analog output attributes .. 606
Table 291 – Analog output object methods ... 607
Table 292 – Analog output alerts .. 608
Table 293 – Binary input object attributes ... 609
Table 294 – Binary input object methods .. 610
Table 295 – Binary input alerts ... 610
Table 296 – Binary output attributes ... 611
Table 297 – Binary output object methods .. 612
Table 298 – Binary output alerts ... 612
Table 299 – Status octet ... 614
Table 300 – Data type: Process value and status for analog value 614
Table 301 – Data type: Process value and status for binary value 615
Table 302 – Data type: Process control mode ... 615
Table 303 – Data type: Process control mode bitstring .. 616
Table 304 – Data type: Process control scaling ... 616
Table 305 – Process control standard objects ... 617
Table 306 – Services .. 617
Table 307 – Application messaging format .. 618
Table 308 – Concatenated APDUs in a single TSDU ... 618
Table 309 – Object addressing ... 618
Table 310 – Four-bit addressing mode APDU header construction 619
Table 311 – Eight-bit addressing mode APDU header construction 619
Table 312 – Sixteen-bit addressing mode APDU header construction 619
Table 313 – Inferred addressing use case example .. 620
Table 314 – Inferred addressing mode APDU header construction 620
Table 315 – Six-bit attribute identifier, not indexed ... 621
Table 316 – Six-bit attribute identifier, singly indexed, with 7-bit index 621
Table 317 – Six-bit attribute identifier, singly indexed, with 15-bit index 621
Table 318 – Six-bit attribute identifier, doubly indexed, with two 7-bit indices 622
Table 319 – Six-bit attribute identifier, doubly indexed, with two 15-bit indices 622

62734/2CDV © IEC(E) – 19 –

Table 320 – Six-bit attribute identifier, doubly indexed, with first index seven bits long
and second index fifteen bits long... 622

Table 321 – Six-bit attribute bit attribute identifier, doubly indexed, with first index
fifteen bits long and second index seven bits long .. 622

Table 322 – Twelve-bit attribute identifier, not indexed ... 623
Table 323 – Twelve-bit attribute identifier, singly indexed with 7-bit index 623
Table 324 – Twelve-bit attribute identifier, singly indexed with 15-bit index 623
Table 325 – Twelve-bit attribute identifier, doubly indexed with two 7-bit indices 623
Table 326 – Twelve-bit attribute identifier, doubly indexed with two 15-bit indices 624
Table 327 – Twelve-bit attribute identifier, doubly indexed with first index seven bits

long and second index fifteen bits long ... 624
Table 328 – Twelve-bit attribute identifier, doubly indexed with the first index fifteen

bits long and the second index seven bits long ... 624
Table 329 – Twelve-bit attribute identifier, reserved form .. 624
Table 330 – Coding rules for read service request .. 625
Table 331 – Coding rules for read service response with seven bit size field....................... 625
Table 332 – Coding rules for read service response with fifteen-bit size field 625
Table 333 – Coding rules for write service request with 7- bit size field 626
Table 334 – Coding rules for write service request with 15-bit size field 626
Table 335 – Coding rules for write service response ... 626
Table 336 – Coding rules for execute service request with 7-bit size field 627
Table 337 – Coding rules for execute service request with 15-bit size field 627
Table 338 – Coding rules for execute service response with 7-bit size field 627
Table 339 – Coding rules for execute service response with 15-bit size field....................... 627
Table 340 – Coding rules for tunnel service request with 7-bit size field 628
Table 341 – Coding rules for tunnel service request with 15-bit size field 628
Table 342 – Coding rules for tunnel service response with 7-bit size field 628
Table 343 – Coding rules for tunnel service response with 15-bit size field 628
Table 344 – Coding rules for AlertReport service with 7-bit associated-data size field 629
Table 345 – Coding rules for AlertReport service with 15-bit associated-data size field 629
Table 346 – Coding rules for AlertAcknowledge service .. 629
Table 347 – Coding rules for publish service for a native sequence of values 630
Table 348 – Coding rules for publish service – non-native (for tunnel support) 630
Table 349 – Coding rules for concatenate service ... 630
Table 350 – General coding rule for size-invariant application data 631
Table 351 – General coding rule for size-varying application data of 0..255 octets 631
Table 352 – Coding rules for Unsigned8 ... 633
Table 353 – Coding rules for Unsigned16 ... 633
Table 354 – Coding rules for Unsigned32 ... 633
Table 355 – Coding rules for Unsigned64 ... 634
Table 356 – Coding rules for Unsigned128 ... 634
Table 357 – Coding rules for single-pecision float ... 635
Table 358 – Coding rules for double-precision float .. 636
Table 359 – Coding rules for VisibleString .. 636

 – 20 – 62734/2CDV © IEC(E)

Table 360 – Coding rules for OctetString .. 637
Table 361 – Coding rules for BitString .. 637
Table 362 – Coding rules for TAINetworkTime, and for TAITimeDifference when

interpreted as a modulo difference ... 638
Table 363 – Coding rules for TAITimeRounded ... 639
Table 364 – Coding example: Read request for a non-indexed attribute 652
Table 365 – Coding example: Read response for a non-indexed attribute 653
Table 366 – Coding example: Tunnel service request ... 653
Table 367 – Factory default settings ... 661
Table 368 – Device provisioning object ... 667
Table 369 – Reset_To_Default method ... 672
Table 370 – Write symmetric join key method ... 672
Table 371 – Device provisioning service object ... 673
Table 372 – DPSOWhiteListTbl data structure .. 676
Table 373 – Array manipulation table .. 678
Table 374 – DPSO alert to indicate join by a device not on the WhiteList 679
Table 375 – DPSO alert to indicate inadequate device join capability.................................. 679
Table B.1 – Protocol layer device roles ... 687
Table B.2 – Over-the-air upgrades .. 687
Table B.3 – Session support profiles ... 688
Table B.4 – Baseline profiles .. 689
Table B.5 – PhL roles ... 689
Table B.6 – DL required for listed roles ... 690
Table B.7 – Role profiles: General DLMO attributes .. 691
Table B.8 – Role profiles: dlmo.Device_Capability .. 691
Table B.9 – Role profiles: dlmo.Ch (channel-hopping) ... 692
Table B.10 – Role profiles: dlmo.TsTemplate .. 692
Table B.11 – Role profiles: dlmo.Neighbor .. 692
Table B.12 – Role profiles: dlmo.NeighborDiag ... 693
Table B.13 – Role profiles: dlmo.Superframe .. 693
Table B.14 – Role profiles: dlmo.Graph .. 693
Table B.15 – Role profiles: dlmo.Link .. 694
Table B.16 – Role profiles: dlmo.Route ... 694
Table B.17 – Role profiles: dlmo.Queue_Priority ... 694
Table B.18 – Routing table size .. 695
Table B.19 – Address table size .. 695
Table B.20 – Port support size .. 695
Table B.21 – APs .. 695
Table B.22 – Role profiles: I/O, routers, gateways, and backbone routers 696
Table B.23 – Role profile: Gateway ... 696
Table B.24 – Role profile: Gateway native access ... 696
Table B.25 – Role profile: Gateway interworkable tunnel mechanism 697
Table C.1 – Usage classes ... 699

62734/2CDV © IEC(E) – 21 –

Table D.1 – System management configuration defaults ... 704
Table D.2 – Security configuration defaults ... 705
Table D.3 – DLE configuration defaults ... 706
Table D.4 – NLE configuration defaults ... 707
Table D.5 – TLE configuration defaults ... 707
Table D.6 – ALE configuration defaults ... 708
Table D.7 – Provisioning configuration defaults .. 710
Table D.8 – Gateway configuration defaults .. 710
Table I.1 – Table of standard object types .. 725
Table I.2 – Template for standard object attributes ... 726
Table I.3 – Template for standard object methods ... 727
Table I.4 – Template for standard object alert reporting .. 728
Table I.5 – Template for data structures .. 729
Table J.1 – Scheduled_Write method template ... 731
Table J.2 – Read_Row method template ... 732
Table J.3 – Write_Row method template ... 732
Table J.4 – Reset_Row method template .. 733
Table J.5 – Delete_Row method template ... 734
Table K.1 – Standard object types .. 736
Table K.2 – Standard object instances .. 738
Table L.1 – Standard data types ... 740
Table M.1 – Identification of tunneled legacy fieldbus protocols .. 742
Table T.1 – Sample MHR for join request.. 771
Table T.2 – Sample DHR for join request .. 772
Table T.3 – Network header for join messages ... 772
Table U.1 – Summary of notional gateway high-side interface examples 778
Table U.2 – Primitive G_Session parameter usage ... 787
Table U.3 – GS_Status for G_Session confirm .. 789
Table U.4 – Primitive G_Lease parameter usage .. 790
Table U.5 – GS_Lease_Type for G_Lease request ... 791
Table U.6 – GS_Status for G_Lease confirm ... 792
Table U.7 – Primitive G_Device_List_Report parameter usage ... 793
Table U.8 – GS_Status for G_Device_List_Report confirm .. 794
Table U.9 – Primitive G_Topology_Report parameter usage ... 794
Table U.10 – Primitive G_Schedule_Report parameter usage ... 796
Table U.11 – Primitive G_Device_Health_Report parameter usage 798
Table U.12 – Primitive G_Neighbor_Health_Report parameter usage 799
Table U.13 – Primitive G_Network_Health_Report parameter usage 801
Table U.14 – Primitive G_Time parameter usage .. 803
Table U.15 – GS_Status for G_Time confirm .. 803
Table U.16 – Primitive G_Client_Server parameter usage ... 804
Table U.17 – GS_Status for G_Client_Server confirm ... 805
Table U.18 – Primitive G_Publish parameter usage .. 807

 – 22 – 62734/2CDV © IEC(E)

Table U.19 – GS_Status for G_Publish confirm ... 808
Table U.20 – Primitive G_Subscribe parameter usage .. 808
Table U.21 – GS_Status for G_Subscribe confirm ... 809
Table U.22 – Primitive G_Publish_Timer parameter usage .. 809
Table U.23 – Primitive G_Subscribe_Timer parameter usage .. 809
Table U.24 – Primitive G_Publish_Watchdog parameter usage ... 810
Table U.25 – Primitive G_Bulk_Open parameter usage ... 811
Table U.26 – GS_Status for G_Bulk_Open confirm ... 812
Table U.27 – Primitive G_Bulk_Transfer parameter usage .. 812
Table U.28 – GS_Status for G_Bulk_Transfer confirm .. 812
Table U.29 – Primitive G_Bulk_Close parameter usage .. 813
Table U.30 – Primitive G_Alert_Subscription parameter usage ... 814
Table U.31 – GS_Status for G_Alert_Subscription confirm .. 815
Table U.32 – Primitive G_Alert_Notification parameter usage ... 815
Table U.33 – Primitive G_Read_Gateway_Configuration parameter usage 816
Table U.34 – GS_Attribute_Identifier values for G_Read_Gateway_Configuration

request ... 817
Table U.35 – Primitive G_Write_Gateway_Configuration parameter usage 817
Table U.36 – GS_Attribute_Identifier values for G_Write_Gateway_Configuration

request ... 818
Table U.37 – GS_Status for G_Write_Gateway_Configuration confirm 818
Table U.38 – Primitive G_Write_Device_Configuration parameter usage 819
Table U.39 – GS_Status for G_Write_Device_Configuration confirm 820
Table U.40 – Primitive G_Read_Device_Configuration parameter usage 820
Table U.41 – Example of gateway configuration management attributes 840

62734/2CDV © IEC(E) – 23 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION 1

____________ 2

 3
Industrial communications networks – 4

Wireless communication network and communication profiles – 5
 ISA 100.11A 6

 7
FOREWORD 8

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising 9
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote 10
international co-operation on all questions concerning standardization in the electrical and electronic fields. To 11
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, 12
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC 13
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested 14
in the subject dealt with may participate in this preparatory work. International, governmental and non-15
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely 16
with the International Organization for Standardization (ISO) in accordance with conditions determined by 17
agreement between the two organizations. 18

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international 19
consensus of opinion on the relevant subjects since each technical committee has representation from all 20
interested IEC National Committees. 21

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National 22
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC 23
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any 24
misinterpretation by any end user. 25

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications 26
transparently to the maximum extent possible in their national and regional publications. Any divergence 27
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in 28
the latter. 29

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity 30
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any 31
services carried out by independent certification bodies. 32

6) All users should ensure that they have the latest edition of this publication. 33
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and 34

members of its technical committees and IEC National Committees for any personal injury, property damage or 35
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and 36
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC 37
Publications. 38

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is 39
indispensable for the correct application of this publication. 40

International Standard IEC 62734 has been prepared by subcommittee 65C: Industrial 41
networks, of IEC technical committee 65: Industrial-process measurement, control and 42
automation. 43

This International Standard is based on ISA100.11a, ISBN: 978-1-936007-96-7. 44

The text of this standard is based on the following documents: 45

FDIS Report on voting

65C/XX/FDIS 65C/XX/RVD

 46
Full information on the voting for the approval of this standard can be found in the report on 47
voting indicated in the above table. 48

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. 49

 – 24 – 62734/2CDV © IEC(E)

The committee has decided that the contents of this publication will remain unchanged until 50
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data 51
related to the specific publication. At this date, the publication will be 52

• reconfirmed, 53

• withdrawn, 54

• replaced by a revised edition, or 55

• amended. 56

 57

The National Committees are requested to note that for this publication the stability date 58
is 2019. 59

THIS TEXT IS INCLUDED FOR THE INFORMATION OF THE NATIONAL COMMITTEES AND WILL BE DELETED 60
AT THE PUBLICATION STAGE. 61

62

62734/2CDV © IEC(E) – 25 –

0 Introduction 63

0.1 General 64

This standard provides specifications in accordance with the OSI Basic Reference Model, 65
ISO/IEC 7498–1, (e.g., PhL, DL, etc.), and also provides security and management (including 66
network and device configuration) specifications for wireless devices serving Annex C’s usage 67
classes 1 through 5, and potentially class 0, for fixed, portable, and moving devices. 68

This standard is intended to provide reliable and secure wireless operation for non-critical 69
monitoring, alerting, supervisory control, open loop control, and closed loop control 70
applications. This standard defines a protocol suite, including system management, gateway 71
considerations, and security specifications, for low-data-rate wireless connectivity with fixed, 72
portable, and slowly-moving devices, often operating under severe energy and power 73
constraints. The application focus is the performance needs of process automation monitoring 74
and control where end-to-end communication latencies on the order of at least 100 ms can be 75
tolerated. 76

To meet the needs of industrial wireless users and operators, the technology specified in this 77
document provides robustness in the presence of interference found in harsh industrial 78
environments or caused by wireless systems not covered by this international standard. As 79
described in Clause 4, this standard addresses coexistence with other wireless devices 80
anticipated in the industrial workspace, such as cell phones and devices based on IEC 62591 81
(based on WirelessHART™1), IEC 62601 (based on WIA-PA), IEEE 802.11 (WiFi), 82
IEEE 802.15, IEEE 802.16 (WiMax), and other relevant standards. Furthermore, this standard 83
supports interoperability of devices compliant with this international standard, as described in 84
Clause 5, in those aspects of operation that are covered by this international standard. 85

This standard does not define or specify plant infrastructure or its security or performance 86
characteristics. However, it is important that the security of the plant infrastructure be assured 87
by the end user. 88

0.2 Document structure 89

This document is organized into clauses focused on unique network functions and protocol 90
suite layers. The clauses describe system, system management, security management, 91
physical layer, data-link layer, network layer, transport layer, application layer, and 92
provisioning. Generic considerations that apply to protocol gateways are also included, 93
though specifications of specific protocol gateways are not. Each clause describes a 94
functionality or protocol layer and dictates the behavior required for proper operation. When a 95
clause describes behaviors related to another function or layer, a reference to the appropriate 96
other clause is supplied for further information. 97

The mandatory and optional communication protocols defined by this document are referred 98
to as native protocols, while those protocols used by other networks such as legacy fieldbus 99
communication protocols are referred to as foreign protocols. 100

0.3 Potentially relevant patents 101

The International Electrotechnical Commission (IEC) draws attention to the fact that it is 102
claimed that compliance with this document may involve the use of multiple patents: 103

a) concerning elliptic curve (asymmetric) cryptography, given in 7.4.6 and 7.2.2.3; 104

1 Property of the HART Communication Foundation. This information is given for the convenience of users of the

standard and does not constitute an endorsement of the trademark holder or any related products. Compliance
to this profile does not require use of the registered trademark. Use of the trademarks requires permission of
the trade name holder.

 – 26 – 62734/2CDV © IEC(E)

b) concerning synchronizing clocks and assessing link quality, given in 9.1.9.3 and 9.1.15; 105
c) concerning unspecified subject areas; 106
d) concerning wireless provisioning, and selection and routing among multiple gateways. 107

IEC takes no position concerning the evidence, validity and scope of these patent rights. 108

The holders of these patent rights have assured the IEC that they are willing to negotiate 109
licences either free of charge (free) or under reasonable and non-discriminatory terms and 110
conditions (RAND) with applicants throughout the world. In this respect, the statements of the 111
following holders of those patent rights are registered with IEC. 112

Information on these patent rights and their licensing may be obtained from: 113

a) Certicom Corporation
4701 Tahoe Blvd, Bldg A
L4W 0B5 Mississauga, ON CANADA

Attn: Patent licensing

Licensing terms: presumably RAND

Relevant patents:
unknown; not stated by patent holder

b) NIVIS LLC
1000 Circle 75 Pkwy, Suite 300
Atlanta, GA 30339-6051 USA

Attn: Patent licensing

Licensing terms: RAND

Relevant patents:
– US 20100027437
– US 20100098204

c) General Electric
1 Research Cir
Schenectady, NY 12309-1027 USA

Attn: Patent licensing

Licensing terms: presumably RAND, reciprocity

Relevant patents:
unknown; not stated by patent holder

d) Yokogawa Electric Corporation
2-9-32 Nakachou, Musashina-shi
Tokyo JAPAN

Attn: Patent licensing

Licensing terms: RAND, reciprocity

Relevant patents:
– JP 4129749
– US 8005514
– US 8031727
– US 8305927
– US 2009080394

The above patent holders, patents, and licensing terms are those declared to the IEC as relevant to IEC 62734,
as of the date of preparation of this text.

 114

Attention is drawn to the possibility that some of the elements of this document may be the 115
subject of patent rights other than those identified above. IEC shall not be held responsible for 116
identifying any or all such patent rights. 117

ISO (http://www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of 118
patents relevant to their standards. Users are encouraged to consult these databases for the 119
most up-to-date information concerning patents. 120

 121

http://www.iso.org/patents
http://patents.iec.ch/tctools/patent_decl.htm

62734/2CDV © IEC(E) – 27 –

Industrial communications networks – 122
Wireless communication network and communication profiles – 123

 ISA 100.11A 124
 125
 126

1 Scope 127

This International Standard specifies a method of reliable and secure wireless operation for 128
non-critical monitoring, alerting, supervisory control, open loop control, and closed loop 129
control applications. This standard defines a protocol suite, including system management, 130
gateway considerations, and security specifications, for low-data-rate wireless connectivity 131
with fixed, portable, and slowly-moving devices, often operating under severe energy and 132
power constraints. The application focus of this standard is the performance needs of process 133
automation monitoring and control, where end-to-end communication delays on the order of 134
100 ms can be tolerated. 135

This standard specifies the following: 136

• physical layer service definition and protocol specification; 137

• data-link layer service definition and protocol specification; 138

• network layer service definition and protocol specification; 139

• transport layer service definition and protocol specification; 140

• application layer service definition and protocol specification, including support for 141
protocol tunneling and gateways; 142

• security and security management; 143

• provisioning and configuration; 144

• network management; and 145

• additive communication role profiles (i.e., one or more can be selected concurrently). 146

Functionality above the application layer of the OSI Basic Reference Model, such as the so-147
called User Layer and different profiles for functionality at that layer, is not addressed 148
specifically. However, it is discussed briefly in Annex A. 149

2 Normative references 150

The following documents, in whole or in part, are normatively referenced in this document and 151
are indispensable for its application. For dated references, only the edition cited applies. For 152
undated references, the latest edition of the referenced document (including any 153
amendments) applies. 154

NOTE 1 See the Bibliography for non-normative references. 155

ISO/IEC 646, Information technology – ISO 7-bit coded character set for information 156
interchange 157

ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference 158
Model – Conventions for the definition of OSI services 159

ISO/IEC 18033-3, Information technology – Security techniques – Encryption algorithms – 160
Part 3: Block ciphers 161

ISO/IEC 19772, Information technology – Security techniques – Authenticated encryption 162

 – 28 – 62734/2CDV © IEC(E)

IETF RFC 2460, Internet Protocol, Version 6 (IPv6) Specification 163

IETF RFC 2464, Transmission of IPv6 Packets over Ethernet Networks 164

IETF RFC 2529, Transmission of IPv6 over IPv4 Domains without Explicit Tunnels 165

IETF RFC 3168, The Addition of Explicit Congestion Notification (ECN) to IP 166

IETF RFC 4213, Basic Transition Mechanisms for IPv6 Hosts and Routers 167

IETF RFC 4291:2006, IP Version 6 Addressing Architecture 168

IETF RFC 4944, Transmission of IPv6 Packets over IEEE 802.15.4 Networks 169

IETF RFC 6282, Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based 170
Networks 171

IETF RFC 6298, Computing TCP's Retransmission Timer 172

IEEE Std 802.15.4™:20112, IEEE Standard for Information technology— Telecommunications 173
and information exchange between systems— Local and metropolitan area networks— 174
Specific requirements – Part 15-4: Wireless Medium Access Control (MAC) and Physical 175
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) 176

ANSI X9.63:2001, Public Key Cryptography for the Financial Services Industry - Key 177
Agreement and Key Transport Using Elliptic Curve Cryptography 178

SEC 1:2009, Elliptic Curve Cryptography, version 2, available at http://www.secg.org 179

SEC 4, Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV), version 0.97, 180
available at http://www.secg.org 181

ISA Handbook of Measurement Equations and Tables, 2nd Edition, 182
ISBN 978-1-55617-946-4 183

3 Terms, definitions, abbreviated terms, acronyms, and conventions 184

For the purposes of this document, the following terms, definitions, abbreviations, acronyms 185
and conventions apply. 186

 Terms and definitions 3.1187

 (N)-layer and other terms and definitions from the open systems interconnection 3.1.1188
Basic Reference Model 189

3.1.1.1 190
abstract syntax 191
specification of (N)-PDUs by using notation rules which are independent of the encoding 192
technique used to represent them 193

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 7.1.1.2, generalized to any layer] 194

2 Property of IEEE, http://www.ieee.org

http://www.secg.org/
http://www.secg.org/
http://www.ieee.org/

62734/2CDV © IEC(E) – 29 –

3.1.1.2 195
accountability 196
property that ensures that the actions of an entity may be traced uniquely to the entity 197

[SOURCE: ISO 7498-2:1989, 3.3.3] 198

3.1.1.3 199
acknowledgment 200
function of the (N)-layer which allows a receiving (N)-entity to inform a sending (N)-entity of 201
the receipt of an (N)-PDU 202

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.16] 203

3.1.1.4 204
application-entity 205
active element, within an application process, embodying a set of capabilities that is pertinent 206
to OSI and that is defined for the AL, that corresponds to a specific application-entity-type 207
(without any extra capabilities being used) 208

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 7.1.1.1] 209

Note 1 to entry: This is a slight specialization of (N)-entity, because the AL includes non-OSI-relevant application 210
functions. Each application-entity represents one and only one process in the open system interconnection 211
environment. 212

3.1.1.5 213
application-management 214
functions in the AL related to management of OSI application-processes 215

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 8.1.1] 216

3.1.1.6 217
association 218
cooperative relationship between system entities, usually for the purpose of transferring 219
information between them 220

[SOURCE: IEC/TS 62443-1-1:2009, 3.2.7] 221

3.1.1.7 222
(N)-association 223
cooperative relationship among (N)-entity-invocations 224

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.1] 225

3.1.1.8 226
authorization 227
granting of rights, which includes the granting of access based on access rights 228

[SOURCE: ISO 7498-2:1989, 3.3.10] 229

3.1.1.9 230
availability 231
property of being accessible and useable upon demand by an authorized entity 232

[SOURCE: ISO 7498-2:1989, 3.3.11] 233

3.1.1.10 234
blocking 235
function performed by an (N)-entity to map multiple (N)-SDUs into one (N)-PDU 236

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.11] 237

 – 30 – 62734/2CDV © IEC(E)

3.1.1.11 238
centralized-multi-endpoint-connection 239
multi-endpoint-connection where data sent by the entity associated with the central-240
connection-endpoint is received by all other entities, while data sent by the other entities is 241
received by only the central entity 242

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.2] 243

3.1.1.12 244
ciphertext 245
data produced through the use of encipherment so that the semantic content of the resulting 246
data is not available 247

[SOURCE: ISO 7498-2:1989, 3.3.1] 248

Note 1 to entry: See cleartext, plaintext. 249

Note 2 to entry: Relative to a PDU, ciphertext is information in a PDU that is subject to obscuration by encryption, 250
in its post-encryption pre-decryption obscured form. 251

3.1.1.13 252
cleartext 253
<generic> intelligible data, the semantic content of which is available 254

[SOURCE: ISO 7498-2:1989, 3.3.15] 255

3.1.1.14 256
cleartext 257
<communications-protocol-specific> information in a PDU that is not subject to obscuration by 258
encryption 259

Note 1 to entry: Relative to a PDU, cleartext is information in the PDU that is not subject to obscuration by 260
encryption, that when present in the PDU is always present in its unobscured form. 261

3.1.1.15 262
compromise 263
violation of computer security whereby programs or data may have been modified, destroyed, 264
or made available to unauthorized entities 265

[SOURCE: ISO/IEC 2382-8:1998, 08.05.11] 266

3.1.1.16 267
concatenation 268
function performed by an (N)-entity to map multiple (N)-PDUs into one (N-1)-SDU 269

Note 1 to entry: Blocking and concatenation, though similar (they both permit grouping of data-units) serve 270
different purposes. For instance, concatenation permits the (N)-layer to group one or several acknowledgment 271
(N)-PDUs with one (or several) (N)-PDUs containing user-data. This would not be possible with the blocking 272
function only. Note also that the two functions are combinable so that the (N)-layer performs blocking and 273
concatenation. 274

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.13] 275

3.1.1.17 276
concrete syntax 277
those aspects of the rules used in the specification of data which embody a specific 278
representation of that data 279

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 7.2.1.1] 280

3.1.1.18 281
confidentiality 282
property that information is not made available or disclosed to unauthorized individuals, 283
entities, or processes 284

62734/2CDV © IEC(E) – 31 –

[SOURCE: ISO 7498-2:1989, 3.3.16] 285

Note 1 to entry: In a general information security context, confidentiality preserves authorized restrictions on 286
information access and disclosure, including means for preserving personal privacy and proprietary information. 287

3.1.1.19 288
(N)-connection 289
association requested by an (N+1)-layer entity for the transfer of data between two or more 290
(N+1)-entities 291

Note 1 to entry: The association is established by the (N)-layer and provides explicit identification of a set of 292
(N)-data-transmissions and agreement concerning the (N)-data-transmission services to be provided for the set. 293

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.2] 294

3.1.1.20 295
(N)-connection endpoint 296
terminator at one end of an (N)-connection within an (N)-service-access-point 297

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.3] 298

3.1.1.21 299
(N)-connection-endpoint-identifier 300
identifier of an (N)-connection-endpoint which can be used to identify the corresponding 301
(N)-connection at an (N)-SAP 302

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.4.1.5] 303

3.1.1.22 304
(N)-connection-endpoint-suffix 305
that part of an (N)-connection-endpoint-identifier which is unique within the scope of an 306
(N)-SAP 307

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.4.1.6] 308

3.1.1.23 309
(N)-connection-mode-transmission 310
(N)-data-transmission in the context of an (N)-connection 311

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.17] 312

3.1.1.24 313
(N)-connectionless-mode-transmission 314
(N)-data-transmission not in the context of an (N)-connection and not required to maintain any 315
logical relationship between (N)-SDUs 316

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.18] 317

3.1.1.25 318
correspondent-(N)-entities 319
(N)-entities with an (N-1)-connection between them 320

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.5] 321

3.1.1.26 322
cryptanalysis 323
analysis of a cryptographic system and/or its inputs and outputs to derive confidential 324
variables and/or sensitive data including cleartext 325

[SOURCE: ISO 7498-2:2009, 3.3.18] 326

 – 32 – 62734/2CDV © IEC(E)

3.1.1.27 327
data integrity 328
property that data has not been altered or destroyed in an unauthorized manner 329

[SOURCE: ISO 7498-2:1989, 3.3.21] 330

3.1.1.28 331
data-origin authentication 332
corroboration that the source of data received is as claimed 333

[SOURCE: ISO 7489-2:1989, 3.3.22] 334

3.1.1.29 335
(N)-data transmission 336
(N)-facility that conveys SDUs from one (N+1) layer entity to one or more (N+1) entities 337

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.9] 338

3.1.1.30 339
deblocking 340
function performed by an (N)-entity to identify multiple (N)-SDUs which are contained in one 341
(N)-PDU 342

Note 1 to entry: In the absence of error, deblocking is the reverse function of blocking. 343

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.12] 344

3.1.1.31 345
decentralized-multi-endpoint-connection 346
multi-endpoint-connection where data sent by an entity associated with a connection-endpoint 347
is received by all other entities 348

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.3] 349

3.1.1.32 350
decryption 351
reversal of a corresponding reversible encipherment 352

[SOURCE: ISO 7498-2:1989, 3.3.23] 353

3.1.1.33 354
demultiplexing 355
function performed by an (N)-entity which identifies (N)-PDUs for more than one 356
(N)-connection within an (N-1)-connection 357

Note 1 to entry: In the absence of error, demultiplexing is the reverse function of multiplexing. 358

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.5] 359

3.1.1.34 360
digital signature 361
data appended to, or a crypto graphic transformation of, a data unit that allows a recipient of 362
the data unit to prove the source and integrity of the data unit and protect against forgery e.g. 363
by the recipient 364

[SOURCE: ISO 7498-2:1989, 3.3.26] 365

3.1.1.35 366
(N)-entity 367
active element within an (N)-subsystem embodying a set of capabilities defined for the 368
(N)-layer that corresponds to a specific (N)-entity-type (without any extra capabilities being 369
used) 370

62734/2CDV © IEC(E) – 33 –

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.2.1.11] 371

3.1.1.36 372
(N)-entity-invocation 373
specific utilization of part or all or all of the capabilities of a given (N)-entity (without any extra 374
capabilities being used) 375

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.2.1.12] 376

3.1.1.37 377
(N)-entity-type 378
description of a class of (N)-entities in terms of a set of capabilities defined for the (N)-layer 379

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.2.1.10] 380

3.1.1.38 381
(N)-interface-control-information 382
information transferred locally between an (N+1)-entity and an (N)-entity to coordinate their 383
joint operation 384

3.1.1.39 385
(N)-layer 386
subdivision of the OSI architecture, constituted by subsystems of the same rank (N) 387

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996,5.2.1.2] 388

3.1.1.40 389
(N)-layer-management 390
functions related to the management of the (N)-layer partly performed in the (N)-layer itself 391
according to the (N)-protocol of the layer (activities such as activation and error control) and 392
partly performed as a subset of systems-management 393

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 8.1.6] 394

3.1.1.41 395
multi-endpoint-connection 396
connection with more than two connection-endpoints 397

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.4] 398

3.1.1.42 399
multiplexing 400
function performed by an (N)-entity in which one (N-1)-connection is used to support more 401
than one (N)-connection 402

Note 1 to entry: The term multiplexing is also used in a more restricted sense to the function performed by the 403
sending (N)-entity while the term demultiplexing is used to the function performed by the receiving (N)-entity. 404

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.4] 405

3.1.1.43 406
password 407
confidential authentication information, usually composed of a string of characters 408

[SOURCE: ISO 7498-2:1989, 3.3.39] 409

3.1.1.44 410
peer-(N)-entities 411
entities within the same (N)-layer 412

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.2.1.3] 413

 – 34 – 62734/2CDV © IEC(E)

3.1.1.45 414
peer-entity authentication 415
corroboration that a peer entity in an association is the one claimed 416

[SOURCE: ISO 7489-2:1989, 3.3.40] 417

3.1.1.46 418
(N)-protocol 419
set of rules and formats (semantic and syntactic) that determines the communication behavior 420
of (N)-entities in the performance of (N)-functions 421

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.2.1.9] 422

3.1.1.47 423
(N)-protocol-addressing-information 424
those elements of (N)-PCI which contain addressing information 425

[SOURCE: ISO/IEC 7498-3:1997, 3.4.20] 426

3.1.1.48 427
(N)-protocol-control-information 428
information exchanged between (N)-entities to coordinate their joint operation 429

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.6.1.1] 430

3.1.1.49 431
(N)-protocol-data-unit 432
unit of data specified in an (N)-protocol and consisting of (N)-protocol-control-information and 433
possibly (N)-user-data 434

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.6.1.3] 435

3.1.1.50 436
(N)-protocol-version-identifier 437
identifier conveyed between correspondent (N)-entities which allows the selection of the 438
version of an (N)-protocol 439

Note 1 to enry: The definition of a new (N)-protocol-version-identifier presupposes a minimal common knowledge 440
of the (N)-protocol identified by the preceding (N)-protocol-version-identifier. When such a minimal common 441
knowledge cannot be achieved, the (N)-protocols are considered to be independent and different. 442

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.18] 443

3.1.1.51 444
quality of service 445
<generic> collective effect of service performance which determines the degree of satisfaction 446
of a user of the service 447

[SOURCE: IEC 61907:2009, 3.1.15] 448

Note 1 to entry: The quality of service is characterized by the combined aspects of service support performance, 449
service operability performance, serveability performance, service integrity and other factors specific to each 450
service. 451

Note 2 to entry: ISO defines quality as the ability of a product or service to satisfy users’ needs. 452

3.1.1.52 453
quality of service 454
<data link service> negotiated parameters for a link, including 455

• priority; 456

• time windows for control messaging; 457

• acceptability of out-of-order message delivery; and 458

62734/2CDV © IEC(E) – 35 –

• acceptability of message delivery in partial increments 459

3.1.1.53 460
reassembling 461
function performed by an (N)-entity to map multiple (N)-PDUs into one (N)-SDU 462

Note 1 to entry: In the absence of error, reassembling is the reverse function of segmenting. 463

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.10] 464

3.1.1.54 465
recombining 466
function performed by an (N)-entity which identifies (N)-PDUs for a single (N)-connection in 467
(N-1)-SDUs received on more than one (N-1)-connection 468

Note 1 to entry: In the absence of error, recombining is the reverse function of splitting. 469

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.7] 470

3.1.1.55 471
(N)-relay 472
(N)-function by means of which an (N)-entity forwards data received from one peer (N)-entity 473
to another peer (N)-entity 474

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.3.1.6] 475

3.1.1.56 476
reset 477
function that sets the corresponding (N)-entities to a predefined state with a possible loss or 478
duplication of data 479

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.17] 480

3.1.1.57 481
security label 482
marking bound to a resource (which may be a data unit) that names or designates the security 483
attributes of that resource 484

[SOURCE: ISO 7498-2:1989, 3.3.49] 485

3.1.1.58 486
segmenting 487
function performed by an (N)-entity to map one (N)-SDU into multiple (N)-PDUs 488

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.9] 489

3.1.1.59 490
(N)-selector 491
that part of an (N)-address that is specific to the addressed (N)-subsystem, i.e., which 492
identifies one or more (N)-SAPs within an end open system once that end open system is 493
unambiguously identified 494

Note 1 to entry: Since the end open system is implicitly known at the Network layer, (N)-selectors are used above 495
the Network layer, along with local information, to address the desired (N+1)-entity within the open system. 496
(N)-selector values are exchanged between open systems as part of the (N)-PAI. 497

[SOURCE: ISO/IEC 7498-3:1997, 6.2.3] 498

3.1.1.60 499
separation 500
function performed by an (N)-entity to identify multiple (N)-PDUs which are contained in one 501
(N-1)-SDU 502

Note 1 to entry: In the absence of error, separation is the reverse function of concatenation. 503

 – 36 – 62734/2CDV © IEC(E)

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.14] 504

3.1.1.61 505
sequencing 506
function performed by the (N)-layer to preserve the order of (N)-SDUs that were submitted to 507
the (N)-layer 508

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.15] 509

3.1.1.62 510
(N)-service 511
capability of the (N)-layer and the layers beneath it, which is provided to (N+1) entities at the 512
boundary between the (N)-layer and the (N+1) layer 513

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.2.1.5] 514

3.1.1.63 515
(N)-service access point 516
point at which (N)-services are provided by an (N)- entity to an (N+1)-entity 517

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.2.1.8] 518

3.1.1.64 519
(N)-service-access-point-address 520
(N)-address that is used to identify a single (N)-SAP 521

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.4.1.2] 522

3.1.1.65 523
(N)-service-data-unit 524
amount of information whose identity is preserved when transferred between peer 525
(N+1)-entities and which is not interpreted by the supporting (N)-entities 526

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.6.1.4] 527

3.1.1.66 528
splitting 529
function within the (N)-layer by which more than one (N-1)-connection is used to support one 530
(N)-connection 531

Note 1 to entry: The term splitting is also used in a more restricted sense to see the function performed by the 532
sending (N)-entity while the term recombining is used to see the function performed by the receiving (N)-entity. 533

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.8.1.6] 534

3.1.1.67 535
system management 536
functions in the AL related to management of various OSI resources and their status across 537
all layers of the OSI architecture 538

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 8.1.4] 539

3.1.1.68 540
transfer syntax 541
abstract and concrete syntax used in the transfer of data between open systems 542

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 7.2.1.2] 543

3.1.1.69 544
user application process 545
active process within the highest portion of the AL that is the user of OSI services 546

62734/2CDV © IEC(E) – 37 –

Note 1 to entry: The aspects of a UAP that need to be taken into account for the purpose of OSI are represented 547
by one or more application-entities, of one or more application-entity-types, defined in ISO/IEC 7498-1:1994 as 548
corrected and reprinted in 1996, 7.1.2.2 and 7.1.2.3. 549

Note 2 to entry: The collection of UAPs is sometimes referred to as the user layer, even though 550
ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 7.1.2.1 states that the AL has no boundary with a higher 551
layer. In the OSI Basic Reference Model, the AL includes the UAPs. 552

3.1.1.70 553
(N)-user-data 554
data transferred between (N)-entities on behalf of the (N+1)-entities for which the (N)-entities 555
are providing services 556

[SOURCE: ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, 5.6.1.2] 557

 Other terms and definitions 3.1.2558

NOTE Sources of definitions that are otherwise unreferenced by this standard can be found in the Bibliography. 559

3.1.2.1 560
access control 561
means to ensure that access to assets is authorized and restricted based on business and 562
security requirements 563

[SOURCE: ISO/IEC 27000:2009, 2.1] 564

3.1.2.2 565
alarm 566
condition that maintains a state until the condition clears, reported on change of state 567

EXAMPLE The occurrence of an alarm or of a return-to-normal condition that is of potential significance to a 568
correspondent UAP. 569

3.1.2.3 570
alert 571
action of reporting an event condition or an alarm condition 572

3.1.2.4 573
(end) application, noun 574
system or problem to which a computer is applied 575

3.1.2.5 576
application (program), noun 577
program that provides functionality to end users 578

3.1.2.6 579
application (layer), noun 580
highest protocol layer in the ISO/IEC Basic Reference Model; types of applications according 581
to criticality 582

3.1.2.7 583
application process 584
element that performs the information processing for a particular application 585

3.1.2.8 586
asymmetric-key (cryptographic) algorithm 587
public key cryptographic algorithm 588
<information security> algorithm for performing encipherment or the corresponding 589
decipherment in which the keys used for encipherment and decipherment differ 590

[SOURCE: ISO/IEC 10181-1:1996, 3.3.1] 591

 – 38 – 62734/2CDV © IEC(E)

3.1.2.9 592
authentication 593
<information security> verifying the identity of a user, process, or device, often as a 594
prerequisite to allowing access to resources in an information system 595

Note 1 to entry: See data-origin authentication (3.1.1.28) and/or peer-entity authentication (3.1.1.45). 596

3.1.2.10 597
authentication code 598
<information security> full or truncated cryptographic checksum based on an appropriate 599
security function (see 3.1.2.93) 600

Note 1 to entry: This is also known as a message authentication code (MAC). It is called a message integrity code 601
(MIC) when used in contexts where the acronym MAC has an alternate definition, such as in local area network 602
standards. 603

[SOURCE: ISO/IEC 19790:2006, 3.8, modified by the “full or truncated” prefix] 604

3.1.2.11 605
backbone network 606
backbone subnet 607
network not specified by this standard, generally using IPv6 or IPv4 network technology, that 608
is used for routing between the wireless network (WISN) of this standard and 609

a) connected back-end devices that are specified in part by this standard, such as system 610
managers, security managers, and protocol gateways; 611

b) devices that natively support the wireless TL, AL and management protocols of this 612
standard; and 613

c) other backbone routers on the same backbone subnet. 614

3.1.2.12 615
backbone router 616
router that forwards between the wireless network of this standard and a higher-speed 617
backbone network 618

3.1.2.13 619
backup 620
procedure, technique, or hardware used to help recover lost or destroyed data or to keep a 621
system operating 622

[SOURCE: ISO 2382-12:1988, 12.01.17] 623

3.1.2.14 624
bandwidth 625
<analog domain> numerical difference between the upper and lower frequencies of a band of 626
frequencies 627

Note 1 to entry: Analog bandwith is expressed in Hz. 628

3.1.2.15 629
bandwidth 630
<digital domain> amount of data that can be passed along a communications channel within a 631
given period of time 632

Note 1 to entry: Digital bandwith is expressed in bit/s. 633

3.1.2.16 634
black channel 635
communication channel of a safety system that provides no safety functionality in addition to 636
its basic communication capability 637

62734/2CDV © IEC(E) – 39 –

3.1.2.17 638
blacklist 639
list of RF channels upon which transmission is prohibited 640

Note 1 to entry: A blacklist is temporary or permanent, local or network-wide. 641

3.1.2.18 642
block cipher 643
<information security> cryptographic primitive that uses a symmetric key to create a key-644
dependent pseudorandom permutation of a fixed-size bit string 645

3.1.2.19 646
broadcast 647
transmission intended for all nodes 648

Note 1 to entry: Broadcast reception often is limited to specific layers, e.g., MAC or network layer. 649

Note 2 to entry: Many lower layer protocols do not provide an acknowledgment for broadcasts. 650

3.1.2.20 651
canonical transfer syntax 652
full transfer syntax 653
full encoding of an object for transfer between devices, before any compression 654

3.1.2.21 655
cipher 656
<information security> cryptographic technique used to protect the confidentiality of data, 657
consisting of three component processes: an encryption algorithm, a decryption algorithm, 658
and a method for generating keys 659

[SOURCE: attributed in other ISO/IEC standards to an unknown edition of ISO/IEC 18033-1, slightly edited for 660
readability] 661

3.1.2.22 662
coexistence 663
ability of multiple systems to perform their tasks in a given environment where they may or 664
may not be using a similar set of rules 665

3.1.2.23 666
compressed transfer syntax 667
encoding of an object for transfer between devices, after any compression 668

3.1.2.24 669
construction option 670
set of features that a device designer may choose to include in, or exclude from, a device 671

3.1.2.25 672
contract 673
agreement between the system manager and a device in the network involving the allocation 674
of network resources by the system manager to support a particular communication need of 675
that device 676

3.1.2.26 677
cryptographic algorithm 678
<information security> algorithm based upon the science of cryptography, including 679
encryption algorithms, cryptographic hash algorithms, digital signature algorithms, and key 680
agreement algorithms 681

[SOURCE: IEC/TS 62443-1-1:2009, 3.2.34] 682

 – 40 – 62734/2CDV © IEC(E)

Note 1 to entry: Examples of cryptographic algorithms are block and stream ciphers and keyed hashes. An 683
unkeyed hash is not formally a cryptographic algorithm, although it often is a one-way function that has similar 684
resistance to attack, and often is constructed from a cryptographic algorithm with a fixed key. The SHA family of 685
hashes is so constructed. 686

3.1.2.27 687
cryptographic key 688
key 689
<information security> mathematical value that is used 690

a) in an algorithm to generate ciphertext from plaintext or vice versa, and 691
b) to determine the operation of a cryptographic function (e.g., the synchronized generation 692

of keying material), or a digital signature computation or validation 693
[SOURCE: IEC/TS 62351-2:2008, 2.2.64] 694

3.1.2.28 695
cryptographic key component 696
key component 697
<information security> parameter(s) used in a security function to perform a cryptographic 698
function 699

[SOURCE: ISO/IEC 19790:2006, 3.16] 700

3.1.2.29 701
cryptographic module 702
<information security> set of hardware, software, and/or firmware that implements appropriate 703
security functions and is contained within the cryptographic boundary 704

[SOURCE: ISO/IEC 19790:2012, 3.25] 705

3.1.2.30 706
cryptoperiod 707
<information security> time span during which a specific key is authorized for use or in which 708
the keys for a given system or application may remain in effect 709

[SOURCE: ISO/IEC 11568-4:2007, 3.9] 710

3.1.2.31 711
data authenticity 712
<information security> assurance about the source of information 713

[SOURCE: IEEE 802-15-4:2011, 3.1] 714

3.1.2.32 715
data key 716
data authenticating key 717
data encrypting key 718
<information security> cryptographic key used for the encipherment, decipherment or 719
authentication of data 720

[SOURCE: ISO/IEC 11568-2:2012 , 3.5] 721

3.1.2.33 722
deployment option 723
set of features that a device designer includes in a device, but which the end-user or their 724
agent (e.g., a network security manager) can elect to employ or not employ 725

3.1.2.34 726
derived key 727
<information security> symmetric key that is derived from a prior symmetric key 728

62734/2CDV © IEC(E) – 41 –

Note 1 to entry: Such keys are usable to limit the cryptoperiod of any single key while meeting key archive 729
requirements, provided that the independent key from which the derived key was derived (perhaps through many 730
generations of derivation) has previously met those archive requirements. 731

3.1.2.35 732
(key) destruction 733
<information security> zeroisation or physical destruction of keying material so that it cannot 734
be recovered 735

3.1.2.36 736
deterministic random bit generator 737
<information security> process used to generate an unpredictable series of bits that are 738
random in the sense that there is no way to describe the generator’s output that is more 739
efficient than simply listing each entire output string 740

Note 1 to entry: Deterministic random bit generators have provable properties. The unpredictability of their output 741
depends on the unpredictability of their initial seed and, for hybrid generators, the rate at which new unpredictable 742
(high entropy) input is included relative to the number of output bits generated. See note to entry 1 of 3.1.2.98, 743
non-deterministic random bit generator, for common sources of such unpredictability. 744

3.1.2.37 745
device security management object 746
application software within a device that acts as a local peer of a security manager 747

3.1.2.38 748
duocast 749
variant of unicast, wherein a second receiver is scheduled to overhear the DPDU and 750
provides a second acknowledgment within a single D-transaction 751

Note 1 to entry: Duocast is shown graphically in Figure 84. 752

3.1.2.39 753
encrypted key 754
<information security> cryptographic key that has been encrypted using an approved security 755
function with a key encryption key 756

[SOURCE: ISO/IEC 19790:2012, 3.36] 757

Note 1 to entry: This process is used in order to disguise the value of the underlying plaintext key. 758

3.1.2.40 759
encryption 760
<information security> reversible operation by a cryptographic algorithm converting data into 761
ciphertext so as to hide the information content of the data 762

[SOURCE: ISO/IEC 9798-1:2010, 3.13] 763

3.1.2.41 764
entity 765
individual (person), organization, device or process 766

3.1.2.42 767
ephemeral key 768
<information security> cryptographic key that is generated for each execution of a key 769
establishment process and that meets other requirements of the key type (e.g., unique to 770
each message exchange or session) 771

Note 1 to entry: In some cases ephemeral keys are used more than once, within a single session (e.g., broadcast 772
applications) where the originator generates only one ephemeral key pair per message and the private key (of that 773
pair) is combined separately with each recipient’s public key. 774

 – 42 – 62734/2CDV © IEC(E)

3.1.2.43 775
event 776
transient (i.e., stateless) condition, used to report when something happened 777

EXAMPLE The occurrence of an alarm or a return-to-normal condition that is of potential significance to a 778
correspondent UAP 779

3.1.2.44 780
field device 781
physical device designed to meet the rigors of plant operation that communicates via DPDUs 782
and higher-layer protocols conforming to this standard 783

Note 1 to entry: These include routing devices, sensors, and actuators. 784

3.1.2.45 785
field network 786
configuration of two or more field devices interconnected by the wireless protocol defined by 787
this standard 788

3.1.2.46 789
field router 790
router that is also a field device (i.e., not a backbone router), existing within a field network 791

3.1.2.47 792
foreign protocol application communication 793
optimized conveyance of PDUs or portions of PDUs from a first protocol within a second 794
protocol by selective usage of caching, compression, address translation and proxy 795
techniques 796

3.1.2.48 797
fragment 798
segment 799
(verb) segmenting 800

(noun) one of the (N)-protocol-data-units resulting from the operation of segmenting 801

Note 1 to entry: Fragment and fragmentation are the terms used by the IETF in internet protocol specifications to 802
describe the OSI concepts of segment and segmentation. In this standard the terms fragment and segment are 803
essentially synonymous, with fragment usually used at the network layer and sometimes at other protocol layers, 804
while segment is usually used at the application layer and sometimes at other protocol layers. 805

3.1.2.49 gateway 806
role (of a device) that acts as a protocol translator between an AE conforming to this standard 807
and other, different AEs 808

3.1.2.50 809
hash-based message authentication code 810
<information security> message authentication code that uses an appropriate keyed-hash 811
function 812

[SOURCE: ISO/IEC 9797-2:2011, generalized] 813

Note 1 to entry: This definition is generalized from the second construction of ISO/IEC 9797-2, which refers to the 814
HMAC construction that is also specified in [US] FIPS 198A. 815

3.1.2.51 816
hash function 817
<information security> function which maps strings of bits to fixed-size strings of bits, 818
satisfying the following two properties: for a given output, it is computationally infeasible to 819
find an input which maps to this output; for a given input, it is computationally infeasible to 820
find a second input which maps to the same output 821

62734/2CDV © IEC(E) – 43 –

[SOURCE: ISO/IEC 9796-2:2010, 3.6] 822

Note 1 to entry: Computational feasibility depends on the specific security requirements and environment. 823

Note 2 to entry: See the note of 3.1.2.26. 824

3.1.2.52 825
hash value 826
<information security> full or truncated result of applying a hash function to information 827

3.1.2.53 828
identity 829
distinguishing character or personality of an individual or entity 830

3.1.2.54 831
independent key 832
<information security> symmetric key that is derived from a high entropy bit source and not 833
from a prior key 834

3.1.2.55 835
infrastructure 836
technical structures that support data communications within a facility 837

EXAMPLE Parts of a plant’s IT network, perhaps using IEEE 802.3 or IEEE 802.11, or IEC 61158 Type 10 838
(PROFInet) or IEC 61158 Type 9 (FOUNDATION™ Fieldbus HSE).3 839

3.1.2.56 840
initialization vector 841
<information security> block of bits that is required to allow a cryptographic cipher in a 842
streaming mode of operation to produce a unique stream independent from other streams 843
produced under the same encryption key 844

3.1.2.57 845
interconnectable 846
using the same communication protocols, communication interface and data access 847

[SOURCE: IEC/TR 62390:2005, 6.2.2, adapted] 848

3.1.2.58 849
interoperable 850
able to work together to perform a specific role in one or more distributed application 851
programs 852

Note 1 to entry: In this case parameters and their application-related functionality fit together both syntactically and 853
semantically. Interoperability is achieved when the devices support complementary sets of parameters and 854
functions belonging to the same profile. 855

[SOURCE: IEC/TR 62390:2005, 6.2.2, adapted] 856

3.1.2.59 857
Interworkable 858
able to transfer parameters among correspondents 859

Note 1 to entry: In addition to the communication protocol, communication interface and data access, the 860
parameter data types are the same. 861

[SOURCE: IEC/TR 62390:2005, 6.2.2, adapted] 862

3 PROFInet and FOUNDATION Fieldbus are the trademarks of various trade organizations. This information is

given for the convenience of users of the standard and does not constitute an endorsement of the trademark
holders or any of their products. Compliance to this profile does not require use of the registered trademark.
Use of the trademarks requires permission of the trade name holder.

 – 44 – 62734/2CDV © IEC(E)

3.1.2.60 863
Kerberos protocol 864
specific network authentication protocol that allows individuals communicating over an 865
insecure network to prove their identity to one another in a secure manner 866

3.1.2.61 867
key agreement 868
<information security> process of establishing a shared secret key between entities in such a 869
way that neither of them can predetermine the value of that key 870

[SOURCE: ISO/IEC 11770-1:2010, 2.13] 871

3.1.2.62 872
key archive 873
key management archive 874
<information security> encryption system with a backup decryption capability that allows 875
authorized persons, under certain prescribed conditions, to decrypt ciphertext with the help of 876
information supplied by one or more trusted parties which hold special data recovery keys 877

3.1.2.63 878
key center 879
<information security> centralized key distribution process, usually a separate computer 880
system, that uses key-encrypting keys (master keys) to encrypt and distribute T-keys needed 881
by a community of users 882

Note 1 to entry: Key centers generally are certified, traceable to an accredited independent testing agency, as 883
meeting the requirements of ISO/IEC 19790 (similar to FIPS 140-2) for a Level 3 or Level 4 cryptographic module. 884

3.1.2.64 885
key confirmation 886
<information security> assurance for one entity that another identified entity is in possession 887
of the correct key 888

[SOURCE: ISO/IEC 11770-1:2010, 2.16] 889

3.1.2.65 890
key de-registration 891
<information security> marking of all keying material records and associations to indicate that 892
the key is no longer in use 893

3.1.2.66 894
key derivation 895
<information security> process by which one or more keys are derived from a shared secret 896
and other information 897

3.1.2.67 898
key distribution 899
<information security> transport of a key and other keying material from an entity that either 900
owns the key or generates the key to another entity that is intended to use the key 901

3.1.2.68 902
key distribution center 903
entity that is trusted to generate or acquire keys and to distribute the keys to communicating 904
parties and that shares a unique symmetric key with each of the parties 905

[SOURCE: ISO/IEC 11770-1:2010, 2.22] 906

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Cryptographic_protocol

62734/2CDV © IEC(E) – 45 –

3.1.2.69 907
key encrypting key 908
<information security> cryptographic key that is used for the encryption or decryption of other 909
keys 910

Note 1 to entry: Best practice is to limit use of symmetric (secret) KEKs to key wrapping and not use them for key 911
transport or session (i.e., data) keys. 912

Note 2 to entry: KEKs may form a hierarchy. In this standard KEKs are often referred to as “master keys”, although 913
the two concepts are not synonymous. 914

3.1.2.70 915
key escrow 916
<information security> process of recording keys and any related essential key recovery 917
information in a key archive 918

3.1.2.71 919
key establishment 920
<information security> process by which cryptographic keys are securely distributed among 921
cryptographic modules using manual transport methods (e.g., key loaders), automated 922
methods (e.g., key transport and/or key agreement protocols), or a combination of automated 923
and manual methods (consisting of key transport plus key agreement) 924

3.1.2.72 925
keying material installation 926
<information security> installation of keying material for operational use 927

3.1.2.73 928
key management 929
<information security> administration and use of generation, registration, certification, 930
deregistration, distribution, installation, storage, archiving, revocation, derivation and 931
destruction of keying material in accordance with a security policy 932

[SOURCE: ISO/IEC 11770-1:2010, 2.28] 933

3.1.2.74 934
key management infrastructure 935
<information security> framework and services that provide for the generation, production, 936
distribution, control, accounting, and destruction of all cryptographic material, including 937
symmetric keys, as well as public key signing and generation of its own static and ephemeral 938
asymmetric-key pairs 939

Note 1 to entry: This includes all elements (hardware, software, other equipment, and documentation); facilities; 940
personnel; procedures; standards; and information products that form the system that distributes, manages, and 941
supports the delivery of cryptographic products and services to end users. 942

Note 2 to entry: Key management services include key ordering, distribution, re-key, update of keying material 943
attributes, certificate revocation, key recovery and the distribution, accounting, tracking, and control of software 944
that performs either keying material security or cryptographic functions. 945

3.1.2.75 946
key manager 947
<information security> key management infrastructure device that provides key management 948
services 949

3.1.2.76 950
(asymmetric) key pair 951
<information security> pair of related keys where the private key defines the private 952
transformation and the public key defines the public transformation 953

[SOURCE: ISO/IEC 11770-1:2010, 2.2] 954

Note 1 to entry: A key pair is used with asymmetric-key cryptographic algorithms. 955

 – 46 – 62734/2CDV © IEC(E)

3.1.2.77 956
key recovery 957
<information security> mechanisms and processes that allow authorized entities to retrieve 958
keying material from secure key backup or archive storage 959

3.1.2.78 960
key registration 961
<information security> process of officially recording the keying material by a registration 962
authority 963

3.1.2.79 964
key revocation 965
<information security> process whereby a notice is made available to affected entities that 966
keying material should be removed from operational use prior to the end of the established 967
cryptoperiod of that keying material 968

3.1.2.80 969
key transport 970
<information security> process of transferring a key from one entity to another entity, suitably 971
protected 972

[SOURCE: ISO/IEC 11770-1:2010, 2.33] 973

Note 1 to entry: When used in conjunction with a public key (asymmetric) algorithm, the keying material is 974
encrypted using the public key of the receiver and subsequently decrypted using the private key of the receiver. 975
When used in conjunction with a symmetric algorithm, the keying material is wrapped with a key encrypting key 976
shared by the two parties. 977

3.1.2.81 978
key update 979
<information security> function performed on a cryptographic key in order to compute a new 980
but related key 981

3.1.2.82 982
key usage period 983
<information security> either the originator usage period or the recipient usage period of a 984
symmetric key 985

3.1.2.83 986
key wrapping 987
<information security> method of encrypting keys (along with associated integrity information) 988
that provides both confidentiality and integrity protection using a symmetric key 989

3.1.2.84 990
key wrapping key 991
<information security> (symmetric-key) key encryption key 992

3.1.2.85 993
keying material 994
<information security> data necessary to establish and maintain cryptographic keying 995
relationships 996

EXAMPLE Keys, initialization values, periods of validity. 997

[SOURCE: ISO/IEC 11770-1:2010, 2.27] 998

3.1.2.86 999
latency 1000
delay from when data is created at a data source device to when it is available to be 1001
consumed at the destination device) 1002

62734/2CDV © IEC(E) – 47 –

Note 1 to entry: The designated points of measurement are a) physical devices, or b) layer boundaries within 1003
multi-layer software (e.g., from sending transport to receiving transport functionality, or from sending application to 1004
sending modem). 1005

3.1.2.87 1006
lease 1007
per-session fine-grained communication resource allocation occurring at a GIAP 1008

3.1.2.88 1009
least privilege 1010
<information security> security principle that restricts the access privileges (e.g., program 1011
execution privileges, file modification privileges) of authorized personnel and their cyber 1012
agents to the minimum necessary to perform their jobs 1013

3.1.2.89 1014
link 1015
momentary or persistent interconnecting path between two or more devices for the purpose of 1016
transmitting and receiving messaging 1017

3.1.2.90 1018
master key 1019
<information security> cryptographic key that is used for deriving other keys 1020

Note 1 to entry: Best practice prohibits using master keys as session (i.e., data) keys, which would ease their 1021
cryptanalysis. They may be used as KEKs, often at the top of a KEK hierarchy. 1022

3.1.2.91 1023
mesh topology 1024
network topology in which redundant physically-diverse routing paths are available between 1025
each pair of network nodes 1026

Note 1 to entry: Wireless mesh topology is usable to extend coverage via multi-hop capability and/or to facilitate 1027
communication reliability by providing redundant paths between devices. 1028

3.1.2.92 1029
message authentication 1030
PDU authentication 1031
<information security> process of establishing that a message was formed by a member of an 1032
authorized group of communicants and that the message is unchanged since it was formed 1033

3.1.2.93 1034
message authentication code 1035
message integrity code 1036
<information security> cryptographic checksum generated using a symmetric key that is 1037
typically appended to data in order to provide data integrity and source authentication similar 1038
to a digital signature 1039

[SOURCE: ISO/IEC 26907:2009, 4.16] 1040

3.1.2.94 1041
message authentication code algorithm 1042
<information security> algorithm for computing a function which maps strings of bits and a 1043
secret key to fixed-size strings of bits, satisfying the following two properties: 1044

• for any key and any input string, the function can be computed efficiently; 1045

• for any fixed key, and given no prior knowledge of the key, it is computationally infeasible 1046
to compute the function value on any new input string, even given knowledge of a set of 1047
input strings and corresponding function values, where the value of the ith input string 1048
might have been chosen after observing the value of the first i-1 function values (for 1049
integers i> 1) 1050

[SOURCE: ISO/IEC 9797-1:2011, 3.10, modified by deletion of notes judged not relevant to this standard] 1051

 – 48 – 62734/2CDV © IEC(E)

3.1.2.95 1052
MIC-computation syntax 1053
<information security> concrete representation of an N-SDU associated protocol information, 1054
usually added via a prefix pseudo-header, that is used to bind selective N-addresses and 1055
N-PCI, and sometimes selective (N-1)-addresses and (N-1)-PCI, to the N-SDU before 1056
computing an integrity check code (MIC) over the assemblage 1057

3.1.2.96 1058
multicast 1059
messaging from a source to a set of intended recipients 1060

Note 1 to entry: The set membership is either indeterminate or determinate, where the latter includes the null set. 1061

Note 2 to entry: Broadcast is a special form of multicast, usually to an indeterminate set of intended recipients. 1062
See also unicast. 1063

Note 3 to entry: Multicast, other than broadcast, is not supported in this standard. 1064

3.1.2.97 1065
network management object 1066
application software within a device that acts as a local peer of a network manager 1067

3.1.2.98 1068
non-deterministic bit generator 1069
<information security> random bit generator whose security depends upon sampling an 1070
entropy source 1071

[SOURCE: ISO/IEC 18031:2011, 3.23] 1072

Note 1 to entry: Sources of such bits include avalanche breakdown of a Zener diode, shot noise, thermal noise, 1073
radioactive decay, cosmic rays, etc. 1074

Note 2 to entry: Post-processing of such noise sources is required to whiten their output and to detect failures in 1075
the circuit providing the randomness. Only the post-processed bit stream is suitable for seeding a deterministic bit 1076
generator. 1077

3.1.2.99 1078
non-repudiation 1079
<information security> ability to prove the occurrence of a claimed event or action and its 1080
originating entities, in order to resolve disputes about the occurrence or non-occurrence of the 1081
event or action and involvement of entities in the event 1082

[SOURCE: ISO/IEC 27000:2009, 2.27] 1083

Note 1 to entry: In a general information security context, non-repudiation provides assurance that the originator 1084
of information is provided with durable proof of delivery or the recipient is provided with durable proof of the 1085
originator’s identity, so that the party that provided the non-repudiable proof has no credible later denial of having 1086
processed the information. 1087

3.1.2.100 1088
nonce 1089
<information security> number used once, or a value that has (at most) a negligible chance of 1090
repeating 1091

3.1.2.101 1092
operational phase 1093
operational use 1094
<information security> phase in the lifecycle of keying material whereby keying material is 1095
used for standard cryptographic purposes 1096

3.1.2.102 1097
operational storage 1098
<information security> normal storage of operational keying material during its cryptoperiod 1099

62734/2CDV © IEC(E) – 49 –

3.1.2.103 1100
originator usage period 1101
<information security> period of time during the cryptoperiod of a symmetric key during which 1102
cryptographic protection may be applied to data 1103

3.1.2.104 1104
period of protection 1105
<information security> period of time during which the integrity and/or confidentiality of a key 1106
needs to be maintained 1107

3.1.2.105 1108
plaintext 1109
<information security> unencrypted information (relative to an encryption or decryption 1110
process) 1111

[SOURCE: ISO/IEC 10116:2006, 3.11, modified by parenthetical comment] 1112

Note 1 to entry: Usually, the plaintext input to an encryption operation is not already enciphered, but in some 1113
cases the input is itself the output of another cryptographic operation. 1114

3.1.2.106 1115
policy-based management 1116
administrative (managerial) approach used to simplify the management of a given system via 1117
the establishment of policies in order to deal with situations that are understood to be likely to 1118
occur 1119

3.1.2.107 1120
private key 1121
<information security> (cryptographic) key of an entity’s asymmetric-key pair that is kept 1122
private 1123

Note 1 to entry: The security of an asymmetric system depends on the privacy of this key. 1124

[SOURCE: ISO/IEC 11770-1:2010, 2.35] 1125

Note 2 to entry: In an asymmetric (public) cryptosystem, the private key is associated with a public key. The 1126
private key is known only by the owner of the key pair and is used to: 1127

– compute the corresponding public key; 1128

– compute a digital signature that is verifiable by the corresponding public key; 1129

– decrypt data that was encrypted by the corresponding public key; or 1130

– compute a piece of common shared data, together with other information. 1131

3.1.2.108 1132
pseudo-header 1133
information that is logically prepended to a PDU before computing a MIC for the PDU, but 1134
which is not explicitly conveyed by the PDU 1135

3.1.2.109 1136
public key 1137
<information security> key of an entity’s asymmetric-key pair which can usually be made 1138
public without compromising security 1139

[SOURCE: ISO/IEC 11770-1:2010, 2.36] 1140

3.1.2.110 1141
public key certificate 1142
<information security> public key information of an entity signed by the certification authority 1143

[SOURCE: ISO/IEC 11770-1:2010, 2.37] 1144

 – 50 – 62734/2CDV © IEC(E)

Note 1 to entry: Additional information in the certificate is able to specify how the key is used and its 1145
cryptoperiod. 1146

3.1.2.111 1147
recipient usage period 1148
<information security> period of time during the cryptoperiod of a symmetric key during which 1149
the protected information is processed 1150

Note 1 to entry: This period frequently extends beyond the originator’s period of permitted usage. 1151

3.1.2.112 1152
resilience 1153
ability of a functional unit to continue to perform a required function in the presence of faults 1154
or errors 1155

[SOURCE: ISO/IEC 2382-14:1997, 14.04.06] 1156

3.1.2.113 1157
retention period 1158
<information security> minimum amount of time that a key or other cryptographic related 1159
information should be retained in an archive 1160

3.1.2.114 1161
robustness 1162
degree to which a system or component can function correctly in the presence of invalid 1163
inputs or stressful environmental conditions 1164

[SOURCE: ISO/IEC/IEEE 24765:2010, 3.2601] 1165

3.1.2.115 1166
router 1167
device that forwards NPDUs within a computer network based on network-layer information 1168

3.1.2.116 1169
short control signaling 1170
short MAC messaging, sent by a nominal receiver of MAC messaging as an immediate 1171
response to the originator of that MAC messaging, used to send control information such as 1172
ARQ ACK/NAK status, received signal quality and level, etc. as a way of informing the 1173
originating device of reception status and of instantaneous conditions on the medium 1174

3.1.2.117 1175
secret key 1176
<information security> key used with symmetric cryptographic techniques by a specified set of 1177
entities 1178

[SOURCE: ISO/IEC 11770-3:2008, 3.35] 1179

3.1.2.118 1180
secure communications protocol 1181
<information security> communication protocol that provides the appropriate confidentiality, 1182
authentication, content integrity and message timing protection 1183

3.1.2.119 1184
security association 1185
<information security> relationship between two or more entities for which there exist 1186
attributes (state information and rules) to govern the provision of security services involving 1187
those entities 1188

[SOURCE: ISO/IEC 10745:1995, 3.8] 1189

62734/2CDV © IEC(E) – 51 –

3.1.2.120 1190
security domain 1191
<information security> set of assets and resources subject to a common security policy 1192

[SOURCE: ISO/IEC 18028-3:2005, 3.19] 1193

Note 1 to entry: Security domains often are organized (e.g., hierarchically) to form larger domains. 1194

3.1.2.121 1195
security manager 1196
<information security> application software that supervises various operational security 1197
aspects of a multi-device network, usually through interaction with device security 1198
management objects (DSMO) in the supervised device(s) 1199

Note 1 to entry: A network security manager often is a dedicated device that is protected both physically and by 1200
construction. (See ISO/IEC 19790 (similar to FIPS 140-2) and the NIST/CSE Cryptographic Module Validation 1201
Program, http://csrc.nist.gov/cryptval/cmvp.htm.) 1202

3.1.2.122 1203
security services 1204
<information security> mechanisms used to provide confidentiality, data integrity, 1205
authentication and/or non-repudiation of information 1206

3.1.2.123 1207
separation of duties 1208
<information security> security principle that divides critical functions among different staff 1209
members in an attempt to ensure that no one individual has enough information or access 1210
privilege to perpetrate damaging fraud 1211

3.1.2.124 1212
session 1213
T-association 1214

3.1.2.125 1215
session key 1216
T-key 1217
temporary data key used by TLEs 1218

3.1.2.126 1219
signature generation 1220
<information security> use of a digital signature algorithm and a private key to generate a 1221
digital signature on data 1222

3.1.2.127 1223
signature authentication 1224
<information security> use of a digital signature algorithm and a public key to verify a digital 1225
signature on data 1226

3.1.2.128 1227
source authentication 1228
<information security> process of corroborating that the source of data is as claimed 1229

3.1.2.129 1230
split knowledge 1231
<information security> process by which a cryptographic key is split into multiple key 1232
components, individually disclosing no knowledge of the original key other than possibly its 1233
size, which subsequently can be combined in any of a number of predefined groupings of the 1234
multiple specific keys to recreate the original key 1235

http://csrc.nist.gov/cryptval/cmvp.htm

 – 52 – 62734/2CDV © IEC(E)

3.1.2.130 1236
static key 1237
<information security> key that is not an ephemeral key, which is intended for use for a 1238
relatively long period of time, typically in successive invocations of a cryptographic key 1239
establishment scheme 1240

3.1.2.131 1241
stream cipher 1242
<information security> cryptographic primitive that uses a symmetric key and an initialization 1243
vector and that works with continuous streams of input rather than fixed blocks 1244

3.1.2.132 1245
subnet 1246
(N)-subnet 1247
D-subnet 1248
N-subnet 1249
sub-network, a subset of a full network, either at data-link or network layer (layers 2 or 3 of 1250
the OSI Basic Reference Model), comprised of multiple end-point and relay nodes that are 1251
interconnected via a frequently-homogeneous (N-1)-layer 1252

3.1.2.133 1253
superframe 1254
collection of timeslots with a common repetition period and possibly other common attributes 1255

3.1.2.134 1256
symmetric key 1257
<information security> secret key shared between two or more parties that may be used for 1258
both encryption and decryption as well as for message integrity code computation and 1259
verification 1260

[SOURCE: ISO/IEC 26907:2009, 4.27] 1261

3.1.2.135 1262
symmetric-key (cryptographic) algorithm 1263
<information security> cryptographic algorithm that that uses the same (usually secret) key for 1264
an operation and its inverse (e.g., encryption and decryption) 1265

3.1.2.136 1266
system initialization 1267
<information security> setting up and configuring a system for secure operation 1268

3.1.2.137 1269
system manager 1270
application software that supervises various operational aspects of a multi-device network 1271
other than security, usually through interaction with network management objects in the 1272
supervised device(s) 1273

Note 1 to entry: A network manager either supervises an entire multi-device network or acts as a subordinate to 1274
another network manager, thereby supervising only a subset of the entire network. 1275

Note 2 to entry: A network manager is not always a dedicated device. 1276

3.1.2.138 1277
system/security manager 1278
system manager functionality acting on behalf of security manager functionality 1279

3.1.2.139 1280
threat 1281
<information security> circumstance or event with the potential to adversely impact plant 1282
operations (including function, image, or reputation), assets or individuals through an 1283

62734/2CDV © IEC(E) – 53 –

information system via unauthorized access, destruction, disclosure, modification of data, 1284
message delay, and/or denial of service 1285

3.1.2.140 1286
D-transaction 1287
MPDU that is not an immediate acknowledgment MPDU, plus any sequence of zero or more 1288
immediate acknowledgment MPDUs that immediately follow and are a consequence of the 1289
first MPDU (and optionally each other), all on the same channel and in the same time slot 1290

3.1.2.141 1291
tunneling 1292
encapsulation of a first protocol within a second communication protocol to convey PDUs from 1293
the first protocol 1294

3.1.2.142 1295
type-of-service 1296
collective name given to a set of protocol elements and associated quality-of-service 1297
attributes that together form a subprotocol (e.g., real-time voice, time-critical data, and non-1298
time-critical data) with distinct functionality 1299

3.1.2.143 1300
unauthorized disclosure 1301
<information security> event involving the exposure of information to entities not authorized 1302
access to the information 1303

3.1.2.144 1304
unicast 1305
messaging from a source to a single intended recipient 1306

Note 1 to entry:See also multicast and broadcast. 1307

3.1.2.145 1308
user initialization 1309
process whereby a user prepares the cryptographic application for use (e.g., installing and 1310
configuring software and hardware) 1311

3.1.2.146 1312
user registration 1313
process whereby an entity becomes a member of a security domain 1314

3.1.2.147 1315
zeroisation 1316
<information security> method of erasing electronically stored data, cryptographic keys, and 1317
critical stored parameters by altering or deleting the contents of storage in a manner that 1318
prevents recovery of the data 1319

 Symbols for symmetric keys, and for asymmetric keys and certificates 3.1.31320

NOTE Symmetric keys defined by this standard are 128-bit keys. Asymmetric keys defined by this standard have 1321
a similar hypothesized cryptographic bit strength of 128 bits or greater. See Clause 7 for the exact description of 1322
the cryptographic material. 1323

3.1.3.1 1324
K_DL 1325
current data key for all devices in the local D-subnet 1326

3.1.3.2 1327
K_global 1328
well-known key whose value is static and published, which is used to provide uniformity of 1329
PDU structure and processing when a shared-secret key is inappropriate or unknown 1330

 – 54 – 62734/2CDV © IEC(E)

3.1.3.3 1331
K_open 1332
well-known limited-utility key, different from K_global, whose value is static and published, 1333
which can be used as the value of K_join to provision a device via its over-the-air interface 1334

Note 1 to entry: Use of this key in an environment where eavesdropping could occur can compromise the security 1335
of the device and its relationships to the rest of the wireless system. 1336

3.1.3.4 1337
K_join 1338
key used to bootstrap a new device securely into the network 1339

3.1.3.5 1340
K_join_wrapped 1341
wrapped version of the join key, used to recover from a failed security manager 1342

3.1.3.6 1343
K_master 1344
master key used as a KEK for key distribution and security management of a single device 1345

3.1.3.7 1346
K_session_AB 1347
current data key for a session between device A and device B, identical with K_session_BA 1348

3.1.3.8 1349
CA_root 1350
public key of a certificate authority which signed a device’s public-key certificate 1351

Note 1 to entry: This key is commonly referred to as a root key and is used to assist in verifying the true identity 1352
of the device communicating the certificate, as well as some related keying information. 1353

3.1.3.9 1354
Cert-A 1355
public-key certificate of device A, used to evidence the true identity of the device, as well as 1356
related keying information, during execution of an authenticated public-key key establishment 1357
protocol 1358

 Terms used to describe device behavior 3.1.41359

3.1.4.1 1360
capability 1361
ability to perform actions, including attributes on qualifications and measures of the ability as 1362
capacity 1363

[SOURCE: IEC 62264-1:2003, 3.6] 1364

EXAMPLE The number of connected devices that a router can support. 1365

Note 1 to entry: Profiles specify a minimum capability. 1366

3.1.4.2 1367
configuration 1368
set of parameters that 1) alter behavior and 2) can be set by a system manager 1369

EXAMPLE network-layer hop limit 1370

Note 1 to entry: Configurations where defaults are appropriate state those defaults (e.g., NL hop limit = 64). 1371

3.1.4.3 1372
configure 1373
act of specifying and administering configuration parameters 1374

62734/2CDV © IEC(E) – 55 –

3.1.4.4 1375
feature 1376
notable characteristic of a device 1377

EXAMPLE Battery-powered. 1378

3.1.4.5 1379
mandatory 1380
required element for any claim of compliance to this standard 1381

EXAMPLE Support for symmetric-key cryptography. 1382

3.1.4.6 1383
optional 1384
element that is not required to claim comformance with this standard but which, if present, is 1385
required to behave as specified in this standard 1386

EXAMPLE Support for asymmetric-key cryptography. 1387

 Abbreviated terms and acronyms 3.21388
6LoWPAN IPv6 over a low power personal area network (PAN)
6TSCH time-slotted channel hopping (TSCH) with 6LoWPAN
ACK positive acknowledgment
AE application-entity
AES advanced encryption standard (see ISO/IEC 18033-3)
AID attribute ID
AL application layer
ALE application layer entity
AME application layer management entity
APDU application layer protocol data unit
ARMO alert reporting management object
ARO alert-receiving object
ARQ automatic repeat request
ASAP application layer service access point
ASDU application layer service data unit
ASL application sublayer
ASLMO application sublayer management object
ASMSAP application sublayer management service access point
ASM asset management
ASN.1 abstract syntax notation one
ATT address translation table
BBR backbone router
BECN backward explicit congestion notification
BRPT backbone router peer table
C/S client/server
CBC cipher-block-chaining stream cipher mode (see NIST SP 800-38C)
CCA clear channel assessment
CCM counter with cipher-block-chaining message authentication mode
CCM* CCM enhanced

 – 56 – 62734/2CDV © IEC(E)

CIP Common Industrial Protocol™4
CON concentrator object
CoS class of service
CoSt change of state
CSMA carrier sense multiple access
CSMA/CA carrier sense multiple access with collision avoidance
dBm dB (1 mW)
DADDR data-link address
DAUX data-link auxiliary header
DBP device being provisioned
DCS distributed control system
DD device description
DDE data-link layer data (sub-)entity
DDL device description language
DDSAP data-link layer data service access point
DE discard eligible
DIS dispersion object
DK (symmetric) data key, data authentication key, data encryption key
DL data-link layer
DLE data-link layer entity
DLMO data-link layer management object
DMAP device management application process
DME data-link layer management (sub-)entity
DMIC data-link layer message integrity code
DMO device management object
DMSAP data-link layer management service access point
DMSO device management service object
DMXHR data-link layer management extension header
DPDU data-link layer protocol data unit
DPO device provisioning object
DPSO device provisioning service object
DROUT data-link layer routing (subheader)
DSAP data-link layer service access point
DSC data-link layer security component
DSDU data-link layer service data unit
DSMO device security management object
DSO directory service object
DSSS direct sequence spread spectrum
DWT data-link layer protocol data unit wait time
EC European community
ECB electronic code book

4 Property of ODVA, http://www.odva.org

http://www.odva.org/

62734/2CDV © IEC(E) – 57 –

ECC elliptic curve cryptography standard (see ISO/IEC 18033-2)
ECMQV Menezes-Qu-Vanstone algorithms using elliptic curve cryptography
ECN explicit congestion notification
ECPVS Pintsov-Vanstone algorithms using elliptic curve cryptography
ECQV Qu-Vanstone algorithms using elliptic curve cryptography
ED energy detection
EDDL extended device description language
EMA exponential moving average
ETSI European Telecommunications Standards Institute
EUI-64™5 64-bit extended unique identifier as specified by the IEEE

FDT/DTM field device tool / device type manager
FCC U.S. Federal Communications Commission
FCS frame check sequence
FEC forward error correction
FECN forward explicit congestion notification
FF-H1 Foundation Fieldbus – H1 protocol
FF-HSE Foundation Fieldbus – high speed ethernet
FHSS frequency hopping spread spectrum
FHSSM frequency hopping spread spectrum modulation
FIFO first-in first-out (queuing discipline)
FIPS [US] federal information processing standard (issued by NIST)
FPAC foreign protocol application communication
FPT foreign protocol translator
FPT-PAI foreign protocol translator – protocol address information
FPT-PCI foreign protocol translator – protocol control information
FPT-PDU foreign protocol translator – protocol data unit
FSK frequency shift keying
GIAP gateway interface access point
GPS global positioning system
GUC number of supportable gateway-UAP connections
GUI graphical user interface
HART highway addressable remote transducer
HC header compression
HCF HART Communication Foundation
HMAC (keyed)-hash message authentication code
HMI human-machine interface
HRCO health reports concentrator object
(N)-ICI (N-layer) interface control information
ICMP internet control messaging protocol
IEC International Electrotechnical Commission
IEEE Institute of Electrical & Electronics Engineers

5 Property of the trademark owner

 – 58 – 62734/2CDV © IEC(E)

IFO interface object
INF infinity
I/O input/output
IPv4 internet protocol version 4
Ipv6 internet protocol version 6
ISA International Society of Automation
ISM industrial, scientific, medical
IV initialization vector
JTn join timer n
KDC key distribution center
KEK key encryption key
LAN local area network
LBT listen before talk
LH last hop
LLC logical link control sublayer (in upper DL)
LP low power
LQI link quality indicator
LSB least significant bit
MAC media access control sublayer (spanning lower DL and upper PhL)
MAN manual
MIB management information base
MIC message integrity code
MICI media access control interface control information
MK (symmetric) master key
MP management process
MPCI media access control sublayer protocol control information
MPDU media access control sublayer protocol data unit
MSB most significant bit
NAK negative acknowledgment
NaN not-a-number
NDE network layer data (sub-)entity
NDSAP network layer data service access point
NFC near-field communications
NICI network interface control information
NIDS network intrusion detection system
NIST [US] National Institute of Standards and Technology
NL network layer
NLE network layer entity
NME network layer management (sub-)entity
NMSAP network layer management service access point
NO native object
NPCI network layer protocol control information
NPDU network layer protocol data unit

62734/2CDV © IEC(E) – 59 –

NPDU.F128 final destination IPv6Address in the expanded network header
NPDU.F16 final destination DL16Address in the expanded network header
NPDU.O128 originator IPv6Address in the expanded network header
NPDU.O16 originator DL16Address in the expanded network header
NSAP network layer service access point
NSD number of system devices
NSDU network layer service data unit
OBJ generic application layer object
ODVA Open Device Vendor Association (now legally known only by its acronym)
OOB out-of-band
OPC open connectivity in industrial automation
OSI Open Systems Interconnection
OTA over-the-air
P/S publish/subscribe
PA process automation
(N)-PAI (N-layer) protocol addressing information
PAN personal area network
PCH PHY coding header
(N)-PCI (N-layer) protocol control information
PD provisioning device
(N)-PDU (N-layer) protocol data unit
PhD physical layer data service
PhICI physical layer interface control information
PhL physical layer
PhLE physical layer entity
PhPDU physical layer protocol data unit
PhSAP physical layer service access point
PhSDU physical layer service data unit
PHY physical layer (as used in IEEE 802 standards)
PIB policy information base
PICS protocol implementation conformance statement
PKI public key infrastructure
PNO PROFIBUS Nutzerorganisation (PROFIBUS User Organization)
PSH PHY synchronization header
PSMO proxy security management object
PWT PDU wait time
QoS quality of service
R&TTE radio and telecommunications terminal equipment
RDP reliable datagram protocol
RF radio frequency
RFC request for comments
RFP request for proposal
RSSI received signal strength indicator

 – 60 – 62734/2CDV © IEC(E)

RSQI received signal quality indicator
RT routing table
RTO retry time-out interval
RTT round-trip time
RTU remote terminal unit
RTTV round-trip time variation
S/S source/sink
(N)-SAP (N-layer) service access point
SCADA supervisory control and data acquisition
SCS short control signaling
SCO system communication configuration object
(N)-SDU (N-layer) service data unit
SIFS short inter-frame separation
(U)SIM (universal) subscriber identity module
SINR signal to interference plus noise ratio
SK (symmetric) T-key used for authentication and confidentiality
SKG secret key generation
SL session layer
SMIB structured management information base
SMAP system manager application process
SM system manager
SMAP system management application process
SMO system monitoring object
SOE sequence of events
SRTT smoothed round-trip time
STSO system time service object
TAI international atomic time; temps atomique international
TCP transmission control protocol
TDMA time division multiple access
TDE transport layer data (sub-)entity
TDSAP transport layer data service access point
TFRC TCP-friendly rate control, IETF RFC 5348
TICI transport interface control information
TL transport layer
TLE transport layer entity
TME transport layer management (sub-)entity
TMIB transport layer management information base
TMIC transport layer message integrity code
TMSAP transport layer management service access point
ToS type of service
TPCI transport layer protocol control information
TPDU transport layer protocol data unit
TSAP transport layer service access point

62734/2CDV © IEC(E) – 61 –

TSC transport layer security component
TSCH time-slotted channel hopping
TSDU transport layer service data unit
TUN tunnel object
TUN-Data tunnel data
UAL upper application layer
UAP user application process
UAPMO user application process management object
UDO upload/download object
UDP user datagram protocol
UFO unified field object
UTC universal coordinated time; temps universel coordonné
WBM wideband modulation
WISN wireless industrial sensor (and actuator) network

 Conventions 3.31389

 Service interfaces 3.3.11390

Portions of this standard use the descriptive conventions given in ISO/IEC 10731. 1391

Service primitives, used to represent service user/service provider interactions (see 1392
ISO/IEC 10731), convey parameters that indicate information available in the user/provider 1393
interaction. 1394

This standard uses a tabular format to describe the component parameters of the NS (N layer 1395
SAP or entity SAP) primitives. The parameters that apply to each group of NS primitives are 1396
set out in tables. Each table consists of up to six columns, containing the name of the service 1397
parameter, and a column each for those primitives and parameter-transfer directions used by 1398
the NS: 1399

• the request primitive’s input parameters; 1400

• the indication primitive’s output parameters; 1401

• the response primitive’s input parameters; and 1402

• the confirm primitive’s output parameters. 1403

NOTE 1 The request, indication, response, and confirm primitives are also known as requestor.submit, 1404
acceptor.deliver, acceptor.submit, and requestor.deliver primitives, respectively (see ISO/IEC 10731). 1405

One parameter (or part of it) is listed in each row of each table. Under the appropriate service 1406
primitive columns, a code is used to specify the type of usage of the parameter on the 1407
primitive and parameter direction specified in the column: 1408

M: parameter is mandatory for the primitive; 1409
S: selection from defined set of two or more parameters; 1410
U: parameter is a user option and may or may not be provided depending on the dynamic 1411

usage of the NS-user. When not provided, a default value for the parameter is 1412
assumed; 1413

C: parameter is conditional upon other parameters or upon the environment of the 1414
NS-user; 1415

(blank) or em-dash (“—“): parameter is never present. 1416

Some entries are further qualified by items in brackets. These may be: 1417

 – 62 – 62734/2CDV © IEC(E)

• a parameter-specific constraint: 1418
(=) indicates that the parameter is semantically equivalent to the parameter in the service 1419

primitive to its immediate left in the table; 1420

• an indication that some note applies to the entry: 1421
(n) indicates that the following note n contains additional information pertaining to the 1422

parameter and its use. Letter-enumerated notes are normative; digit-numbered notes 1423
are informative. 1424

A summary table is provided to define the parameter usage within the primitive. Each cell 1425
defines whether each parameter is mandatory, optional, prohibited, or conditional. 1426

The ordering of the parameters is also implicitly defined from top to bottom. 1427

Complex parameters may also be shown. For example, a structure may be mandatory, but 1428
some of the elements of the structure may be optional. The structure elements are indented 1429
proportional to their level of hierarchy. 1430

Input parameters for services are specified for request and response service primitives. 1431
Output parameters for services are specified for indication and confirmation service 1432
primitives. 1433

The following abbreviations are used in the service tables: 1434

• Request service request 1435

• Indication service indication 1436

• Response service response 1437

• Confirmation service confirmation 1438

NOTE 2 Intra-device handling of inter-layer error situations, such as situations where a lower layer queue 1439
overflows or a lower layer timeout occurs, is a local matter and hence is not addressed by this standard. 1440

 Table cells 3.3.21441

For all tables, table entries that are irrelevant or unspecified may contain an em-dash (“—”). 1442
Table entries to be filled by suppliers may contain an ellipsis (“…”). 1443

 Italics 3.3.31444

In some cases a generic term that is used for a specific purpose is italicized at first 1445
occurrence, to indicate to the reader that care in interpretation is suggested. The reasons for 1446
other uses of italics, such as in 4.5.5.2.1, should be apparent from their immediate context. 1447

 Bold face 3.3.41448

In some cases a descriptive paragraph is preceded by a bold-faced term or summarizing 1449
descriptive phrase, where the bold-facing is used to assist the reader’s future memory. 1450

NOTE Such use of bold-face is inessential, so loss of such distinction due to photocopying is not important. 1451

 Informal declarations of named constants 3.3.51452

ASN.1 permits numeric constants to be assigned symbolic names. It also permits named 1453
constants of enumerations to be assigned specific numeric representations. In this standard 1454
the two are unified, when used as inline declarations of permissible choices for fields of data 1455
structures, through use of the syntax 1456

numericValue “: ” explanatory text 1457

which is intended as the equivalent to the ASN.1 declaration 1458

62734/2CDV © IEC(E) – 63 –

explanatory_text “(“ numericValue ”)” 1459

where the explanatory text is converted into an alphanumeric identifer by replacing the spaces 1460
between words (if any) with underscores, and by adjusting any delimiting period, comma, or 1461
semicolon after the explanatory text to the required ASN.1 list element separator after the 1462
equivalent closing parenthesis of the numericValue. 1463

4 Overview 1464

 General 4.11465

This standard uses the OSI layer description methodology (see Annex C) to define protocol 1466
suite specifications, in addition to specifications for the functions of security, management, 1467
gateway, and provisioning for an industrial wireless network. The protocol layers supported 1468
are the physical layer (PhL), data-link layer (DL), network layer (NL), transport layer (TL), and 1469
the application layer (AL). 1470

NOTE 1 Although this standard uses the concept of protocol layers, compliance to this standard does not 1471
mandate that implementations partition function similarly to that implied by these layers. Inter-layer interfaces are 1472
generally not exposed in a product, and hence are not suitable for conformance testing. 1473

The wireless network defined by this standard consists of wireless devices serving usage 1474
classes 1 through 5 (described in Annex C) for non-critical applications of fixed, portable, and 1475
moving devices. 1476

References to a network compliant to this standard will hereafter be referred to as a wireless 1477
industrial sensor network (WISN), even when that network contains actuators and other 1478
devices that are not logically classifiable as sensors. 1479

Most devices that participate in a WISN are expected to implement just a single wireless 1480
PhLE and associated DLE. However, devices with multiple wireless PhLEs and associated 1481
DLEs are not precluded. Therefore this standard distinguishes between requirements for a 1482
device and requirements for a PhLE and associated DLE, even though the two are usually 1483
thought of as synonymous. 1484

NOTE 2 It is suggested that the reader internalize this relationship, so that encountering the term DLE brings to 1485
mind the term device, even though in rare cases they are not one-to-one. 1486

 Interoperability and related issues 4.21487

IEC/TR 62390 provides useful definitions for differing levels of interoperation. The following 1488
three definitions, each of which includes the former, are quoted exactly from that technical 1489
report. 1490

NOTE 1 IEC/TR 62390, Figure 9 provides additional clarity on the relationship of these terms. 1491

NOTE 2 The notes in subclause 4.2 were not in IEC/TR 62390. 1492
a) Interconnectability: Two or more devices are interconnectable if they are using the same 1493

communication protocols, communication interface and data access. 1494
b) Interworkability: Two or more devices are interworkable if they can transfer parameters 1495

between them, i.e, in addition to the communication protocol, communication interface and 1496
data access, the parameter data types are the same. 1497

NOTE 3 Interworkability implies interconnectability. 1498
c) Interoperability: Two or more devices are interoperable if they can work together to 1499

perform a specific role in one or more distributed application programs. The parameters 1500
and their application-related functionality fit together both syntactically and semantically. 1501
Interoperability is achieved when the devices support complementary sets of parameters 1502
and functions belonging to the same profile. 1503

 – 64 – 62734/2CDV © IEC(E)

NOTE 4 Interoperability implies interworkability, and thus also interconnectability. 1504

 Quality of service 4.31505

To support multiple applications within a network along with diverse needs this standard 1506
supports multiple levels of quality of service (QoS). QoS describes parameters such as 1507
latency, throughput, and reliability. A device’s application(s) requests the level of QoS 1508
needed. If the necessary resources can be made available for the requesting application, the 1509
system manager will allocate those resources in response to the requested QoS. See Clause 1510
6 for additional information. 1511

 Worldwide applicability 4.41512

This standard is intended to conform to established regulations in most world regions; 1513
however, its acceptability in any specific regulatory environment is not guaranteed and thus 1514
shall be evaluated. Annex U addresses this topic, including use in the EC under EN 300 328. 1515

 Network architecture 4.51516

 Interfaces 4.5.11517

4.5.1.1 Defined interfaces 1518

This standard defines service access points (SAPs) at the upper boundary of each protocol 1519
layer to decouple specifications of, and revisions to, each of those protocol layers from oher 1520
layers, to the extent feasible. For example, if a new PhL is defined that does not require 1521
corresponding changes in the employing DL, then it can be added to the specification with 1522
minimal (if any) impact to the other protocol layers defined by this standard. 1523

In most cases these defined interfaces are internal to an implementation. As such they are not 1524
subject to standardization and conformance testing, since such testing can be applied only to 1525
external interfaces of a unit under test (i.e., black box testing). As a consequence, such 1526
internal interfaces are descriptive and informative, not normative. However, it is expected that 1527
implementations which partition software along the lines suggested by these interfaces will be 1528
easier to maintain and adapt to future revisions of this standard. 1529

Conformance to this standard applies only to the observable behavior of an implementation, 1530
including the structure and encoding of any information exchanged at observable interfaces 1531
that are specified as such by this standard. 1532

4.5.1.2 Interfaces that are not defined 1533

The following interfaces are not addressed by this standard: 1534

• System manager to security manager: The security manager and the system manager 1535
form two core roles in the network that are closely related. Since the security manager and 1536
the system manager are so dependent upon each other, and because the security 1537
manager communicates directly only with the security manager, it is expected that the one 1538
or more devices that provide these two roles will be procured from a single vendor, often 1539
realized as a single device supporting both roles. Given these expectations, it is deemed 1540
not necessary to standardize this interface. 1541

NOTE This interface is a subject of potential future standardization. 1542

• External interfaces: An important attribute of this standard is that it is designed to allow 1543
the wireless network to leverage or integrate into a plant’s communication infrastructure. 1544
This standard defines specific roles to allow this network to interface to other networks, 1545
including both wired and wireless networks and both standard and proprietary networks. 1546
However, since those specific external networks cannot be identified by this standard, 1547
neither can the interfaces to such networks be identified or specified. 1548

62734/2CDV © IEC(E) – 65 –

 Data structures 4.5.21549

4.5.2.1 Defined PDUs 1550

This standard defines the structure of protocol data units (PDUs) used for inter-device 1551
communication at the following protocol layers: PhL, DL, NL, TL and AL. Most of these are 1552
based on other international standards: ISO/IEC/IEEE standards for the PhL and DL, and 1553
IETF standards for the NL and TL. All such PDU definitions are normative, subject to external 1554
examination and conformance testing. 1555

Conceptually, each distinct class of PDU has 1556

• an abstract transfer syntax, which describes the structure of the PDU, including order of 1557
fields and semantic meaning of each field and its alternative contents; 1558

• one or more concrete transfer syntaxes, which describe the encoding within the PDU for 1559
each of those fields and content alternatives. 1560

This standard specifies a full or canonical concrete transfer syntax for each PDU, and for 1561
DPDUs, NPDUs and TPDUs also specifies a compressed concrete transfer syntax that 1562
reduces the energy requirements for PDU transmission and reception, as well as the 1563
occupancy time of the wireless channel when the PDU is being transmitted. 1564

NOTE 1 Decreased channel occupancy reduces interference with other wireless devices and systems, as well as 1565
increasing the probabilty that the PDU is successfully received. It also reduces the average power required for 1566
device operation, which is of particular importance for devices not connected to an external power supply. 1567

For DPDUs and TPDUs, a third concrete syntax (i.e., encoding) is employed when computing 1568
a message integrity code for the PDU. That encoding typically prepends a pseudo-header to 1569
the PDU as transmitted/received, where the pseudo-header contains specific lower-layer PDU 1570
addressing information, thus serving to bind that lower-layer information to the PDU whose 1571
integrity is covered by the computed MIC. In this standard this third concrete syntax is called 1572
the MIC-computation syntax. 1573

NOTE 2 The PDU descriptions in this standard often conflate the abstract syntax of the PDU (i.e., its logical 1574
contents) with the concrete transfer syntax (i.e., its encoding). It is anticipated that a future edition of this standard 1575
will correct this deficiency. 1576

4.5.2.2 Defined management data structures 1577

This standard defines the structure of management data objects at various protocol layers. 1578
Such definitions are normative with respect to the behavior of defined operations on those 1579
data structures, and with respect to the presentation of those data structures to the extent, 1580
and in the form, that they occur when conveyed by PDUs. However, the representation of 1581
those data structures internal to an implementation is beyond the scope of standardization, 1582
since such representation is unobservable and thus not subject to conformance testing. 1583

 Network description 4.5.31584

Figure 1 depicts the communication areas addressed by this standard, as well as those areas 1585
(shaded in blue) that are not within the scope of this standard. In Figure 1, circular objects 1586
represent roles for field devices (sensors, valves, actuators, etc.) and rectangular objects 1587
represent roles for infrastructure devices that communicate to other network devices via an 1588
interface to the network infrastructure backbone network. 1589

NOTE This standard defines roles that devices embody; for further information on these roles, see 5.2.6. 1590

A backbone is a data network (preferably high data rate) that is not defined by this standard. 1591
This backbone could be an industrial Ethernet, IEEE 802.11, or any other network within the 1592
facility interfacing to the plant’s network. See Annex E for further information and assumptions 1593
about the characteristics of a backbone. 1594

 – 66 – 62734/2CDV © IEC(E)

 1595

Figure 1 – Standard-compliant network 1596

A complete network as defined in this standard includes all components and protocols 1597
required to route secure traffic, manage network resources, and integrate with host systems. 1598
A complete network consists of one or more field D-subnets that may be connected by an 1599
infrastructure device to a plant subnet. 1600

A field D-subnet consists of a collection of field devices that wirelessly communicate using a 1601
protocol stack defined by this standard. As shown in Figure 1, some field devices may have 1602
routing capabilities, enabling them to forward messages from other devices. 1603

A transit subnet consists of infrastructure devices on a backbone, such as backbone routers, 1604
gateways, system managers, and security managers. Since the backbone physical 1605
communication medium and its network protocol stack are outside the scope of this standard, 1606
they are not specified and may include tunneling compliant PDUs over external TL or AL 1607
protocols. 1608

Devices that connect two disparate D-subnets have at least two DLE and PhLE interfaces. A 1609
backbone router connects a field D-subnet with a backbone D-subnet. A gateway connects a 1610
backbone subnet with a plant subnet; it may be collocated with a backbone router. 1611

NOTE 1 The scope of a subnet depends on the uppermost communications layer used in construction of the 1612
subnet, which could be OSI layer 1, 2, 3 or 4. 1613

NOTE 2 Since gateways are not defined in this standard, the nature of the interface that they provide to a “plant” 1614
subnet is strictly notional. Thus the term “plant subnet” in Figure 1 refers to whatever network or other 1615
communications means exists on the “far” side of the gateway, relative to the D-subnets that are covered by this 1616
standard, while the term “field subnet” refers to the D-subnet composed directly of field devices. 1617

All addressing, routing, and transport are limited to the scope of the field D-subnet. Each DLE 1618
within such a D-subnet is identified by a local DL16Address as well as an IPv6Address with 1619
global scope. 1620

62734/2CDV © IEC(E) – 67 –

 Generic protocol data unit construction 4.5.41621

This communication standard uses communication protocol layers modeled in accord with the 1622
OSI Basic Reference Model. A protocol layer typically encapsulates the data it is conveying 1623
for a higher protocol layer, and in turn uses a lower layer to convey the encapulated result. 1624

The information conveyed across the network between peer entities is called a protocol data 1625
unit (PDU). The information conveyed at a layer boundary between layer entities of a single 1626
network node is called a service data unit (SDU). An SDU usually consists of a single PDU, 1627
but it can also be a group of concatenated PDUs (see concatenation, 3.1.1.16). 1628

An SDU is considered to be an opaque octetstring or bitstring that is to be conveyed 1629
transparently (i.e., without interpretability or alteration) by the lower layer. The SDU can be 1630
conveyed by a single lower-layer protocol data unit (PDU), or be segmented (see segmenting, 1631
3.1.1.58) to be conveyed piecemeal by many lower-layer PDUs, or be grouped with other 1632
SDUs (see blocking, 3.1.1.10) for conveyance as a group within a single lower-layer PDU. In 1633
the most common case, a header and footer are added to a single SDU to form a single 1634
protocol data unit (PDU), as shown in Figure 2. 1635

NOTE The footer is usually either null or used for some form of message integrity code (MIC), such as an easily-1636
spoofed computationally-simple checksum or a portion of a cryptographically-secured keyed hash. 1637

The header and footer are often referred to as overhead with respect to the single or multiple 1638
or fractional conveyed SDU(s), with the amount of overhead depending upon how much 1639
additional information needs inclusion for the conveying protocol to function properly. Since 1640
one goal of this standard is to minimize energy consumption and channel occupancy when 1641
conveying PDUs, minimizing the amount of overhead at each protocol layer is a primary 1642
method of achieving that goal. 1643

A complete description of each header and footer can be found in the appropriate protocol 1644
layer description. A full multi-layer PDU includes all headers and footers as shown in Figure 1645
3. The amount of data (measured in octets) of an application PDU that can be sent in a single 1646
transmission is determined by the difference between the maximum permitted or supported 1647
PhL payload and the overhead imposed by all intermediary headers and footers. 1648

 1649

Figure 2 – Typical single-layer PDU without fragmenting or blocking 1650

 1651

Figure 3 – Full multi-layer PDU structure used by this standard 1652

 Abstract data and concrete representations 4.5.51653

4.5.5.1 Abstract data types 1654

Each protocol layer of this standard defines the structure of the PDUs that it exchanges with 1655
peer protocol entities at the same layer, and of the SDUs and related interface control 1656
information (ICI) that it exchanges with adjacent layer entities within a local node of the 1657
network. 1658

Additionally, each protocol layer defines management data structures that are exchanged by 1659
each layer entity (as conveyed data) with remote systems management entities. 1660

Each of these data structures has an abstract form that requires a concrete representation. 1661
The abstract elements are either scalars, or composites composed of scalars and other 1662

 – 68 – 62734/2CDV © IEC(E)

composites. Composites can be homogeneous, in which case they are single or multi-1663
dimensional arrays (often known as a “vector” or “matrix”, respectively), or heterogeneous 1664
(often known simply as a “data structure”). 1665

The scalar elements used by the protocol entities of this standard are: 1666

a) integers of a constrained range, where each abstract value is represented by the 1667
equivalent two’s-complement or unsigned concrete binary value, depending on whether 1668
the abstract range includes negative values; 1669

b) enumerations, usually declared as an UnsignedN representation for N ≤ 8, where each 1670
abstract value generally is represented by the zero-origin ordinal index of the abstract 1671
value within the list of defined values; 1672

c) Booleans, with two abstract values (FALSE, TRUE) to which the rules and operators of 1673
Boolean logic apply, with a concrete represention of FALSE as zero and TRUE as any non-1674
zero binary value; 1675

NOTE 1 Booleans are named after the logician George Boole. 1676

NOTE 2 Although Booleans appear to be a special class of enumeration, the differences are that the value 1677
TRUE can be represented by any non-zero binary value, and that Boolean operators apply to this class. 1678

d) IEEE floating point numbers of a specified range and precision, whose values are 1679
approximate real numbers or special non-numeric constants; 1680

e) representations of TAI time as integer or scaled-fixed-point values modulo 232 s. 1681

The composite elements used by the protocol entities of this standard include three 1682
noteworthy classes of singly-dimensioned zero-origin arrays that are called strings: 1683

f) characters, known as visible strings; 1684
g) bits, known as bit strings; and 1685
h) uninterpreted octets, known as octet strings. 1686

Other composite elements include packed Boolean arrays, which are often (incorrectly) 1687
conflated with their underlying representation as bit strings. 1688

4.5.5.2 Declarations of abstract data elements and their concrete representations 1689

4.5.5.2.1 Simple declarations 1690

Within this standard, an abstract type and its concrete representation are often declared in a 1691
unified form that indicates both the class of 4.5.5.1 a) through h) and the number of bits in the 1692
underlying binary representation. 1693

• Integers are declared with an implicit range as unsignedN, implying a range of 0..2N-1, or 1694
signedN, implying a range of -2N-1..2N-1-1, where N is the number of bits of the 1695
representation, usually a multiple of 8. 1696
Integers that require a range other than that implied by their representation are declared 1697
as 1698

unsignedN range min..max 1699
where min and max are the minimum and maximum values of that integer element’s range, 1700
respectively. 1701

• Booleans are declared as BooleanN, where N is the number of bits of the representation, 1702
usually either 1 (when within a packed data structure) or 8. 1703

• Floating point numbers and their range and precision are declared as float32 or float64. 1704

• Fixed-size strings and their sizes are declared as visibleStringN, octetStringN and 1705
bitStringN, where N is the number of elements in the underlying array. 1706

62734/2CDV © IEC(E) – 69 –

NOTE 1 An internal coding mechanism within some visible strings, usually a null (0x00) used as a content-1707
end delimiter, often is used to truncate the effective size of the contained string. Many libraries of string 1708
operators presume such a coding. 1709

• Varying-size strings are declared as visibleString and octetString without a concatenated 1710
declared size (i.e., the N of visibleStringN). 1711

• Packed Boolean arrays and their size are declared as BooleanArrayN, where N is the 1712
number of elements in the array (and hence the number of bits in the representation). 1713

• Named constants, usually of values for UnsignedN fields, may be declared in ASN.1 1714
fashion as if they were ASN.1 enumerations: 1715

UnsignedN {name-1(integer-value-1), … , name-K(integer-value-K)} 1716
where N is the number of bits of the representation, and an explicit declaration of the 1717
constants are provided in the form of a bracketed, comma-separated list, each element of 1718
which is followed by “(K)” where K is the value assigned to that element. 1719

EXAMPLE 1 A declaration for the protocol layers defined in this standard might be: 1720

protocolLayers Unsigned3 {PhL(1), DL(2), NL(3), TL(4), AL(7)} 1721

NOTE 2 Example 1 demonstrate that the names of the elements of what amounts to an enumeration need not 1722
be disjoint from those used elsewhere in other places inthis standard, as might be required for an explicit 1723
programming language specification. 1724
Alternatively, these named constants may be declared as 1725

UnsignedN {integer-value-1:description-1; … ; integer-value-K:description-K} 1726
where N is the number of bits of the representation, and an explicit declaration of the 1727
named constants in the form of a bracketed, semicolon-separated list, each element of 1728
which is preceded by “K:” where K is the value assigned to that named constant. (See 1729
3.3.5.) 1730

EXAMPLE 2 A declaration for the join_method defined in this standard might be: 1731

join_method Unsigned8{ 0:none; 1:join and start; 2:warm restart; 3:restart as provisioned; 4:reset to factory 1732
defaults } 1733

For this latter form of declaration, the bracketed list may be separated from the declaration 1734
of the field’s representation. 1735

EXAMPLE 3 join_method Unsigned8 1736

Named constants: 1737
0:none; 1738
1:join and start; 1739
2:warm restart; 1740
3:restart as provisioned; 1741
4:reset to factory defaults 1742

NOTE 3 This latter form of declaration often occurs in tabular descriptions of data structures in this standard 1743
where the first part of the declaration is in one column and the second part is in the same or a different column 1744
of the same row. 1745
Many times only a few elements of the range of an UnsignedN are named, such as may 1746
occur when the all-zero or all-ones value of the representation has a special interpretation. 1747
On some occasions, particularly when the description is “reserved”, a value range may be 1748
specified rather than just a single value. 1749

4.5.5.2.2 Declarations of compound objects, and of methods and their arguments 1750

Within this standard. compound data structures are usually declared in tables, each row of 1751
which (after heading rows) describes a constituent element within the data structure. 1752

Within this standard. method descriptions are also usually declared in tables. Each such 1753
description specifies a method name, a numeric method ID and a method description, 1754
followed by a series of descriptions of method input arguments, followed by a series of 1755
descriptions of method output arguments. As with data structure definitions, each argument is 1756

 – 70 – 62734/2CDV © IEC(E)

declared in its own row of the table and has a declared type and, where relevant, a 1757
declaration of the alternatives of the associated named constants. 1758

 Network characteristics 4.61759

 General 4.6.11760

Characteristics of a WISN (i.e., a wireless network that conforms to this standard): 1761

• scalable; 1762

• extensible; 1763

• support for simple operation; 1764

• license-exempt operation; 1765

• robustness in the presence of interference and with non-WISNs; 1766

• determinism or contention-free media access; 1767

• self-organizing network with support for redundant communications from field device to 1768
plant network; 1769

NOTE Redundancy support is not defined in this standard. 1770

• IP-compatible network layer; 1771

• coexistence with other wireless devices in the industrial workspace; 1772

• security, including data authenticity, data confidentiality, data integrity, delay protection, 1773
and replay protection; 1774

• system management of all communication devices; 1775

• support for application processes using standard objects; and 1776

• support for tunneling (i.e., transporting) other protocols through the wireless network. 1777

 Scalability 4.6.21778

The architecture supports wireless systems that span the physical range from a single, small, 1779
isolated D-subnet, such as might be found in the vicinity of a gas or oil well or a very small 1780
machine shop, to integrated systems of many thousands of devices and multiple D-subnets 1781
that can cover a multi-square-kilometer plant. There is no technical limit on the number of 1782
devices that can participate in a network that is composed of multiple D-subnets. A D-subnet, 1783
a group of DLEs sharing some DL configuration aspects, may contain up to 30 000 DLEs 1784
(which is a limitation of the D-subnet addressing space). With multiple D-subnets, the number 1785
of DLEs (and thus devices) in the network can scale linearly. 1786

The maximum amount of higher-layer or management data that can be conveyed in a single 1787
DPDU is limited by the PhL and the amount of required DL overhead. Therefore this standard 1788
supports fragmentation within the DL, enabling transmission of a much greater amount of 1789
data. In fragmentation, the data is segmented into appropriate-size portions at the originating 1790
DLE, encapsulated in DPDUs and transmitted through the D-subnet, then reassembled at the 1791
receiving DLE. One use of this mechanism is to update device firmware. 1792

 Extensibility 4.6.31793

The protocols defined by this standard have fields and parameter value ranges that are 1794
reserved for future use, and version (edition) identifiers in headers that permit identification of 1795
the appropriate edition. These are intended to permit future revisions of this standard to offer 1796
additional or enhanced functionality without sacrificing backward compatibility, and without 1797
the encoding bloat that typically occurs through use of the ASN.1 declared extensibility 1798
mechanism. 1799

62734/2CDV © IEC(E) – 71 –

 Simple operation 4.6.41800

Upon provisioning, as described in Clause 13, a DLE can automatically join the D-subnet and 1801
its superior N-network. Automatic device joining and D-subnet formation enables system 1802
configuration with minimal need for personnel who have specialized radio frequency (RF) 1803
training and tools. 1804

Additionally, this standard supports the use of fully redundant and self-healing D-routing 1805
techniques to minimize D-subnet maintenance. (See 9.1.6 for further information.) 1806

 Site-license-exempt operation 4.6.51807

This standard uses radios compliant with IEEE 802.15.4:2011, using 2,4 GHz DSSS channels 1808
11..26 as specified in that standard. 1809

NOTE 1 The 2,4 GHz ISM band is available and site-license-exempt in most countries, provided that the 1810
equipment has a type-license for such operation that is accepted in that country. 1811

NOTE 2 ISA TR100.00.01 provides additional information on radio operation. 1812

 Robustness in the presence of interference, including from other wireless 4.6.61813
systems 1814

This standard uses time-based channel hopping 1815

• to provide a level of immunity against interference from other RF devices operating in the 1816
same band, 1817

• to mitigate multipath interference effects, 1818

• to facilitate coexistence with other RF systems, and 1819

• to meet common regulatory requirements. 1820

In some regulatory regimes, coexistence may be further enhanced through selective channel 1821
blacklisting, thereby avoiding otherwise-occupied channels within the band. Selective channel 1822
blacklisting can also enhance reliability by avoiding the use of channels with consistently poor 1823
performance. 1824

 Determinism and contention-free media access 4.6.71825

This standard defines a time-division-multiple-access (TDMA) mechanism that allows a device 1826
to access the RF medium on a schedule, such that much of the competition for use of the 1827
channel has been pre-resolved by the scheduling agent. Time-synchronized communication is 1828
based on consecutive timeslots that have configurable durations, usually in the range of 1829
10 ms to 12 ms. Scheduling and DLE operation are greatly simplified when all timeslots have 1830
a single, common duration, so WISNs usually are configured to have only one timeslot 1831
duration that is used for all timeslots. 1832

NOTE 1 Because timeslots are assigned to logical channels that are then mapped cyclically to physical channels, 1833
use of a single common timeslot duration means that avoidance of contention on the logical channels automatically 1834
avoids that contention on the physical channels. Timeslots of differing durations lose this scheduling simplification. 1835

A sending DLE is assigned a timeslot and channel unique to that device and the device to 1836
which it will communicate. These timeslot durations are configurable on a per-superframe 1837
basis. A superframe is a cyclic collection of timeslots. The ability to configure timeslot 1838
duration enables: 1839

• shorter timeslots to take full advantage of optimized implementations; 1840

• longer timeslots to accommodate: 1841
– extended DPDU wait times, 1842
– serial acknowledgment from two or more configured devices (e.g., duocast), 1843

 – 72 – 62734/2CDV © IEC(E)

– CSMA/CA at the start of a timeslot (e.g., to implement listen-before-talk, or for 1844
prioritized access to shared timeslots); 1845

• periods of extended duration for slow-channel-hopping. 1846

NOTE 2 Local regulatory requirements may constrain the maximum duration of such a slow-channel-hopping 1847
period. 1848

Support is provided for both dedicated time slots for predictable, regular traffic and shared 1849
time slots for bursty traffic such as alarms. Publishing/subscribing, client/server 1850
communications, alert reporting and bulk data transfer are also supported. 1851

 Self-organizing networking with support for redundancy 4.6.81852

Fully redundant and self-healing routing techniques, such as mesh routing (see 9.1.6), 1853
support end-to-end network reliability in the face of changing RF and environmental 1854
conditions. Special characteristics that allow the network to adapt frequencies used (e.g., 1855
adaptive channel-hopping) along with mesh routing, can automatically mitigate coexistence 1856
issues without user intervention. 1857

 Internet-protocol-compatible NL 4.6.91858

This standard’s NL uses header formats that comply with the Internet Engineering Task 1859
Force’s 6LoWPAN standards, thus facilitating potential use of IPv6-compatible networks as 1860
backbone networks in support of this standard. Use of headers that comply with 6LoWPAN 1861
does not imply either 1862

• that a backbone network needs to be based on 6LoWPAN or IPv6, or 1863

• that a network based on this standard is open to Internet hacking. 1864

In fact, many networks based on this standard will not be directly connected to the Internet. 1865
Others may use the older IPv4 standard, at least during initial years of operation. 1866

NOTE Use of IPv6 enables use of standard networking tools and software, as well as the potential for use of a 1867
wide variety of IETF standards in future revisions of or extensions to this standard. 1868

 Coexistence with other radio frequency systems 4.6.101869

NOTE Coexistence with other radio frequency systems is the subject of concurrent IEC standardization. See 1870
IEC/TS 62657-2 for the expected form and direction of such standardization. It is likely that 4.6.10 will be reviewed 1871
and updated in the future, based in part on the progress of such concurrent standardization. 1872

4.6.10.1 Coexistence overview 1873

The system architecture specified by this standard is specifically designed to support 1874
coexistence with other 1875

• WISNs (i.e., wireless systems conforming to this standard); 1876

• other communication networks operating at 2,4 GHz that employ varying versions of 1877
IEEE 802.11, IEEE 802.15.1 and IEEE 802.15.4; and 1878

• other devices that use the same radio frequency spectrum. 1879

Operating with very short, time-synchronized communications tends to reduce congestion of 1880
RF bands and allow neighboring systems to recover quickly from lost or corrupted PhPDUs. 1881

Due to the reduced dwell time on any one channel when channel-hopping, the impact on other 1882
radio systems is reduced and reliability in the face of interference is increased. For example, 1883
DPDUs may be resent on other, non-interfered channels. Selective channel blacklisting 1884
increases coexistence even further by avoiding those channels that are predetermined to be 1885
unusable or too congested. 1886

62734/2CDV © IEC(E) – 73 –

This standard supports (but does not require) the use of clear channel assessment (CCA) to 1887
minimize collisions with non-synchronized systems, and also to provide CSMA/CA 1888
functionality within synchronized systems. 1889

NOTE Some regulatory jurisdictions require use of CCA in certain modes of operation. Such required use is 1890
provided by this standard when a device is configured for operation in those jurisdictions. 1891

The WISN architecture is designed to support operation in the presence of interference from 1892
unintentional radiators, such as microwave ovens, using channel-hopping and an automatic 1893
repeat-request (ARQ) protocol. ARQ is a common error control method for data transmission 1894
that uses acknowledgments for successful message reception, coupled with delayed 1895
retransmission in the case of erroneous reception, to achieve reliable data conveyance. 1896

For additional information on diversity techniques that maximize coexistence, see 9.1.2. 1897

4.6.10.2 Coexistence strategies 1898

4.6.10.2.1 General 1899

The following are examples of coexistence techniques that are not specific to any protocol. 1900
They improve coexistence with a wide range of devices sharing the 2,4 GHz band while 1901
optimizing the success of each communication attempt. 1902

NOTE See IEC/TS 62657-2 for a more comprehensive discussion of wireless coexistence. 1903

4.6.10.2.2 Leverage infrastructure for high data rate communication links 1904

Multi-hop networks convey the same higher-layer data multiple times, once (or more) per hop. 1905
One basic capability of this standard is the ability to get the data to a DLE connected to a 1906
backbone subnet (preferably one offering a high data rate and low error rate) as directly as 1907
possible. This often reduces the use of the PhL specified by this standard to one or two 1908
D-transactions and D-subnet hops per conveyed higher-layer PDU. 1909

4.6.10.2.3 Time-slotted operation 1910

Time-slotted operation and scheduled transmissions serve to minimize collisions within the 1911
D-subnet, thus avoiding unnecessary use of the channel for retries. 1912

4.6.10.2.4 Radio type selection 1913

IEEE 802.15.4 was selected as the PhL for this standard because, under many conditions, 1914
overlapping similar radios, as well as IEEE 802.11 radios, can be active simultaneously 1915
without loss of conveyed data. 1916

NOTE This standard is focused primarily on coexistence with the most recent versions of those standards, as 1917
older versions tend to be encountered less frequently as the years progress. 1918

4.6.10.2.5 Low-duty cycle 1919

Data conveyance for the focus applications described in 0.1 is infrequent, while added 1920
overhead from the conveying protocol layers is minimized. 1921

4.6.10.2.6 Staccato transmissions 1922

Expected transmissions are very short, which is a feature of the selected PhL. This enables 1923
co-located IEEE 802.11 networks to recover quickly in the event of inerference from the 1924
WISN. 1925

 – 74 – 62734/2CDV © IEC(E)

4.6.10.2.7 Time diversity 1926

Many of the focus applications have less stringent latency requirements than other users of 1927
the spectrum, providing more opportunity to use time diversity for coexistence. Configurable 1928
retry periods, potentially spanning hundreds of milliseconds, enable the system to coexist with 1929
other users that may require use of the same spectrum during higher-priority bursts of activity. 1930

4.6.10.2.8 Channel diversity 1931

The low-duty cycle of the radio is spread across up to sixteen IEEE 802.15.4 channels, further 1932
reducing the worst-case potential for interference to 1% of the time or less under many 1933
realistic scenarios. 1934

4.6.10.2.9 Spectrum management 1935

The user may configure superframes within the D-subnet to limit operation to certain radio 1936
channels. 1937

4.6.10.2.10 Selective channel utilization 1938

Where the regulatory regime permits, D-management can avoid problematic channels on a 1939
link-by-link basis, such as channels exhibiting IEEE 802.11 cross-interference or persistent 1940
multipath fades. 1941

4.6.10.2.11 Collision avoidance 1942

All DLEs support CSMA/CA, which allows a DLE to implement a “listen before talk” protocol to 1943
provide real-time detection of ongoing use of the channel and delay its own transmission, 1944
reducing interference to those other users. 1945

NOTE Such avoidance is required in some regulatory regimes, at least in some modes of operation. 1946

4.6.10.2.12 Varying PhPDUs 1947

Due to the DL’s built-in security measures, which include defense against same-channel and 1948
cross-channel replay attacks, PhPDUs vary from transmission to transmission even when 1949
retransmitting the same nominal DPDU information. With spread-spectrum modulation this 1950
results in time-varying interference even when otherwise-identical messages are being 1951
transmitted. 1952

 Time-slotted assigned-channel D-transactions as the basis for communication 4.6.111953

4.6.11.1 Overview 1954

Except during the interval when a DLE is soliciting the opportunity to join a D-subnet, each 1955
instance of DLE communication in accordance with this standard occurs 1956

a) within a prespecified time window, known as a timeslot, relative to the DLE’s sense of TAI 1957
time; 1958

b) on a specific PhL channel at a power level that meets local regulations; 1959
c) using a specific timeslot template for the intiator of a D-transaction, which specifies 1960

1) channel acquisition, configured in accord with local regulations and the timeslot 1961
template; 1962

2) transmission of a Data DPDU (i.e., the initial DPDU of a transaction) containing either 1963
higher-layer data or management data to a set of intended correspondents; and 1964

3) when so specified by the timeslot template, attempted reception of one or more 1965
ACK/NAK DPDUs (i.e., short control signaling) sent by intended correspondents; 1966

NOTE 1 Intentional reception of more than one ACK/NAK DPDU is useful for assessing network 1967
operation but is not essential for successful DPDU conveyance. 1968

62734/2CDV © IEC(E) – 75 –

d) using a different specific timeslot template for an intended correspondent of a 1969
D-transaction, which specifies 1970
1) the duration of the channel acquistion phase, related to c)1); 1971
2) attempted reception of a Data DPDU containing either higher-layer data or 1972

management data addressed to either the DLE itself or to a specified other 1973
DL16Address; and 1974

NOTE 2 This latter capability is used for multicast/broadcast and duocast/N-cast 1975
3) when reception d)2) did occur and was error-free at the PhL with an error-free DLE 1976

FCS, and when so specified by the timeslot template, transmission of a single 1977
ACK/NAK DPDU (i.e., short control signaling) sent to the sending DL16Address of the 1978
DPDU received in d)2), occurring either 1979
i) at a specified delay after the end of receipt of the Data DPDU d)2), or 1980
ii) at a specified time before the scheduled end of the timeslot, 1981
as specified by the timeslot template. 1982

When the corresponding timeslot template for the transaction initiator specifies more than one 1983
interval for ACK/NAK DPDU reception in c)3), then the timeslot templates for the transaction’s 1984
responders differ in their assigned values for d)3)i) or d)3)ii), thus allocating those potential 1985
responses to disjoint time intervals within the timeslot. 1986

The devices to which c)2) applies are known as transaction initiators; those devices to which 1987
d)2) applies are known as transaction recipients (which are the intended recipients, and not 1988
just eavesdroppers); those devices to which d)3) also applies are known preferentially as 1989
transaction responders (although they are also transaction recipients). 1990

NOTE 3 IEEE 802.15.4e:2012 specifies mechanisms that are similar to, but not identical to, many of the DL 1991
mechanisms specified in this standard. 1992

4.6.11.2 Channel acquisition phase 1993

The channel acquisition phase of a transaction has two uses: 1994

a) ListenBeforeTalk (LBT): A mode of operation that is required in certain regulatory 1995
jurisdictions and optional in others, whose purpose is to reduce interference with other 1996
devices transmitting in the same frequency range, whether those devices use similar PhLs 1997
(e.g., other IEEE 802.15.4 systems on the same channel) or different PhLs that overlap in 1998
their frequency use (e.g., IEEE 802.11). In this mode of operation, intended transaction 1999
initiators sample the channel in a specified way (e.g., CCA mode 1) for a specified time 2000
interval, according to local regulatory requirements, and terminate the intended use of the 2001
timeslot if that sampling implies that the channel is in use by another device. 2002

b) CSMA/CA: A means by which multiple DLEs conforming to this standard attempt to claim 2003
use of a designated shared-use timeslot. In this mode of operation each competing 2004
transaction initiator operates as in a) for a time interval that is uniformly chosen from a 2005
distribution of interval durations that increases exponentially with successive failures (up 2006
to some predetermined limit), thus providing exponential backoff in cases of congestion for 2007
use of the timeslot. When the smallest value of the selected interval is greater than zero, 2008
such operation supports prioritized access because DLEs implementing the CSMA/CA 2009
mode tend to defer to those that do not. 2010

The two modes a) and b) can be combined to meet both sets of objectives. The timeslot 2011
templates used by intended recipients need to account for these initial delays, as in 2012
4.6.11.1, d)1), so that such recipients do not terminate reception prematurely in an attempt to 2013
minimize the energy used by their PhL receivers when active. 2014

Due to well-known properties of RF propagation, the above ListenBeforeTalk and CSMA/CA 2015
processes are not reliable in their ability to detect either channel use by other devices or the 2016
potential that channel use for one transaction will interfere with other, distant, ongoing 2017
communications. This issue has many names, often called the “hidden node” problem. Thus 2018

 – 76 – 62734/2CDV © IEC(E)

deferral of transactions due to a) and/or b) is always pessimistic with respect to projected 2019
interference, yet non-deferral is inadequate to avoid interference (which occurs at receivers) 2020
caused by concurrent RF emitters that fail to detect each other. 2021

4.6.11.3 Communication phase 2022

The communication phase of a transaction is used for three basic classes of transactions: 2023

a) Multicast/broadcast: The timeslot template for the transaction initiator consists of 2024
4.6.11.1, c)1) and c)2), with c)3) omitted, while the timeslot template for the transaction 2025
recipients consists of 4.6.11.1, d)1) and d)2), with d)3) omitted. For these transactions 2026
there are no transaction responders, since no opportunity for an immediate response of 2027
short control signaling is provided in the template. 2028

b) Unicast: The timeslot template for the transaction initiator consists of all parts of 2029
4.6.11.1, c), while the template for the recipients consists of all parts of 4.6.11.1, d). For 2030
these transactions there is exactly one intended transaction responder, with a single 2031
ACK/NAK immediate response opportunity provided in the template. 2032

c) Duocast/n-cast: The timeslot template for the transaction initiator consists of all parts of 2033
4.6.11.1, c), while the template for the recipients consists of all parts of 4.6.11.1, d). For 2034
these transactions there is a designated number (2 or n, respectively, for duocast and 2035
n-cast) of intended transaction responders, each with a different timeslot template that 2036
specifies a single response opportunity for an ACK/NAK DPDU, disjoint from all the other 2037
response opportunities for the same transaction. 2038
In this transaction class all, or all but the first, transaction responders sensitize 2039
themselves to receiving a DPDU whose destination DL16Address is not the DLE’s own 2040
DL16Address. In such cases the timeslot template also specifies the DL16Address to be 2041
used for this purpose. This use of a distinct DL16Address applies only to the Data DPDU 2042
of the transaction; any ACK/NAK DPDU uses the actual explicit or implied DL16Addresses 2043
of the transaction responder and initatior. 2044

 Robust and flexible security 4.6.122045

All compliant networks have a security manager to manage and authenticate cryptographic 2046
keys in transit. Security primitives defined by IEEE 802.15.4:2011 are used by the DLE and 2047
TLE, providing message originator authentication, message integrity, and optional message 2048
content privacy. 2049

Device authentication is enabled by the use of symmetric keys and unique device IDs, with an 2050
option for use of asymmetric keys during the device provisioning process and some other 2051
security-related processes. 2052

During normal operation, received data authenticity and data integrity is verifiable through the 2053
use of secret symmetric keys known to both the originator and the receiver(s). 2054

During provisioning, the authenticity of the received device credentials from a new device may 2055
be verified by a system manager through the optional use of public keys shared openly by the 2056
new device, and a corresponding asymmetric private key kept secret within the new device. 2057

PDUs are protected using the default AES-128 or an alternative, locally-mandated block 2058
cipher, using standard cryptographic modes. Secret symmetric keys that are known to 2059
communicating entites are used to secure device-to-device communication. 2060

 System management 4.6.132061

This standard includes functions to manage communication resources on each individual 2062
device, as well as system resources that impact end-to-end performance. System 2063
management provides for policy-based management of the runtime configuration and also 2064
monitors and reports on configuration, performance, fault conditions, and operational status. 2065
The system management functions take part in activities such as: 2066

62734/2CDV © IEC(E) – 77 –

• device joining and leaving the network; 2067

• reporting of faults that occur in the network; 2068

• communication configuration; 2069

• configuration of clock distribution and the setting of system time; 2070

• device monitoring; 2071

• performance monitoring and optimization. 2072

System security management works in conjunction with the system management function and, 2073
potentially, external security systems to enable secure system operation. 2074

All management functions are accessible remotely via the gateway. 2075

 Application process using standard objects 4.6.142076

This standard’s application process is represented as a standard object which contains one or 2077
more communicating components drawing from a set of standard defined application objects. 2078
These objects provide storage for and access the data of an application process. 2079

Defining standard objects provide an open representation of the capabilities of a distributed 2080
application in a definitive manner, thereby enabling independent implementations to 2081
interoperate. Objects are defined to enable not only interaction among field devices but also 2082
interoperation with different host systems. 2083

The standard objects and services of this standard may be used to directly map existing 2084
legacy field device communications onto standard objects and application sublayer 2085
communication services, thereby providing a means to adapt legacy devices to communicate 2086
over the WISN. 2087

 Tunneling 4.6.152088

The native protocols defined by this standard allow devices to encapsulate foreign PDUs and 2089
transport these foreign PDUs through the WISN to a destination device within the WISN, 2090
which usually is a gateway to legacy protocols. This encapsulation mechanism is referred to 2091
as tunneling. Successful application of tunneling depends upon how well the foreign protocol’s 2092
technical requirements (e.g., timing, latency, etc.) are met by the instantiation of the WISN. 2093

5 Systems 2094

 General 5.12095

In this standard a system is defined to have an application focus and addresses applications 2096
and their needs. Networks, on the other hand, have a communication focus and are devoted 2097
to the task of device-to-device communication. For the purposes of this standard, a network is 2098
a component of a larger system. 2099

Clause 5 describes how the various protocol layers and functions of this standard work 2100
together to form a system that achieves the goals of this standard. Specifically, Clause 5 2101
describes the system aspects of devices, networks, protocol suite, data flow, a shared time 2102
base, and the applications need for firmware revisions. 2103

 Devices 5.22104

 General 5.2.12105

A device implements a combination of protocol layers, usually including a PhLE, a DLE, a 2106
NLE, a TLE and an ALE, and may include functions such as the system manager role, the 2107

 – 78 – 62734/2CDV © IEC(E)

security manager role, one or more gateway roles, and support for provisioning other devices 2108
in the network. 2109

NOTE Only system behaviors are specified in Clause 5. 2110

 Device interworkability 5.2.22111

Device interworkability is the ability of devices from multiple vendors to communicate and 2112
maintain the complete network. Device interworkability requires control over the device’s 2113
various options, configuration settings, and capabilities: 2114

a) Options: To allow all devices to interwork, and to interoperate within a constrained 2115
domain of application, regardless of implemented options (those defined within this 2116
standard), devices shall be capable of disabling (i.e., not using) any options that are not 2117
mandatory for the device’s configured role(s), as specified in the role profiles of Annex B. 2118

b) Configuration settings: The system manager is responsible for configuring WISN devices 2119
and roles implemented by WISN devices. The system manager is described in Clause 6. 2120
Some configuration aspects are described in Annex D. 2121

c) Capabilities: There are minimum capabilities to be met for devices based upon their role 2122
in the system. Annex B defines the baseline capabilities required for all devices. 2123

 Profiles 5.2.32124

A profile can be described as a vertical slice through the protocol layers. It defines those 2125
options in each protocol layer that are mandatory for that profile. It also defines configurations 2126
and parameter ranges for each protocol. The profile concept is used to reduce the risk of 2127
device interworkability and interoperability problems between different manufacturers’ 2128
products. Interoperability in areas outside the scope of this standard requires either use of 2129
profiles beyond those of this standard, or other extra-standard arrangements. 2130

A role profile is defined as the baseline capabilities, including any optional features, settings, 2131
and configurations, that are required of a device to perform that role adequately. The roles 2132
are defined in 5.2.6.2. 2133

All devices conforming to this standard include a default application profile that addresses 2134
many basic process automation needs. That default profie is used by the System Manager to 2135
manage the various protocol layer management entities in each device, including aspects 2136
related to reporting of protocol-layer-related events. 2137

 Quality of service 5.2.42138

An application within a device is assumed to know the level of service that is necessary for its 2139
proper operation. The level of quality of service (QoS) is agreed upon via a contract between 2140
the system manager and the requesting device. When the application within a device desires 2141
to communicate at a certain QoS level, it sends a request to the system manager notifying it 2142
that it wishes to communicate with a specific destination and that it desires a given QoS level. 2143
This desired QoS level is indicated by a desired contract and message priority. In addition, a 2144
certain level of reliability, periodicity, phase, and deadline for periodic messages, and 2145
short-term burst rate, long-term burst rate, and maximum number of outstanding requests for 2146
client/server messages, may be indicated. See 6.3.11.2.7 for specific information on QoS. 2147

 Device worldwide applicability 5.2.52148

The Type A field medium employs a widely used and accepted physical interface and is 2149
therefore appropriate for use in many geographic regions of the world. However, some 2150
regions have special considerations that may impose different regulatory requirements. Even 2151
if a product is designed to meet those regulatory requirements, its use is often not legally 2152
permitted until it has undergone compliance testing and any required local permits or 2153
certificates have been issued by country-specific regulatory agencies. 2154

62734/2CDV © IEC(E) – 79 –

This standard does not specify what regulatory certifications or permits a product compliant 2155
with this standard needs; that is the responsibility of the product manufacturer and the end 2156
user to determine. A product may have certifications for operation in multiple countries or 2157
regions. 2158

Specific design considerations within this standard support the transition between different 2159
regulatory regimes, of mobile wireless systems conforming to this standard. For example, 2160
tanker ships moving between ocean ports are subject to the local regulations of each port at 2161
which they dock. Annex U addresses specific provisions that have been made in this standard 2162
to support regulatory approval of both fixed-locale equipment and systems, and of those that 2163
move between regulatory regimes. 2164

 Device description 5.2.62165

5.2.6.1 General 2166

Within this standard, devices are the physical embodiment of the behaviors, configuration 2167
settings, and capabilities that are necessary to implement and operate a network. There are 2168
many different types of devices depending upon the application, environment, and function 2169
within the network. To fully describe necessary network behavior without defining specific 2170
device implementations this standard defines roles, protocol layers, and a field medium that 2171
devices may embody. 2172

A role defines a collection of functions and capabilities. This standard defines all the roles 2173
necessary for the network to operate properly, including system manager, security manager, 2174
gateway, backbone router, system time source, provisioning, router, and I/O device. All 2175
devices conforming to this standard shall implement at least one role; however, a device may 2176
implement many roles. A device implementing a role shall implement all functions required for 2177
that role in 5.3. 2178

The protocol layers describe required behaviors. Not all devices are required to implement all 2179
the protocol layers defined in this standard. However, all devices conforming to this standard 2180
shall implement the network and transport layers in addition to the DMAP functionality as 2181
described in 6.2. Every device shall contain a device management function and a device 2182
security management function that cooperate with the system processes to enable secure 2183
management of a device’s resources and the device’s usage of system resources. 2184

A field medium is represented within a device a combination of a PhLE and a DLE, both as 2185
described in this standard. While not all devices need to implement a field medium, any 2186
device that implements the I/O, routing, or backbone routing roles shall directly support at 2187
least one field medium as specified by this standard. 2188

Figure 4 illustrates the distinction between physical devices (e.g., as supplied by a 2189
manufacturer) and the roles that those devices can assume. 2190

 – 80 – 62734/2CDV © IEC(E)

 2191

Figure 4 – Physical devices versus roles 2192

Figure 4 shows a representative yet complete network compliant with this standard. Within 2193
this network are several types of devices, including sensors, actuators, routers, a handheld 2194
computer, and a workstation. As shown in Figure 4, each of these devices may assume 2195
different roles within the network. For example: 2196

• The workstation has assumed the roles of gateway, system manager, and security 2197
manager. These roles are described in 5.2.6.10, 5.2.6.11, and 5.2.6.12, respectively. 2198

• Two devices have assumed the role of backbone routers (described in 5.2.6.9), while 2199
seven other devices have assumed the role of routers (described in 5.2.6.7). 2200

• Three sensors, one actuator and a portable computer have assumed the singular role of 2201
an I/O device (5.2.6.6). 2202

• The router at the lower left of Figure 4 has assumed a provisioning role, as described in 2203
5.2.6.8, and will provision the new device being introduced. 2204

• Two actuator devices have assumed both the router and I/O roles. 2205

NOTE 1 Although Figure 4 shows the use of a backbone network, the functionality of the backbone network is not 2206
specified within this standard. 2207

NOTE 2 The physical devices and roles shown in Figure 4 are intended only as examples. 2208

5.2.6.2 Field medium 2209

5.2.6.3 General 2210

This standard defines one specific field medium, Type A. A field medium type defines the 2211
protocol for the PhL and lower DL (i.e, the MAC). Future revisions of this standard may 2212
support multiple field media types. 2213

62734/2CDV © IEC(E) – 81 –

5.2.6.4 Type A 2214

The Type A field medium consists of the PhL and DL as specified by Clause 8 and Clause 9 2215
of this standard. 2216

Devices implementing the Type A field medium and the DL shall implement configuration 2217
settings for Radio Silence. The Radio Silence configuration is used to restrain the radio from 2218
transmitting during inappropriate times, such as when transmission is unsafe or when 2219
regulations prohibits radio transmissions. The Radio Silence configuration settings are 2220
defined in 9.1.15.4. 2221

5.2.6.5 Role definitions 2222

5.2.6.6 Input/output 2223

A device with the I/O role shall provide (source) data to or use (consume) data from other 2224
devices (and may both provide and use data) and shall have at least one user application 2225
process (UAP) object. A device with only an I/O role is a device that has the minimum 2226
characteristics required to participate in a network compliant with this standard. The I/O role 2227
provides no mechanism for the forwarding of messages or routing for any other device. This 2228
enables the construction of devices with the least complexity and the potential for low energy 2229
consumption, since they need not expend energy routing other devices’ messages, nor are 2230
they required to accept and provision new devices wishing to join the network. 2231

NOTE A data source supplies data. An actuator would be an example of a consumer of data (i.e. sink), whereas a 2232
sensor would supply data (i.e. source). 2233

Devices that implement the I/O role shall implement the Type A field medium. 2234

5.2.6.7 Router 2235

A device with the router role shall have routing capability, shall act as a proxy, and shall have 2236
clock propagation capability. These devices can provide range extension for a network and 2237
path redundancy and may provide different levels of QoS on a message-by-message basis. 2238
The system manager may disable the routing capabilities of the router role to optimize system 2239
performance requirements such as message latency or battery consumption. 2240

Devices that implement the router role shall implement the Type A field medium. 2241

5.2.6.8 Provisioning 2242

A device with the provisioning role (provisioning device) shall be able to provision a device set 2243
to factory defaults and shall implement the device provisioning object (DPO; see Clause 13). 2244
The provisioning device inserts the required configuration data into a device to allow a device 2245
to join a specific network. Devices implementing the PhL shall be capable of being 2246
provisioned using the defined physical interface. This capability can be disabled (see Clause 2247
13). 2248

Devices that implement the provisioning role shall implement the Type A field medium. 2249

5.2.6.9 Backbone router 2250

A device with the backbone router role shall have routing capability via the backbone, and 2251
shall act as a proxy using the backbone. Backbone routers enable external networks to carry 2252
native protocol by encapsulating the PDUs for transport. This allows a network described by 2253
this standard to use other networks, including longer-range or higher-performance networks. 2254

While the media and protocol suites of backbone networks are not defined in this standard, it 2255
is believed that many instantiations of the backbone router will be with internet protocol (IP) 2256
networks. Many of these backbone networks may conform to IPv4 as opposed to the newer 2257

 – 82 – 62734/2CDV © IEC(E)

IPv6. Clause 10 describes how a WISN NPDU received by a BBR at the BBR’s WISN DLE 2258
interface is converted into a fully compliant IPv6 NPDU. If the BBR’s backbone interface 2259
implements IPv6, then the NPDU may simply be routed using standard IPv6. If the BBR’s 2260
backbone interface implements IPv4, then the BBR shall support the use of IETF RFC 2529 to 2261
route the NPDU across the IPv4 backbone. 2262

Devices implementing the backbone router role shall implement the Type A field medium in 2263
addition to the BBR’s backbone network interface. 2264

5.2.6.10 Gateway 2265

A device with the gateway role implements a high-side interface. An example of an internal 2266
GIAP supporting such a high-side interface is given in Annex U. The gateway communicates 2267
over the WISN by native access and/or tunneling. Such a device shall have a UAP. The 2268
gateway role provides an interface between the WISN and the plant network, or directly to an 2269
end application on a plant network. More generally, a gateway marks the transition between 2270
communications compliant with this standard and other communications and acts as a 2271
protocol translator between an AE described by this standard and other AEs. There can be 2272
multiple gateways in a system. 2273

5.2.6.11 System manager 2274

A device implementing the system manager role shall implement the SMAP (6.3.2) and shall 2275
set the time source tree. 2276

The system manager is a specialized function that governs the network, devices, and 2277
communications. The system manager performs policy-based control of the network runtime 2278
configuration, monitors and reports on communication configuration, performance, and 2279
operational status, and provides time-related services. 2280

When two devices need to communicate, they do so using a contract. A contract is an 2281
agreement between the system manager and a device in the network that involves the 2282
allocation of network resources by the system manager to support a particular communication 2283
need of this device. This contract is made between the applications in both devices and the 2284
system manager. The system manager will assign a contract ID to the contract, and the 2285
application within the device will use the contract for communications. An application may 2286
only request the creation, modification, or termination to a contract. It is the sole responsibility 2287
of the system manager to create, maintain, modify, and terminate the contract. 2288

For more information on system management, see Clause 6. 2289

5.2.6.12 Security manager 2290

The system security management function, or security manager, is a specialized function that 2291
works in conjunction with the system manager and, potentially, external security systems to 2292
enable secure system operation. The security manager is logically separable from the system 2293
manager, and in some use cases will be resident on a separate device and in a separate 2294
location. Every system compliant with this standard shall have a security manager. For more 2295
information on the security manager, see Clause 7. 2296

NOTE The communication protocol used between the system manager and the security manager is not defined by 2297
this standard because such components are usually supplied by a vendor as a matched pair/set. 2298

For more information on the security management functionality, see 7.7. 2299

5.2.6.13 System time source 2300

A device implementing the system time source role shall implement the master time source 2301
for the system. A sense of time is an important aspect of this standard; it is used to manage 2302

62734/2CDV © IEC(E) – 83 –

device operation. The system time source provides a sense of time for the entire system. This 2303
is described in more detail in 6.3.10.1. 2304

Devices implementing the system time source role shall implement any of the I/O, router, 2305
backbone router, system manager, or gateway roles. 2306

 Device addressing 5.2.72307

Each device that implements the Type A field medium shall be assigned a DL16Address for 2308
the D-subnet, which is used for local addressing. Each device shall have an EUI64Address 2309
that is unique. See Clause 9 for further information. 2310

Each device shall also have an IPv6Address that is assigned by the system manager as 2311
described in 6.3.5. The system manager may choose to assign the IPv6Address as a logical 2312
address to maintain ALE linkage in the event of a device replacement. The IPv6Address may 2313
be used by the application to reach a particular device within a system after the join process 2314
is complete. See Clause 10 for further information. 2315

 Device phases 5.2.82316

5.2.8.1 General 2317

A device may go through several phases during its operational lifetime. Within each of these 2318
phases are multiple states. A notional representation of the phases of the life of a device is 2319
shown in Figure 5. See Figure 136 and Figure 137 for normative detail. 2320

 – 84 – 62734/2CDV © IEC(E)

ADD DEVICE REMOVE DEVICE

OEM, system integrator,
end user configuration

Network failure, user
removes device,
firmware upgrade, or
device fault, or
device reset to
factory defaults

User returns to
general stock

Device
decommissioned

Device associated with
application

Device installed and
joined to network

Site-specific security
information installed

Network-specific
information installed
(network and security
information may be
installed via provisioning
network)

Factory default
Application-specific code; defaults assigned
Security and network information installed
Device on the network
Joined to application

Provisioned to join network
Application-specific code; defaults assigned
Security and network information installed
Device on the network
Joined to application

Joined to application
Application-specific code; defaults assigned
Security and network information installed
Device on the network
Joined to application

Accessible device
Application-specific code; defaults assigned
Security and network information installed
Device on the network
Joined to application

Configured for application
Application-specific code; defaults assigned
Security and network information installed
Device on the network
Joined to application

Item not yet complete
Item complete 2321

Figure 5 – Notional representation of device phases 2322

A device can pass through these phases several times as it is commissioned and used, then 2323
decommissioned and re-commissioned for a different application. After joining the network, 2324
devices shall be able to report their status so that applications know whether a device is 2325
accessible and whether it is joined to an application. 2326

5.2.8.2 Factory default 2327

A device is considered non-configured if it has not been configured or commissioned with any 2328
application- or network-specific information. A non-configured device may come from a 2329
manufacturer or may enter a non-configured state as a result of decommissioning. 2330

5.2.8.3 Configured for application 2331

A device is considered configured for an application when it has received its own application-2332
specific programming and when all appropriate defaults have been applied. A device 2333
configured for application may come from a manufacturer or may be supplied by a systems 2334
integrator or other value added reseller, already provisioned for the intended application. 2335
Over-the-air application program updates can occur, but are handled by the device ALE. 2336

62734/2CDV © IEC(E) – 85 –

5.2.8.4 Provisioned to join the network 2337

A device is provisioned to join the network when it has obtained the appropriate security 2338
credentials and network-specific information. A device will usually enter this phase when it 2339
has been prepared for installation in an automation application. Often the device will not 2340
communicate directly with the security manager; instead, the system manager serves as a 2341
relay for all communication with the security manager. 2342

5.2.8.5 Accessible device 2343

A device is considered accessible when it has joined the network and has been authenticated 2344
by the system manager. An accessible device can communicate with the system manager. 2345

5.2.8.6 Joined to application 2346

In this phase, an application object on the device can send or receive information to or from 2347
the desired application objects on peer devices. See 7.4 for additional detail on the join 2348
process. 2349

NOTE Application objects in any two devices on the network are able to communicate with one another. Refer to 2350
Clause 12 for more detail. 2351

 Device energy sources 5.2.92352

This standard does not restrict the types of energy sources a device may use. The standard 2353
allows for energy efficient device behavior that accommodates device operation for long 2354
periods of time (e.g., five to ten years) using suitable batteries. 2355

The types of energy sources may be grouped into five categories: 2356

• mains; 2357

• limited battery (e.g., button cell); 2358

• moderate battery (e.g., lead acid); 2359

• rechargeable battery; 2360

• environmental or energy-scavenging. 2361

Devices implementing the roles of I/O or router may be expected to use any category of 2362
energy source. The roles of security manager, system manager, gateway, and backbone 2363
router are usually performance intensive; therefore devices implementing these roles are 2364
recommended to have more capable energy sources such as the mains or moderate battery 2365
categories. 2366

The energy source status of devices is critical to proper system management. All devices 2367
shall provide energy supply information to the system manager. This information may be used 2368
in making routing decisions. See Clause 9 for further details. 2369

 Networks 5.32370

 General 5.3.12371

The focus of networks is device-to-device communication. There are numerous aspects of the 2372
networks’ ability to communicate. These aspects include the atomic (i.e., minimal or 2373
irreducible) network, network topologies, device relationships within a network, protocol suite 2374
structure, and the concept of shared time. 2375

 Minimal network 5.3.22376

A minimal network is a network with the minimum amount of devices implementing the 2377
minimum number of roles. Although a minimum system could be constructed with just a 2378

 – 86 – 62734/2CDV © IEC(E)

system manager and a security manager, a more practical minimum system would include the 2379
roles of system manager, security manager, provisioning, system time source, and I/O. The 2380
system manager and security manager are two separate roles and may reside in the same 2381
device or may be split between two physical devices. A single physical device may assume 2382
multiple roles. Therefore, a minimal network shall consist of two devices communicating with 2383
each other, where one device implements the roles of system manager and security manager; 2384
the roles of provisioning, system time source, and I/O are implemented by either of the 2385
devices. 2386

A small representative network of four field devices and one infrastructure device is shown in 2387

 2388

Figure 6. Although such a network is atypical, it represents a small compliant system. In this 2389
network, a single physical device has assumed the roles of gateway, system manager and 2390
security manager. 2391

 Basic network topologies supported 5.3.32392

5.3.3.1 General 2393

The figures in 5.3.3 provide several informative examples and illustrate the flexibility of the 2394
system architecture. The set of examples is not intended to be exhaustive. These examples 2395
are presented here only to provide a better understanding of the system elements. 2396

5.3.3.2 Star topology 2397

This standard supports a simple star topology, as shown in Figure 6. 2398

62734/2CDV © IEC(E) – 87 –

 2399

 2400

Figure 6 – Simple star topology 2401

This system configuration can yield the lowest possible latency across the physical layer. It is 2402
architecturally very simple, but is limited to the range of a single hop. 2403

Within the figures in 5.3.3, each box labeled G,M,S represents a collection of three separate 2404
roles combined into one physical device in the relatively simple networks depicted: 2405

• a gateway; 2406

• a system manager; and 2407

• a security manager. 2408

5.3.3.3 Hub-and-spoke topology 2409

Expanding the network using the backbone routers allows the user to construct a hub-and-2410
spoke network, as shown in Figure 7, wherein devices are clustered around each backbone 2411
router, providing access to the high-speed backbone. 2412

 – 88 – 62734/2CDV © IEC(E)

 2413

Figure 7 – Simple hub-and-spoke topology 2414

In this case, latency is slightly degraded from the simple star topology, but overall throughput 2415
can increase, and in larger systems, average latency can decrease because of the multiple 2416
data pipes available (one through each backbone router). Although the network can expand 2417
further away from the gateway, it is nonetheless limited to single-hop range around a 2418
backbone router. 2419

5.3.3.4 Mesh topology 2420

This standard supports mesh networking topologies, as shown in Figure 8. 2421

62734/2CDV © IEC(E) – 89 –

 2422

Figure 8 – Mesh topology 2423

In some cases, the number of routes a device can support may be limited. Range is extended 2424
as multiple hops are supported. Latency is larger, but can be minimized by proper scheduling 2425
of transmissions. Throughput is degraded as device resources are used in repeating 2426
messages. Reliability may be improved through the use of path diversity. 2427

For more information on mesh topology, see 9.1.14. 2428

5.3.3.5 Star-mesh topology 2429

The star topology combined with the mesh topology is shown in Figure 9. 2430

 – 90 – 62734/2CDV © IEC(E)

 2431

Figure 9 – Simple star-mesh topology 2432

This configuration has the advantage of limiting the number of hops in a network. It does not 2433
have the added reliability that full mesh networking can provide. 2434

5.3.3.6 Combinations of topologies 2435

This standard allows for the combination of any of the previously mentioned topologies, so 2436
that a configuration can be constructed that best satisfies the needs of the application. For 2437
example, monitoring systems that span large physical areas within a plant may use the star-2438
mesh topology or a combination of hub-and-spoke and star-mesh topologies, whereas certain 2439
control applications where latency is critical may benefit from a pure star or hub-and-spoke 2440
topology. The flexibility of the system allows for all of these topologies to operate in harmony, 2441
in any combination. 2442

 Network configurations 5.3.42443

5.3.4.1 General 2444

The D-subnet in this standard comprises one or more groups of wireless devices, with a 2445
shared system manager and (when applicable) a shared backbone. While a D-subnet stops at 2446
the backbone router (see 5.5.6), network routing may extend into the backbone and plant 2447
network. A complete network includes all related D-subnets, as well as other devices 2448
connected via the backbone, such as a gateway, system manager, or security manager. 2449
Figure 10 and Figure 11 illustrate the distinction between a D-subnet and a network. 2450

62734/2CDV © IEC(E) – 91 –

 2451

Figure 10 – Example where network and D-subnet overlap 2452

Figure 10 illustrates a simple network comprised of a collection of wireless devices called a 2453
D-subnet and additional devices that manage the D-subnet and connect it to other networks. 2454
In Figure 10, the network and the D-subnet are the same. 2455

The D-subnet is comprised of both routing and I/O devices. The solid lines between devices 2456
designate the first route established between devices, while dotted lines designate the second 2457
route, the third route, and so on. Messages may be routed using any one of the known routes. 2458

In Figure 11, the D-subnet includes a collection of field devices up to the backbone routers 2459
(boxes labeled B). Backbone routers use connections to a network backbone to reduce the 2460
number of hops that messages would otherwise require; this can improve reliability, reduce 2461
latency, and extend the coverage of the network. 2462

The network in Figure 11 includes the D-subnet, as well as the backbone and a gateway, 2463
system manager, and security manager, which are co-located on the backbone. 2464

 – 92 – 62734/2CDV © IEC(E)

 2465

Figure 11 – Example where network and D-subnet differ 2466

5.3.4.2 Multiple gateways – redundancy and additional functions 2467

Figure 12 illustrates a different physical configuration with three gateway devices. One of the 2468
gateway devices also implements the system manager and security manager functions. 2469

62734/2CDV © IEC(E) – 93 –

 2470

Figure 12 – Network with multiple gateways 2471

The gateway devices may be identical (i.e., mirrored, for redundancy) or unique, for example, 2472
with each gateway implementing a software application to handle communications between a 2473
particular class of device and a control system attached to the plant network. 2474

5.3.4.3 Multiple gateways - designating a gateway as a backup 2475

NOTE This standard does not define the functionality of a backup gateway nor the mechanisms for 2476
synchronization of backup gateways. 2477

Figure 13 is similar to Figure 10, but with a second G,M,S device (gateway, system manager, 2478
and security manager). 2479

 – 94 – 62734/2CDV © IEC(E)

 2480

Figure 13 – Basic network with backup gateway 2481

The two G,M,S devices offer identical functionality and may coordinate their operation via 2482
synchronization messages exchanged through a backchannel mechanism not specified by this 2483
standard. A single G,M,S device may be responsible for all gateway, system manager, and 2484
security manager functions, with a second G,M,S device acting as an active standby that 2485
remains idle until it is needed. Alternatively, the two G,M,S devices may divide the workload 2486
between them until one fails. 2487

5.3.4.4 Adding backbone routers 2488

To the basic network shown in Figure 13, Figure 14 adds backbone routers (boxes labeled B), 2489
which facilitate expansion of networks compliant with this standard, in terms of both the 2490
number of devices and the area the network occupies. 2491

62734/2CDV © IEC(E) – 95 –

 2492

Figure 14 – Network with backbone 2493

 Gateway, system manager, and security manager 5.3.52494

As shown in Figure 15, the functional roles fulfilled by the G,M,S device in Figure 10, Figure 2495
11, Figure 12, and Figure 14 may be split into multiple physically separated devices, so that 2496
the gateway G, system manager M, and security manager S each operate on a separate 2497
device. 2498

 – 96 – 62734/2CDV © IEC(E)

 2499

Figure 15 – Network with backbone – device roles 2500

The physically separated gateway, system manager, and security manager shown in Figure 2501
15 can be implemented only in networks with a network backbone. 2502

 Protocol suite structure 5.42503

The protocol layers for a device conforming to this standard are described in terms of the OSI 2504
Basic Reference Model, which is adapted as shown in Figure 16. All roles and device types 2505
compliant with this standard can be derived from this model by extension or restriction of 2506
common elements depicted in Figure 16. 2507

62734/2CDV © IEC(E) – 97 –

Upper data link layer

MAC extension

Application sub-layer

User
application
process a

User
application
process n

U
AP

M
E-

2
SA

P

U
AP

M
E-

n
SA

P

ASLDE-n SAPASLDE-2 SAP

ASMSAP

ASLDE-0 SAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-2

PMSAPPDSAP

NMSAP

NDSAP

TMSAP

TDSAP-0TDSAP-n

Device manager (DMAP)

MDSAP

DMSAP

DDSAP

MMSAP

 2508

Figure 16 – Reference model used by this standard 2509

As shown in Figure 16, each layer provides a service access point (SAP). The services of a 2510
layer are defined as the functions and capabilities of that layer that are exposed through the 2511
SAP to the surrounding layers. In general two types of SAPs are defined: data SAPs, which 2512
are used for operational data transfer, and management SAPs, which are used for layer 2513
management. The services provided by a layer are defined by the data flowing through the 2514
data SAPs and, in some cases, the states that a layer provides and the state transitions that 2515
are driven by the interaction across those SAP. The device manager is the entity within each 2516
device that performs the management function; in most cases it is accessed via a layer 2517
management SAP. The device manager has a dedicated path to several of the lower protocol 2518
layers within a device, to provide direct real-time control over the operation of those layers as 2519
well as direct access to diagnostics and status information. 2520

All devices compliant with this standard are considered managed devices. All devices shall 2521
provide the functionality of each management SAP used by the DMAP for every protocol layer 2522
that they implement, as shown in Figure 16. 2523

Since compliance can be assessed only at external interfaces, including the content of data 2524
structures conveyed at those interfaces, all notional descriptions of how specific functionality 2525
could be implemented is necessarily only informative, not normative. 2526

 – 98 – 62734/2CDV © IEC(E)

 Data flow 5.52527

 General 5.5.12528

The descriptions in 5.5 are intended to provide examples of how data may flow through the 2529
system. The set of examples is not intended to be exhaustive. 2530

 Native communications 5.5.22531

A device communicates over the network using only ASL defined services as defined in 2532
Clause 12; the payloads are classified as either native or non-native. Native payloads are 2533
defined in Clause 12; non-native payloads are not defined within this standard. 2534

 Basic data flow 5.5.32535

Figure 17 illustrates the steady-state data flow for a basic network compliant with this 2536
standard, such as the one shown in Figure 10. 2537

WISN
app

Control
app

Translator

WISN
data link

WISN
physical

WISN
data link

Routing device(s)

Control
application

Control system
(example)

Plant network
physical

Plant network
data link

Plant network
network

Plant network
transport

WISN
physical

WISN
network

WISN
transport

Gateway

Plant network
physical

Plant network
data link

Plant network
network

Plant network
transport

Application

WISN
transport

WISN
network

WISN
data link

WISN
physical

I/O device

Plant network
messagingWISN messaging

Wireless industrial
sensor network (WISN)

Application

WISN
transport

WISN
network

 2538

Figure 17 – Basic data flow 2539

The I/O device is a sensor or actuator device within the D-subnet that contains physical, data-2540
link, network, and transport layers as defined by this standard and runs an application that 2541
handles the sensor or actuator function. 2542

The router routes messages on behalf of the I/O device. Routing within the D-subnet is 2543
performed entirely within the DL, and not within the NL (see Clause 9). In a real-world 2544

62734/2CDV © IEC(E) – 99 –

network, there will be one router for each additional hop between the device and the WISN-2545
connected gateway or backbone router. 2546

The gateway translates messages between the D-subnet and the plant network. The 2547
application running on the gateway consists of a component that communicates with the ALE 2548
of the I/O device, plus a component that communicates with an ALE within the control system, 2549
plus any components that facilitate translation between the two, such as a cache. 2550

 Data flow between I/O devices 5.5.42551

Figure 18 illustrates the data flow for communication between I/O devices within a D-subnet. 2552
Routing within the D-subnet is performed entirely within the DL, and not within the NL. 2553

 2554

Figure 18 – Data flow between I/O devices 2555

 Data flow with legacy I/O device 5.5.52556

Figure 19 illustrates a legacy I/O device that is integrated into a D-subnet via a legacy device 2557
adapter. An adapter is a subset of the gateway role and is a device that converts the protocol 2558
in the legacy device to that of a network compliant with this standard. 2559

 2560

– 100 –
62734/2C

D
V

 ©
 IE

C
(E

)

 2561

Figure 19 – Data flow with legacy I/O device 2562

62734/2C

D
V

 ©
 IE

C
(E

)
– 101 –

 2563

Figure 20 – Data flow with backbone-resident device 2564

– 102 –
62734/2C

D
V

 ©
 IE

C
(E

)

 2565

Figure 21 – Data flow between I/O devices via backbone subnet 2566

62734/2CDV © IEC(E) – 103 –

 Data flow with backbone 5.5.62567

Figure 20 introduces a backbone router into the data flow. 2568

The backbone router encapsulates NPDUs and relays them through backbone physical, data-2569
link, network, and transport layers. The gateway uses the same backbone layers to recover 2570
the NPDUs. While it is not shown in Figure 20, the gateway may include both a PhLE and a 2571
DLE as defined by this standard, enabling the gateway to handle messages directly from a 2572
D-subnet, in addition to messages relayed through a backbone interface. 2573

 Data flow between I/O devices via backbone 5.5.72574

Figure 21 illustrates how a backbone network handles standard-compliant message transfer 2575
when an I/O device communicates directly with another I/O device in a different D-subnet. 2576

 Data flow to a standard-aware control system or device 5.5.82577

A standard-aware control system is a control system that understands messaging defined by 2578
this standard and does not need a gateway to perform protocol translation. Figure 22 2579
illustrates data flow to a standard-aware control system. 2580

NOTE Generic protocol translation is addressed in Annex O. 2581

Backbone
PHY

Backbone
data link

Backbone
network

Backbone
transport

WISN
PHY

WISN
data link

Routing device(s)

WISN
control

application

WISN-enabled
control system

WISN
network

WISN
transport

Application

WISN
transport

WISN
network

WISN
data link

WISN
PHY

I/O device

Application

WISN
transport

WISN
network

WISN
network

WISN
PHY

WISN
data link

Backbone router

Backbone
PHY

Backbone
data link

Backbone
network

Backbone
transport

WISN message tunneled
over backbone networkWISN messaging

 2582

Figure 22 – Data flow to standard-aware control system 2583

In general, for a device to be standard-aware, it needs only to support the 2584
application interface defined by this standard and to implement the application, transport, and 2585

 – 104 – 62734/2CDV © IEC(E)

network layers defined by this standard. This makes it possible for two standard-aware 2586
devices to communicate via a plant network without using or requiring any sublayers. 2587

 Time reference 5.62588

 General 5.6.12589

This standard’s time is based on international atomic time (TAI) as the time reference; see 2590
6.3.10. This standard’s time is reported as elapsed seconds since the TAI instant of 00:00 on 2591
1 January 1958 (i.e., 1958/01/01 00:00). 2592

It is not possible or even desirable for every network to track an atomic clock precisely. 2593
Rather, every network shall have a sense of time that is: 2594

• monotonically increasing at a rate that closely matches real time; 2595

• not to exceed an error of more than 1 s relative to the system time source; and 2596

• delivered to various layers in field devices in consistent TAI units. 2597

There are communication modes as defined in Clause 9 that require better than 1 s clock 2598
accuracy relative to the system time source. 2599

For protocol operation, sequence of event reporting, and other purposes, time usually needs 2600
to be divided into increments of less than one second. For example, increments may be 2601
represented as: 2602

WISN clock ticks: Two octets to mark time in increments of 2-15 s (32 768 Hz, or 2603
~30,52 µs per tick). 2604

Microsecond precision: Three octets to mark time in increments of 2-20 s (~0,95 µs per 2605
increment). 2606

Nanosecond precision: Four octets to mark time in increments of 2-30 s (~0,93 ns per 2607
increment). 2608

Devices needing to convert TAI time to hh:mm:ss format, such as on a user display, may 2609
account for a coordinated universal time (UTC) accumulated-leap-second adjustment. This 2610
adjustment is available to field devices from the system manager. If the UTC adjustment is 2611
used by a field device, it should refresh the adjustment at the start of each month. 2612

NOTE A list of such UTC adjustments is maintained at ftp://maia.usno.navy.mil/ser7/tai-utc.dat . 2613

Simultaneous UTC update requests by many devices may cause a storm of activity in the DL. 2614
This should be considered in the DMAP design; its avoidance is not covered by the current DL 2615
specification. 2616

All devices in a network share the TAI time reference with varying degrees of accuracy. Each 2617
device within a network shall maintain time accurately to within 1 s. 2618

The system manager directs devices on the system to a device implementing the role of 2619
system time source. In most cases, this device will also be filling the system manager role. 2620
However, the time-source responsibility can be redirected to any device with a more capable 2621
source of time. 2622

The gateway shall be responsible for converting between nominal network TAI time and an 2623
external non-TAI time reference if one is being used. 2624

For more information on the requirements for the time source, see 6.3.10. 2625

62734/2CDV © IEC(E) – 105 –

 Time synchronization 5.6.22626

To propagate host time, a gateway may periodically synchronize the time sense in an 2627
attached D-subnet to an external time source by requesting time changes via DLMOs. 2628

The WISN provides time synchronization for applications so that, at the device level, they may 2629
use time to coordinate activities or to time-stamp data, an activity that could improve energy 2630
use and enhance reliability. System time shall be available from at least one device (a system 2631
time source) on each WISN. See Clause 9. 2632

 Firmware upgrades 5.72633

The overall system, and each device on the WISN, shall provide the capability of upgrading 2634
device firmware that implements this standard via the wireless network (see 6.3.6). The 2635
system shall support a common mechanism, such as a time-based trigger, to inform all 2636
devices to switch concurrently to the new firmware; this mechanism may be used to minimize 2637
the number of devices that are left stranded with an incompatible network protocol suite. The 2638
security mechanisms built into this standard are used during a firmware upgrade. 2639

Each version of the protocol shall support previous versions to the extent necessary to 2640
support upgrading firmware via the wireless network. 2641

 Wireless backbones and other infrastructures 5.82642

Devices compliant with this standard are managed devices. All devices compliant with this 2643
standard shall implement the device management interfaces at each layer, but they may 2644
implement only the functionality of their required functional layers. 2645

The system supports both wired and wireless backbone networks through the use of 2646
backbone routers. The operation of backbone networks is not addressed by this standard. 2647

More information on backbone networks and their implied characteristics can be found in 2648
Annex E. 2649

6 System management role 2650

 General 6.12651

 Overview 6.1.12652

The system management role supports network management of the network as a whole, as 2653
well as device management of the devices operating within the network. Network 2654
management includes management of the various communications resources across the 2655
network and across all protocol layers of the architecture. Device management supports 2656
localized management of the communications resources, and potentially other resources, of a 2657
device. 2658

The management functions described by this standard support: 2659

• joining the network and leaving the network; 2660

• reporting of faults that occur within the network; 2661

• communication configuration; 2662

• configuration of clock distribution and the setting of system time; 2663

• device monitoring; 2664

• performance monitoring and optimization; 2665

• security configuration and monitoring. 2666

 – 106 – 62734/2CDV © IEC(E)

 Components and architecture 6.1.22667

The primary components of the management service include a device management 2668
application process (DMAP) that resides on every device compliant with this standard, as well 2669
as a system management application process (SMAP) that shall reside on a device that 2670
implements the system manager role. Roles are described in 5.2.6.5. The DMAP is a special 2671
type of user application process (UAP) that is dedicated to managing the device and its 2672
communications services, described in 12.4.3 and 12.4.4. The DMAP and the system 2673
manager shall be capable of communicating with each other over the network using the 2674
standard-defined application sublayer services, and shall together provide a means to access 2675
management information remotely and to manage the system and its devices. System 2676
management is accomplished via inter-device messaging, while device management is 2677
accomplished by local intra-device communications. 2678

The management architecture of this standard is shown in Figure 23. 2679

Device

UAP

DMAP

Gateway

System
manager

Host
application

Security
manager

2

1

3
6

4

53

 2680

Figure 23 – Management architecture 2681

Devices compliant with this standard shall be managed through two distinct classes of 2682
application processes, UAPs and the DMAP. The UAPs are configured and monitored by host 2683
applications, such as automated management systems, or by host proxy applications in the 2684
gateways. The DMAP in the device shall be managed by the system manager. 2685

Figure 23 shows the management model relationships of this standard. For the paths 2686
illustrated in Figure 23, this standard provides a normative description of the communication 2687
protocols for paths 2 and 3. Communication protocols for paths 1, 4, 5 and 6 are informative 2688
examples of implementations in this standard. 2689

This standard defines the system management communication protocols that shall be used to 2690
control and monitor the DMAPs in the network and the relevant communication paths. In this 2691
case these communications travel on path 3 in Figure 23. 2692

The system manager includes communication paths outside of the standard-compliant 2693
network that allow other devices to interact with it. In Figure 23, path 5 shows a connection 2694
between the system manager and the host application. This path enables the host application 2695
to retrieve network status and request network services. The system manager also 2696
communicates with the security manager over path 6 to configure security in the network and 2697
to report status. 2698

The user applications on devices compliant with this standard communicate with gateways 2699
and host applications using the standard protocols shown over path 2 in Figure 23. This is 2700
described in Clause 12 and Annex U. 2701

62734/2CDV © IEC(E) – 107 –

The plant-based host application communicates with the gateway using plant protocols that 2702
travel over path 4. The system manager does not communicate directly with the UAPs. There 2703
is an intra-device communication path that enables the DMAP and UAP processes to interact 2704
via the intra-device communication path 1 in Figure 23 between the system manager and a 2705
gateway. This is performed over a virtual interface 1 in Figure 23, UAPME-SAP, using the 2706
UAP management object (UAPMO) which is described in 12.15.2.2. 2707

 Management functions 6.1.32708

Every network that is compliant with this standard shall include at least one system 2709
management role and one security management role. These roles shall be accessible to all 2710
standard complaint devices on this network. 2711

System management is a specialized role that governs the network, the operation of devices 2712
on the network, and network communications. The functions defined within this role are 2713
performed by the system manager, providing policy-based control of the runtime 2714
communication configuration. The system manager monitors and reports on communication 2715
configuration, performance, fault conditions, and operational status. This is described in 6.3.7. 2716
The system manager also provides time-related services. Some system management 2717
functions may be completely automated, while others may be human-assisted. 2718

The system manager supports configuration of the standard-compliant network, including 2719
attributes of the protocol suite from DL to AL for system management applications. It 2720
manages the establishment, modification and termination of contracts that are used by 2721
devices compliant with this standard to communicate with each other. The functions of the 2722
system manager do not include the control, configuration, and monitoring of the UAPs on the 2723
device. These management functions are controlled by host applications on plant networks or 2724
in handheld maintenance tools. 2725

Security management of the system is a specialized function that is realized in one entity and 2726
that works in conjunction with the system management function to enable secure system 2727
operation. This function is performed by the security manager. Some system security 2728
management functions may be completely automated, while others may be human-assisted. 2729

Every device compliant with this standard shall contain a DMAP. The DMAP includes a local 2730
device security management function. The DMAP cooperates with the system manager and 2731
the security manager to enable the usage of system resources by the device and the secure 2732
management of the resources of a device. For example, the DMAP may ask to join the 2733
network, ask for communication bandwidth, request a communication configuration, and 2734
report its health. The system manager and the security manager authorize the device to join 2735
the network, allocate communication bandwidth, configure the device, and collect health 2736
reports. These health reports are stored in the system manager and are used to make 2737
communication configuration decisions. 2738

In order to compartmentalize security functions, the management architecture defined by this 2739
standard supports separable system management and security management functions at both 2740
the system and device levels. Thus, the security manager is logically separable from the 2741
system manager. More details about security manager are provided in Clause 7. 2742

NOTE The system management and security management functions often are included within a single physical 2743
entity. 2744

 DMAP 6.22745

 General 6.2.12746

The DMAP is a special type of application process dedicated to managing the standard-2747
compliant device and its communications services. A DMAP resides on every device 2748
compliant with this standard. 2749

 – 108 – 62734/2CDV © IEC(E)

 Architecture of device management 6.2.22750

As shown in Figure 16, the protocol suite structure of a device includes the networking 2751
protocol layers and the UAPs. 2752

The DMAP is shown in relation to the other protocol suite components on the right side of the 2753
protocol suite structure, including arrows depicting access to the management SAPs for 2754
several of the protocol layers. The components within the DMAP are modeled as objects, 2755
known as management objects, which have features that are accessible over the network. 2756
The DMAP, like all application processes, is able to use the application sublayer to 2757
communicate. The DMAP shall use the application-sublayer SAP ASLDE-0 SAP for normal 2758
data communications. This application sublayer SAP shall correspond to TL SAP TDSAP-0 2759
which shall correspond to port number 0xF0B0. The application sublayer provides 2760
communication services to enable the objects within the DMAP to interact with the system 2761
manager over the network. These communication services are described in 12.17. 2762

 Definition of management objects 6.2.32763

The objects defined in the DMAP follow the specification that is used to define UAP objects. 2764
The templates for defining object types, object attributes, object methods and object alerts are 2765
specified in Annex I. 2766

The management objects are extensible by device manufacturers and network protocol 2767
suite/device developers. This is described in 12.5. Attribute and method identification space is 2768
set aside for manufacturer-defined device-specific objects. The system manager shall not be 2769
required to implement support for proprietary extensions for that device to interoperate and 2770
perform its primary function. 2771

 Management objects in DMAP 6.2.42772

The DMAP shall contain a number of management objects that support device management 2773
operations. These objects shall collectively perform two types of device management 2774
functions. First, these objects shall manage the device locally by manipulating attributes and 2775
invoking methods on layer management SAPs. Second, the management objects shall be 2776
accessible remotely using the ASL services such that a system manager may manipulate 2777
attributes and invoke methods on the device management objects or capture alerts from the 2778
objects. These objects are conceptual in that there are no object-oriented implementation 2779
requirements in the device, except that the externally visible behavior in terms of over-the-air 2780
ASL messaging shall be consistent with the model of object communications having the 2781
specified attributes, methods, and alerts. 2782

As shown in Figure 24, the DMAP shall include a set of layer management objects, a device 2783
management object, a device security management object, an alert reporting management 2784
object, an upload/download object, and other management objects. 2785

62734/2CDV © IEC(E) – 109 –

A
S

M
S

A
P

N
M

S
A

P
TM

S
A

P

Device manager (DMAP)

D
M

S
A

P

DMO ASLMO DSMO NLMO DLMOTLMOARMO

U
A

P
M

E
-n

 S
A

P

ASLDE-0 SAP

UDODPOHRCO

 2786

Figure 24 – DMAP 2787

The standard management objects defined in this standard are given in Table 1. 2788

 – 110 – 62734/2CDV © IEC(E)

Table 1 – Standard management object types in DMAP 2789

Standard object
type name

Standard object
type identifier

Standard object
identifier

Object description

Device
management
object (DMO)

127 1
This object facilitates the management of the
general device-wide functions of the device;
see 6.2.7.1

Alert reporting
management
object (ARMO)

126 2
This object facilitates the management of the
alert reporting functions of the device; see
6.2.7.2

Device security
management
object (DSMO)

125 3 This object facilitates the management of the
security functions of the device; see 6.2.7.5

DL management
object (DLMO) 124 4 This object facilitates the management of a

device DLE; see 6.2.8.2.2

NL management
object (NLMO) 123 5 This object facilitates the management of a

device NLE; see 6.2.8.2.2.5

TL management
object (TLMO) 122 6 This object facilitates the management of a

device TLE; see 6.2.8.2.2.6

Application
sublayer
management
object (ASLMO)

121 7 This object facilitates the management of the
device ALE; see 6.2.8.2.2.8

Upload/download
object (UDO) 3 8

This object facilitates the management of the
upload/download functions of the device; see
6.2.7.3

Device
provisioning object
(DPO)

120 9 This object facilitates the provisioning of the
device before it joins a D-subnet; see 6.2.7.6

Health reports
concentrator object
(HRCO)

128 10
This object facilitates the periodic publication
of device health reports to the system
manager; see 6.2.7.7

Reserved for
future editions of
this standard

119..114 — —

 2790
 Communications services provided to device management objects 6.2.52791

The application level services provided to the DMAP objects are the same as those provided 2792
by the application sublayer to UAP objects. These services include client/server (C/S), 2793
publish/subscribe (publish/subscribe), source/sink (source/sink), and alert reporting (AR). 2794
Details of these services, provided by the application sublayer, are given in 12.17. 2795

As shown in Figure 25, TDSAP-0, which corresponds to port number 0xF0B0, shall be used 2796
for accessing the management objects in the DMAP, which in turn access the layer 2797
management attributes through the layer management SAP. 2798

Access to the device management objects is protected by the TL security mechanisms 2799
described in 11.3. 2800

Access to the DMAP objects is restricted to the SMAP with the following exceptions: 2801

• The ARMO can also be accessed by alert masters that receive alerts originating in the 2802
device. See 6.2.7.2.3. 2803

• A joining device is allowed to access the device management object methods used during 2804
the join process. See 6.3.9.2.2. 2805

62734/2CDV © IEC(E) – 111 –

Data link layer

Application sub-layer

User
application
process a

User
application
process n

U
A

P
M

E
-2

S

A
P

U
A

P
M

E
-n

S

A
P

ASLDE-n SAPASLDE-2 SAP

ASMSAP

ASLDE-0 SAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-2

PMSAPPDSAP

NMSAP

NDSAP

TMSAP

TDSAP-0TDSAP-n

Device manager (DMAP)

MDSAP

DMSAP

DDSAP

MMSAP

 2806

Figure 25 – Example of management SAP flow through standard protocol suite 2807

Client/server interactions (including reading and writing of attributes, executing of methods, 2808
joining, and requesting and providing contracts) are the primary tools used for system 2809
management. In addition, the DMAP may use the alert reporting services of the ASL to report 2810
to the system manager when certain management-related conditions are detected. Designers 2811
of management objects may use alerts at various priority levels to help accomplish system 2812
and device management functions. 2813

 Attributes of management objects 6.2.62814

6.2.6.1 General 2815

The layer management SAPs shown in Figure 25 provide access to the management 2816
information in the various layers of the protocol suite. 2817

This information is represented by attributes defined in the management objects of the DMAP, 2818
which can be monitored and operated on by the system manager. Details of the management 2819
objects are given in 6.2.3. The attributes in the layer management objects are used to 2820
configure the protocol layers and to monitor their status. The template for describing the 2821
attributes in all management objects is provided in Annex I, for use in proprietary extensions 2822
and future editions of this standard. 2823

Attributes shall have a data type that is either a standard-defined scalar type or a standard-2824
defined data structure. More details about attributes are given in 12.6.2. 2825

 – 112 – 62734/2CDV © IEC(E)

A structured attribute is a special type of attribute that has a data type consisting of an array 2826
of standard-defined data structures. The array model is used to permit object access through 2827
indexing, where the index is the key attribute for access to the object. 2828

Management information that needs to be visualized as a collection of one or more tables is 2829
modeled as structured attributes defined in the management objects. 2830

Attributes defined in management objects can be accessed using the standard ASL-provided 2831
read or write services. Such operations enable configuration of each layer and monitoring of 2832
its status. They can be used to retrieve, set / modify, and reset the values of attributes. 2833
Operations on attributes are described in Annex J. 2834

6.2.6.2 Structured attribute index field 2835

Since structured attributes are described as arrays of data structures, one or more index 2836
fields for such arrays need to be indicated in the definition of each such structured attribute. 2837
This is done by including an * (asterisk) after the element name(s) in the table describing the 2838
data structure. The template for defining a data structure is given in Annex I. 2839

6.2.6.3 Metadata of structured attribute 2840

Structured attributes represent information tables. To provide external access to the number 2841
of objects in, and capacity of, any such table, additional meta-attributes that contain such 2842
information are defined for management objects. Such attributes represent the metadata of 2843
the corresponding structured attributes. 2844

The standard data type for a metadata attribute is given in Table 2. 2845

Table 2 – Metadata_attribute data structure 2846

Standard data type name: Metadata_attribute

Standard data type code: 406

Element name Element
identifier

Element type

Count (number of indexed rows currently in the attribute) 1 Type: Unsigned16

Classification: Static

Accessibility: Read only

Capacity (number of rows that the attribute can hold) 2 Type: Unsigned16

Classification: Static

Accessibility: Read only

 2847
 Definitions of management objects in DMAP 6.2.72848

6.2.7.1 Device management object 2849

As shown in Figure 24, the DMAP includes a set of management objects. The device 2850
management object (DMO) in the DMAP shall provide access to attributes having device-wide 2851
scope. Attributes of the DMO shall include the primary EUI64Address of the DLE, a vendor ID, 2852
a serial number, identification of the current revision of the communications software, and the 2853
device’s power source class. More details about DMO are provided in 6.2.8.1. 2854

6.2.7.2 Alert reporting management object 2855

6.2.7.2.1 General 2856

The alert reporting management object (ARMO) is used to manage all the alert reports of the 2857
device. Alert is the term used to describe the action of reporting an event condition or an 2858

62734/2CDV © IEC(E) – 113 –

alarm condition. Event is the term for a transient (i.e., stateless) condition, used to report 2859
when something happened. Alarm is the term used for a condition that maintains state until 2860
the condition clears, which is reported on change of state. Alerts, including events and 2861
alarms, are envisioned to be of high utility for managing a network compliant with this 2862
standard. 2863

There shall be at most one ARMO per device. Both alarms and events shall be reported 2864
through the ARMO. When an alert is triggered, it indicates a significant situation that needs to 2865
be reported. The ARMO shall encapsulate the report, handle timeouts and retries, and throttle 2866
alert reporting from the device. 2867

The ARMO functions as an alert proxy for the objects present in the device. All alerts 2868
generated by any object present in a device shall be sent only by the ARMO which is a 2869
management object that is part of the DMAP. The Alert data APDU shall indicate in its APDU 2870
header that the originator of the communication is the ARMO object and the DMAP of the 2871
device reporting the alert. The object and UAP that originated the actual alert APDU shall be 2872
identified in the content of the Alert report rather than in the APDU headers. 2873

Each alert shall be acknowledged by the device receiving the alert. Each alert 2874
acknowledgment shall be addressed to the ARMO of the device that originated the alert. 2875
Alerts are reported promptly and time-stamped accurately using queued alert reporting. 2876
Queued alert reporting involves the alert detecting device reporting the condition using an 2877
source/sink communication flow and receiving an ACK/NAK DPDU in return. 2878

NOTE The intent of specifying the ARMO in this standard is to separate alert detection from the management of 2879
reporting the alert condition. Unlike some wire-oriented legacy protocols, this standard consolidates alerts locally in 2880
order to minimize externalized messaging and energy consumption. 2881

The alert model used in this standard is described in 12.8. 2882

The interfaces between the ARMO and all other objects, both in UAPs and in the DMAP, are 2883
device internal and are not specified in this standard. 2884

6.2.7.2.2 Alert types 2885

Alert classes, alert directions, and alert priorities are defined in 12.11. The alert category 2886
indicates whether the alert is a device diagnostic alert, a communication diagnostic alert, a 2887
security alert, or a process alert. The alert type provides additional information regarding the 2888
alert, specific to the alert category and specific to the application object generating the alert. 2889

Table 3 provides the alert types for the alert categories of communication diagnostic alert 2890
category. Table 4 provides the alert types for the security alert category. Table 5 provides the 2891
alert types for the device diagnostic alert category. Table 6 provides the alert types for the 2892
process alert category. 2893

 – 114 – 62734/2CDV © IEC(E)

Table 3 – Alert types for communication diagnostic category 2894

Alert
type

Alert category: Communication diagnostic

ARMO ASLMO DLMO NLMO TLMO DMO

0 Alarm_Recove
ry_Start;

see Table 8

Malformed
APDUCommu
nicationAlert;
see 12.19.5

DL_Connectivi
ty; see 9.6.1

NL Dropped
PDU; see

10.4.3

IllegalUseOf
Port; see
11.6.2.5.4

Device_Power
Status
Check;

see 6.2.8.1.2

1 Alarm_
Recovery_End
; see Table 8

— Neighbor
Discovery;
see 9.6.2

— TPDUonUnreg
isteredPort;

see 11.6.2.5.4

Device_
Restart;

see 6.2.8.1.2

2 — — — — TPDUoutOdS
ecurityPolicies

; see
11.6.2.5.4

—

 2895
Table 4 – Alert types for security alert category 2896

Alert
type

Alert category: Security

ARMO DSMO DPO

0 Alarm_Recovery_Start;
see Table 8

Security_MPDU_Fail_Rate_Exceeded;
see 7.11.4

Not_On_Whitelist_Alert;
see Table 374

1 Alarm_Recovery_End;
see Table 8

Security_TPDU_Fail_Rate_Exceeded;
see 7.11.4

Inadequate_Join_Capability_Alert;
see Table 374

2 — Security_Key_Update_Fail_Rate_Exceeded;
see 7.11.4

—

 2897
Table 5 – Alert types for device diagnostic alert category 2898

Alert type Alert category: Device diagnostic

ARMO

0 Alarm_Recovery_Start; see Table 8

1 Alarm_Recovery_End; see Table 8

 2899
Table 6 – Alert types for process alert category 2900

Alert
type

Alert category: Process

ARMO AI AO BI BO

0 Alarm_Recovery_Start;
see Table 8

See 12.19.7 See 12.19.7 See 12.19.7 See 12.19.7

1 Alarm_Recovery_End;
see Table 8

— — — —

 2901
6.2.7.2.3 Alert master 2902

Alerts shall be sent to alert-receiving objects. Alert-receiving objects are defined in 12.15.2.3. 2903
Each alert category may have a different alert-receiving object residing in a different device. 2904
Devices that receive these alerts are known as alert masters. 2905

DMAP access is often restricted to the SMAP present in the system manager. In an exception 2906
to this general principle, alert masters are allowed to access the ARMO object present in the 2907
DMAP. DMAP access by alert masters shall be limited to the ARMO, unless the alert master 2908
uses the DMAP-SMAP session established when the device joined the network. The alert 2909
masters to which the device is configured to send alerts are listed in Table 7. 2910

62734/2CDV © IEC(E) – 115 –

6.2.7.2.4 Alert queue 2911

Alerts belonging to each category are assumed to be placed into an internal queue provided 2912
per-category in the device. Both types of alerts, events (stateless) and alarms (stateful) will 2913
be placed in the same queue, filtered by category. The queue is necessary to provide a 2914
guaranteed delivery of alerts to the alert master. Every alert to be reported to the alert master 2915
is placed into this reporting queue. 2916

The size of the queue should be big enough to accommodate all events as well as all possible 2917
alarm conditions simultaneously in order to support alarm recovery without losing any alarms. 2918

Although placed in the same queue, events and alarms will be prioritized differently. The 2919
device shall report an event with higher priority before an event with lower priority. For 2920
alarms, the queue is emptied sequentially; the oldest alarm is reported first. When the queue 2921
is full and a new alarm is submitted, the oldest alarm is dropped from the queue regardless of 2922
its reporting state. 2923

6.2.7.2.5 Alert state models 2924

The state tables and transitions for alarms and events are given in 12.9 and 12.10. 2925

6.2.7.2.6 Alarm recovery 2926

It is often useful to be able to recover all alarms currently active within a device. The need for 2927
alarm recovery arises whenever a connection to device is lost for a period of time or 2928
whenever an alert master commands an alarm recovery. 2929

Alarm recovery consists of the following set of activities: 2930

• The alert master commands an alarm recovery by using the Alarm_Recovery method of 2931
the ARMO. This method is described in Table 9. 2932

• The ARMO sends a recovery start alert to the alert master, which indicates that the ARMO 2933
has received a command to recover alarms and that active alarms will follow. 2934

NOTE The process for re-sending these active alarms within a device is not specified. 2935

• The ARMO sends a recovery end alert to the alert master. 2936

The ARMO is responsible for generating alarm recovery start and end alerts and for 2937
coordinating the alarm recovery process with the application objects residing within the 2938
device. 2939

6.2.7.2.7 Alert reporting management object attributes, alerts and methods 2940

The attributes of the ARMO are defined in Table 7 – ARMO attributes 2941

 2942

 – 116 – 62734/2CDV © IEC(E)

Table 7 – ARMO attributes 2943

Standard object type name: Alert reporting management object (ARMO)

Standard object type identifier: 126

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Alert_Master_Device_
Diagnostics

1 Alert master for alerts
that belong to the
device diagnostics
category

Type: Alert
communication
endpoint

Typically set to a
gateway for the
device’s
information, but
can be changed to
any other
standard-compliant
device with a valid
IPv6Address (1)

Classification:
Static

Accessibility:
Read/write

Valid range:
See 12.16.3.5

Confirmation_Timeout_
Device_Diagnostics

2 Timeout waiting for
acknowledgment of a
device diagnostic alarm
that was sent to the
alert master

Type: Integer16 Timeout
independent of
proximity to alert
master. A value of
N > 0 specifies a
duration of N s,
while N < 0
specifies a
duration of -1/N s.
N = 0 is not
permitted (2)

Classification:
Static

Accessibility:
Read/write

Default value: 10

Alerts_Disable_Device_
Diagnostics

3 Command to disable /
enable all device
diagnostic alerts

Type: Boolean8 FALSE = enable,
TRUE = disable

Classification:
Static

Accessibility:
Read/write

Default value:
FALSE

Alert_Master_Comm_
Diagnostics

4 Alert master for alerts
that belong to the
communication
diagnostics category

Type: Alert
communication
endpoint

Typically set to be
the system
manager for the
device, but can be
changed to any
other standard-
compliant device
with a valid
IPv6Address; the
device shall set
this to be its
system manager
after it joins the
network; see
6.3.7.2

Classification:
Static

Accessibility:
Read/write

Valid range:
See 12.16.3.5

Confirmation_Timeout_
Comm_Diagnostics

5 Timeout waiting for
acknowledgment of a
communication
diagnostic alarm that
was sent to the alert
master

Same as
attribute 2

Same as attribute
2

Alerts_Disable_Comm_
Diagnostics

6 Command to disable /
enable all
communication
diagnostic alerts

Type: Boolean8 FALSE = enable,
TRUE = disable

Classification:
Static

Accessibility:
Read/write

Default value:
FALSE

 2944

62734/2CDV © IEC(E) – 117 –

Table 7 (continued)

Standard object type name: Alert reporting management object (ARMO)

Standard object type identifier: 126

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Alert_Master_Security 7 Alert master for alerts
that belong to the
security category

Type: Alert
communication
endpoint

Typically set to be
the system/security
manager for the
device, but can be
changed to any
other standard-
compliant device
with a valid
IPv6Address. The
device shall set
this to be its
security manager
after it joins the
network; see
6.3.7.2

Classification:
Static

Accessibility:
Read/write

Valid range:
See 12.16.3.5

Confirmation_Timeout_Security 8 Timeout waiting for
acknowledgment of a
security alarm that was
sent to the alert master

Same as
attribute 2

Same as attribute
2

Alerts_Disable_Security 9 Command to disable /
enable all security
alerts

Type: Boolean8 FALSE = enable,
TRUE = disable

Classification:
Static

Accessibility:
Read/write

Default value:
FALSE

Alert_Master_Process 10 Alert master for alerts
that belong to the
process category

Type: Alert
communication
endpoint

Typically set to a
gateway for the
device’s
information, but
can be changed to
any other
standard-compliant
device with a valid
IPv6Address 1)

Classification:
Static

Accessibility:
Read/write

Valid range:
See 12.16.3.5

Confirmation_Timeout_Process 11 Timeout waiting for
acknowledgment of a
process alarm that was
sent to the alert master

Same as
attribute 2

Same as attribute
2

Alerts_Disable_Process 12 Command to disable /
enable all process
alerts

Type: Boolean8 FALSE = enable,
TRUE = disable

Classification:
Static

Accessibility:
Read/write

Default value:
FALSE

 – 118 – 62734/2CDV © IEC(E)

Table 7 (continued)

Standard object type name: Alert reporting management object (ARMO)

Standard object type identifier: 126

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Comm_Diagnostics_Alarm_
Recovery_AlertDescriptor

13 Used to change the
priority of alarm
recovery start and end
events (described in
Table 8) that belong to
the comm. diagnostics
category; these events
can also be turned on
or turned off

Type: Alert report
descriptor

—

Classification:
Static

Accessibility:
Read/write

Default value:
[FALSE, 3]

Valid range:
See 12.16.3.7

Security_Alarm_Recovery_
AlertDescriptor

14 Used to change the
priority of alarm
recovery start and end
events (described in
Table 8) that belong to
the security category;
these events can also
be turned on or turned
off

Type: Alert report
descriptor

—

Classification:
Static

Accessibility:
Read/write

Default value:
[FALSE, 3]

Valid range: See
12.16.3.7

Device_Diagnostics_Alarm_
Recovery_AlertDescriptor

15 Used to change the
priority of alarm
recovery start and end
events (described in
Table 8) that belong to
the device diagnostics
category; these events
can also be turned on
or turned off

Type: Alert report
descriptor

—

Classification:
Static

Accessibility:
Read/write

Default value:
[FALSE, 3]

Valid range:
See 12.16.3.7

Process_Alarm_Recovery_
AlertDescriptor

16 Used to change the
priority of alarm
recovery start and end
events (described in
Table 8) that belong to
the process category;
these events can also
be turned on or turned
off

Type: Alert report
descriptor

—

Classification:
Static

Accessibility:
Read/write

Default value:
[FALSE, 3]

Valid range:
See 12.16.3.7

Reserved for future editions of
this standard

17..63 — — —

NOTE 1 This information is expected to be configured by the host application after the device joins the
network.

NOTE 2 All alarms require acknowledgement.

 2945
The alerts of the ARMO are defined in Table 8. 2946

62734/2CDV © IEC(E) – 119 –

Table 8 – ARMO alerts 2947

Standard object type name(s): Alert reporting management object (ARMO)

Standard object type identifier: 126

Description of the alert: Alarm recovery begin and end events for alarms that belong to all categories

Alert class
(Enumerated:

alarm or
event)

Alert
category

(Enumerated:
device

diagnostic,
comm.

diagnostic,
security, or

process)

Alert type
(Enumerated: based

on alert category)

Alert priority
(Enumerated:
urgent, high,

med, low,
journal)

Description of value included
with alert

0 = Event 1 = Comm.
diagnostics

0 =
Alarm_Recovery_Start

3 = Low Generated by ARMO for the
comm. diagnostics alert master
indicating that the alarm recovery
command has been received; all
outstanding comm. diagnostic
alarms are reported after this
event is raised

0 = Event 1 = Comm.
diagnostics

1 =
Alarm_Recovery_End

3 = Low Generated by ARMO for the
comm. diagnostics alert master
indicating that the alarm recovery
process has ended

0 = Event 2 = Security 0 =
Alarm_Recovery_Start

3 = Low Generated by ARMO for the
security alert master indicating
that the alarm recovery command
has been received; all outstanding
security alarms are reported after
this event is raised

0 = Event 2 = Security 1 =
Alarm_Recovery_End

3 = Low Generated by ARMO for the
security alert master indicating
that the alarm recovery process
has ended

0 = Event 0 = Device
diagnostics

0 =
Alarm_Recovery_Start

3 = Low Generated by ARMO for the
device diagnostics alert master
indicating that the alarm recovery
command has been received; all
outstanding device diagnostic
alarms are reported after this
event is raised

0 = Event 0 = Device
diagnostics

1 =
Alarm_Recovery_End

3 = Low Generated by ARMO for the
device diagnostics alert master
indicating that the alarm recovery
process has ended

0 = Event 3 = Process 0 =
Alarm_Recovery_Start

3 = Low Generated by ARMO for the
process alert master indicating
that the alarm recovery command
has been received; all outstanding
process alarms are reported after
this event is raised

0 = Event 3 = Process 1 =
Alarm_Recovery_End

3 = Low Generated by ARMO for the
process alert master indicating
that the alarm recovery process
has ended

 2948
The method of the ARMO used to recover alarms of the different categories shall be as 2949
defined in Table 9. 2950

 – 120 – 62734/2CDV © IEC(E)

Table 9 – Alarm_Recovery method 2951

Standard object type name(s): Alert reporting management object (ARMO)

Standard object type identifier: 126

Method name Method ID Method description

Alarm_Recovery 1 Method to recover alarms that belong to the category mentioned in the input
argument

Input arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Alert_Category Data type: Unsigned8 Named values:
0: device diagnostics
1: comm. diagnostics
2: security
3: process

Output arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

— — — —

 2952
6.2.7.3 Upload/download object 2953

The attributes, methods and state machines of the UDO in the DMAP shall be as per the 2954
definition given in 12.15.2.4. The object identifier of the UDO in the DMAP shall be 8. 2955

An upload/download object (UDO) is used for uploading or downloading large blocks of 2956
information to/from a device. The UDO may be used to support downloading a new version of 2957
communications firmware or data. The UDO maintains revision control information. The UDO 2958
is described in 12.15.2.4. 2959

The firmware upgrade process used by the system manager for over-the-air firmware 2960
upgrades is described in 6.3.6. The methods and attributes of the upload/download object in 2961
the DMAP of the device can be used for sending firmware updates to the device. 2962

The firmware upgrade process may include a cut-over mechanism that specifies a cut-over 2963
time (after the update is delivered), at which point devices begin using the new firmware. The 2964
CutoverTime attribute in the UDO shall be used to indicate this cut-over time. The cut-over 2965
time uses the shared sense of time configured by the system manager. 2966

Support is provided for vendor-specific, device model-specific, and device instance-specific 2967
updates. Before cut-over, the upload/download object of the device may perform safety 2968
checks on a received update to assure that an update is appropriate for a specific device 2969
type. As all the communication takes place between application objects, such an update is 2970
protected by the end to end TL security mechanism. In addition, the firmware update may use 2971
security mechanisms to authenticate the update. As part of the firmware upgrade process, the 2972
upload/download object of the device may be provided with the appropriate standardized 2973
labeling, versioning, and security information for these verifications by the host update 2974
application. These verifications may be vendor-specific and are not specified by this standard. 2975

NOTE The UDO in the DMAP to update firmware is described here. Details about general upload/download 2976
objects that are availble for use by general application processes are given in 12.15.2.4. 2977

6.2.7.4 Layer management objects 2978

The set of objects within the DMAP shall include objects representing access to each of the 2979
layer management SAPs. These objects include: 2980

62734/2CDV © IEC(E) – 121 –

• The application sublayer management object (ASLMO), which provides access to the 2981
ASMSAP. 2982

• The TL management object (TLMO), which provides access to the TMSAP. 2983

• The NL management object (NLMO), which provides access to the NMSAP. 2984

• The data-link management object (DLMO), which provides access to the DMSAP. 2985

The services, defined by the layer SAP definitions, are reflected in the features of the 2986
management objects such that, effectively, the services made available at the management 2987
SAPs become remotely accessible using secure standard communications mechanisms. 2988
Generically, the management SAPs provide for reading and writing attributes, invoking 2989
methods, and reporting events. The various layer specifications specify the exact features 2990
that are available on each of these SAPs. In effect, these specifications define the layer 2991
management objects. See 6.2.8.2 for more details on the layer management objects. 2992

6.2.7.5 Device security management object 2993

The DMAP shall include a device security management object (DSMO) that provides 2994
appropriately limited access to device security management functions. The DSMO manages 2995
security key material and cryptographic operations. The details of this object are provided in 2996
7.11. 2997

6.2.7.6 Device provisioning object 2998

The DMAP shall include a device provisioning object (DPO) that is accessed during the 2999
provisioning process of the device. More details about the attributes, methods and alerts of 3000
the DPO are provided in 13.9. 3001

6.2.7.7 Health reports concentrator object 3002

The DMAP shall include a health reports concentrator object (HRCO) that can be configured 3003
by the system manager to enable periodic publication of device health reports. The device 3004
health reports may consist of periodic publication of one or more attributes from the 3005
management objects in the DMAP. 3006

The attributes of the HRCO are as per the definition of the concentrator object given in 3007
12.15.2.5. The object identifier of the HRCO in the DMAP shall be 10. The 3008
CommunicationEndPoint and Array of ObjectAttributeIndexAndSize attributes of the HRCO 3009
are used by the system manager to set up periodic publications of health reports from the 3010
device. The system manager may choose to include any attribute from any management 3011
object in such health reports which are used for system performance monitoring. System 3012
performance monitoring is described in 6.3.7. 3013

 Functions of device management and layer management 6.2.83014

6.2.8.1 Device management functions 3015

6.2.8.1.1 General 3016

Device management capabilities are provided primarily via access to DMO attributes and 3017
invocation of methods. The DMO contains critical attributes of device-wide scope that shall be 3018
available in all devices. Product implementers may extend the list of attributes beyond the 3019
required attributes described below. 3020

Some attributes available via the DMO may also be available as an attribute of a particular 3021
layer management object. In that case, change in the value of any such attribute shall be 3022
reflected in the corresponding attribute. 3023

The DMO shall provide system time information to other management objects; the DMO may 3024
obtain this system time information by interacting with the DL of the device and / or the 3025

 – 122 – 62734/2CDV © IEC(E)

system manager or from another source, such as a GPS receiver within the device. Time-3026
keeping by the DL is described in the 9.1.9. The role of the system manager in maintaining 3027
time across the network is described in 6.3.10. 3028

The establishment, modification and termination of contracts for a device shall be managed 3029
by its DMO. Contracts are described in 6.3.11.2. 3030

The attributes of the DMO are defined in Table 10. 3031

Table 10 – DMO attributes 3032

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

EUI64 1 64-bit unique
identifier of
device

Type: EUI64Address This shall be a global
unique
EUI64Address. This
attribute is a duplicate
of corresponding
attributes in DLMO
and NLMO

Classification: Constant

Accessibility: Read only

Default value:
0x0000 0000 0000 0001

DL16Address 2 16-bit identifier
for device,
unique in its
D-subnet

Type: DL16Address Address unique in
D-subnet of device;
assigned by system
manager.

This attribute is a
duplicate of the
corresponding
attribute in the DLMO
and NLMO.

Configured by the
system manager
during the device join
process.

Classification: Static

Accessibility: Read/write

Default value: 0

Valid range:
0: address unassigned;
1..0x7FFF: unicast
address

IPv6Address 3 IPv6Address
assigned by
system manager

Type: IPv6Address Network address
unique in network of
device and used by
application to identify
devices across the
network.

This attribute is a
duplicate of
corresponding
attributes in DLMO
and NLMO.

Configured by the
system manager
during the device join
process

Classification: Static

Accessibility: Read/write

Default value: 0

Valid range:
0: address unassigned;
other with higher-order
bit reset: unicast
address.

 3033

62734/2CDV © IEC(E) – 123 –

Table 10 (continued)

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Device_Role_Capability 4 Role(s) that the
device is
capable of
playing in the
network; roles
are defined in
5.2.6.2

Type: BitArray16 This attribute shall be
sent to the system
manager during the
device join process;
see 6.3.9.2.

See 5.2.6.2 for
acceptable roles and
their descriptions.

Named indices:
0: I/O;
1: router;
2: backbone router;
3: gateway;
4: system manager;
5: security manager;
6: system time
source;
7: provisioning
device;
8..15: reserved (shall
be 0)

Classification: Constant

Accessibility: Read only

Assigned_Device_Role 5 Role(s) of the
device as
assigned by the
system manager;
roles are defined
in 5.2.6.2

Type: BitArray16 This attribute shall be
written by the system
manager during the
device join process;
see 6.3.9.2.

Refer to 5.2.6.2 for
acceptable roles and
their descriptions.

The assigned role for
a device shall not
exceed its capabilities
as specified in
attribute 4. The bit
array indices are
identical to those of
attribute 4.

Classification: Static

Accessibility: Read/write

Vendor_ID 6 Human-readable
identification of
device vendor

Type: VisibleString16 Assigned by vendor
during device
manufacturing Classification: Constant

Accessibility: Read only

Model_ID 7 Human-readable
identification of
device model

Type: VisibleString16 Assigned by vendor
during device
manufacturing Classification: Constant

Accessibility: Read only

Tag_Name 8 Tag name of
device

Type: VisibleString16 Assigned by user

Classification: Static

Accessibility: Read/write

Serial_Number 9 Serial number of
device

Type: VisibleString16 Assigned by vendor
during device
manufacturing Classification: Constant

Accessibility: Read only

 – 124 – 62734/2CDV © IEC(E)

Table 10 (continued)

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Power_Supply_Status 10 Status
information of
power supply of
device

Type: Unsigned8 Named values:
0: line powered;
1: battery powered,
greater than 75%
remaining capacity;
2: battery powered,
between 25% and
75% remaining
capacity;
3: battery powered,
less than 25%
remaining capacity

Classification: Dynamic

Accessibility: Read/write

Device_Power_Status_
Check_AlertDescriptor

11 Used to change
the priority of
Device_Power_S
tatus_Check
alert (described
in Table 11); this
alert can also be
turned on or
turned off

Type: Alert report
descriptor

—

Classification: Static

Accessibility: Read/write

Default value: [FALSE, 8]

DMAP_State 12 Status of DMAP Type: Unsigned8 DMAP state diagram
is same as UAP state
diagram given in
12.15.2.2.3.

Named values:
0: inactive;
1: active;
2: failed

Classification: Dynamic

Accessibility: Read only

Default value:
1: active

62734/2CDV © IEC(E) – 125 –

Table 10 (continued)

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Join_Command 13 Command
informing device
to join the
system, restart
itself and re-join,
or reset to
factory defaults

Type: Unsigned8 The use of this
attribute is described
in 6.3.9.

The value 0: none
shall not be indicated
in a write request.

Only the provisioning
device is expected to
be able to issue the
Join_Command with
value 1 = join / start,
since the device has
not yet joined the
network and so is not
accessible by any
other device.

WarmRestart shall
preserve static and
constant attributes
data including
contracts and T-keys.

RestartAsProvisioned
corresponds to the
provisioned state of
the device in which
the device only
retains the
information that is
received during its
provisioning step.

Reset to factory
defaults corresponds
to the unconfigured
device phase in
Figure 5.

Named values:
 0: none;
 1: join and start;
 2: warm restart;
 3: restart as
provisioned;
 4: reset to factory
defaults

Classification: Static

Accessibility: Read/write

Default value:
0: none

Static_Revision_Level 14 Revision level of
the static data
associated with
all management
objects

Type: Unsigned32 Revision level is
incremented each
time a static attribute
value in any
management object is
changed; value rolls
over when limit is
reached; value resets
whenever the device
is reset to factory
defaults
(Join_Command
value of 4: reset to
factory defaults).

Classification: Dynamic

Accessibility: Read only

Default value:
0: none

 – 126 – 62734/2CDV © IEC(E)

Table 10 (continued)

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Restart_Count 15 Number of times
device restarted

Type: Unsigned16 Device restart can be
due to battery
replacement, warm
restart command,
firmware download,
link failure; value rolls
over if max value is
reached; value resets
to 0 when device is
reset to factory
defaults.

Classification: Static

Accessibility: Read only

Default value: 0

Uptime 16 Low accuracy
counter for
counting
seconds since
last device
restart

Type: Unsigned32 Units in seconds;
reset to 0 if device
restarts Classification: Dynamic

Accessibility: Read only

Default value: 0

Device_Memory_Total 17 Total memory of
device
expressed in
octets

Type: Unsigned32 Units in octets

Classification: Constant

Accessibility: Read only

Device_Memory_Used 18 Memory
currently used in
device
expressed in
octets

Type: Unsigned32 Units in octets

Classification: Dynamic

Accessibility: Read only

TAI_Time 19 Current TAI time Type: TAINetworkTime Value is obtained
either from DL (if
device is not system
time source) or from
backbone / external
source (if device is
system time source or
is on the backbone
and does not have a
DL).

Classification: Dynamic

Accessibility: Read only

Comm_SW_Major_Version 20 Major version of
communications
software
currently being
used in the
device

Type: Unsigned8 8-bit communications
software major
version number,
assigned by this
standard, equals 0.

Classification: Constant

Accessibility: Read only

Default value: 0

Comm_SW_Minor_Version 21 Minor version of
communications
software
currently being
used in the
device

Type: Unsigned8 8-bit communications
software minor
version number
assigned by this
standard, equals 1.

Classification: Constant

Accessibility: Read only

Default value: 1

Software_Revision_
Information

22 Revision
information
about
communications
software for
particular major
and minor
version numbers

Type: VisibleString16 Revision information
assigned by vendor

Classification: Constant

Accessibility: Read only

System_Manager_
IPv6Address

23 Network address
of system
manager

Type: IPv6Address This information shall
be provided to device
either during
provisioning process
or during join process

Classification: Static

Accessibility: Read/write

Default value: 0

62734/2CDV © IEC(E) – 127 –

Table 10 (continued)

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

System_Manager_
EUI64Address

24 EUI64Address of
system manager

Type: EUI64Address This information shall
be provided to device
either during
provisioning process
or during join process

Classification: Static

Accessibility: Read/write

Default value: 0

System_Manager_
DL16Address

25 DL16Address of
system manager
in D-subnet of
device

Type: DL16Address This attribute shall be
configured by the
system manager
during the device join
process.

Classification: Static

Accessibility: Read/write

Default value: 0

Contracts_Table 26 Table that
includes
information
about all existing
contracts of the
device

Type: Array of
Contract_Data

Updated when a
corresponding
contract gets
established, modified,
renewed or
terminated; see
6.3.11.2 for more
details about
contracts and about
data type
Contract_Data. A new
entry in the
Contracts_Table shall
be created each time
a contract response
associated with the
successful creation of
a new contract is
received from the
system manager. For
additional details see
6.3.11

Classification: Static

Accessibility: Read/write

Contract_Request_
Timeout

27 Timeout for DMO
before the
contract request
can be retried

Type: Unsigned16 System manager sets
this timeout value
after the device joins
the network.
Unit: s

Classification: Static

Accessibility: Read/write

Default value: 30 s

Max_ClientServer_Retries 28 The maximum
number of client
request retries
DMAP shall send
in order to have
a successful
client/server
communication

Type: Unsigned8 The number of retries
sent for a particular
message may vary by
message based on
application process
determination of the
importance of the
message.

For example, some
messages may not be
retried at all, and
others may be retried
the maximum number
of times

Classification: Static

Accessibility: Read/write

Default value: 3

Valid range: 0..8

Max_Retry_Timeout_
Interval

29 The maximum
timeout interval
for a client
request before it
is sent again

Type: Unsigned16 System manager sets
this timeout value
after the device joins
the network.
Unit: s

Classification: Static

Accessibility: Read/write

Default value: 30 s

 – 128 – 62734/2CDV © IEC(E)

Table 10 (continued)

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

DMAP_Objects_Count 30 Number of
management
objects in DMAP
including this
DMO

Type: Unsigned8 Total count of the
management objects
such as DLMO,
NLMO, etc in the
DMAP of this device;
all application
processes in the
device shall include
an attribute with such
information

Classification: Static

Accessibility: Read only

Default value: 1

Valid range: > 0

DMAP_Objects_List 31 List of all the
management
objects in the
DMAP

Type: Array of
ObjectIDandType

List to identify all the
management objects
that are available in
the DMAP; all
application processes
in the device shall
include an attribute
with such information.
See 12.16.3.10 for
details about this data
type

Classification: Static

Accessibility: Read only

Metadata_Contracts_Table 32 Metadata (count
and capacity) of
the
Contracts_Table
attribute

Type: Metadata_attribute Metadata containing a
count of the number
of entries in the table
and capacity (the
total number of rows
allowed) for the table;
see 6.2.6.3 for details
about this data type

Non_Volatile_Memory_
Capability

33 Indicates if
device is
capable of
maintaining all
DMAP
information that
falls under the
Static
classification in
non-volatile
memory over a
power-cycle or
not

Type: Boolean8 See 6.3.9.4.2 for
more information

Classification: Constant

Accessibility: Read only

Warm_Restart_Attempts_
Timeout

34 The timeout after
which a device
that is trying to
re-join the
network through
a warmRestart
converts to a
restartAsProvisio
ned command

Type: Unsigned16 Units in minutes;

see 6.3.9.4.2 for more
information

Classification: Static

Accessibility: Read/write

Default value: 60

62734/2CDV © IEC(E) – 129 –

Table 10 (continued)

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Device_Restart_
AlertDescriptor

35 Used to change
the priority of
Device_Restart
alert (described
in Table 11); this
alert can also be
turned on or
turned off

Type: Alert report
descriptor

—

Classification: Static

Accessibility: Read/write

Default value: [FALSE, 8]

Proxy_Join_Request_Rate 36 Used to control
the maximum
rate at which a
proxy router will
accommodate
join requests

Type: Integer8 Minimum required
interval between join
requests that the
proxy router is
permitted to accept. A
value of N > 0
specifies a period of
N s, while N < 0
specifies a period
of -1/N s. N = 0
disables the attribute.
This parameter is
used to reduce the
impact of denial of
service (DoS) attacks.

Classification: Static

Accessibility: Read/write

Default value: 6

Valid range: -4..127

Reserved for future
editions of this standard

37..63 — — —

 3034
6.2.8.1.2 Device management object alerts 3035

The DMO of the device shall send an alert to indicate a change in its power status. The DMO 3036
of the device shall send an alert whenever it goes through a device restart. Device restart is 3037
described in 6.3.9.4.2. 3038

The alerts of the DMO are defined in Table 11. 3039

 – 130 – 62734/2CDV © IEC(E)

Table 11 – DMO alerts 3040

Standard object type name(s): Device management object (DMO)

Standard object type identifier: 127

Description of the alert: Communication diagnostic alerts to indicate that the device power supply status
has changed and to indicate that the device has restarted

Alert class
(Enumerated:

alarm or event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type
(Enumerated:
based on alert

category)

Alert priority
(Enumerated:
urgent, high,

med, low,
journal)

Value data type Description of
value

included with
alert

0 = Event 1 = Comm.
diagnostics

0 =
Device_Power_
Status_Check

8 = Medium Type: Unsigned8 The current
value of the
Power_Supply_
Status attribute
in Table 10 is
included in this
alert

 0 = Event 1 = Comm.
diagnostics

1 =
Device_Restart

8 = Medium Type: N/A Only a device
that has DMO
attribute
Non_Volatile_M
emory_Capabilit
y = 1 can send
this alert to
indicate that it
has gone
through a warm
restart

 3041
6.2.8.1.3 Device management object methods 3042

The methods of the DMO are described in 6.3.9.2.2, 6.3.11.2.10.5, and 6.3.11.2.11.3. 3043

6.2.8.2 Layer management 3044

6.2.8.2.1 General 3045

Each communication layer within the protocol suite has a self-contained layer management 3046
functionality. Each layer management function provides a management SAP. Device 3047
management of layers is accomplished via access to the management SAPs on each of the 3048
layers, as shown in Figure 25. Management of the layers within a device may be done locally 3049
by a functionality that resides within the DMO, since the DMO has access to the management 3050
SAPs. In addition, as discussed in 6.2.4, layer management may be accomplished remotely 3051
by a system manager. 3052

The formal definition of each of the layer management objects is included below. The 3053
definition of the layer management objects within the DMAP corresponds directly with the 3054
layer management SAP definition. However, there may be a need to restrict remote access to 3055
specific features of a given layer management SAP. Thus, some attributes or methods, while 3056
accessible to the local DMO, should not be remotely accessible. Such restrictions, whenever 3057
necessary, are specified in the layer specifications. The operations described in Annex J can 3058
be used to access attributes in these layer management objects. 3059

6.2.8.2.2 DL management object 3060

6.2.8.2.2.1 General 3061

In the architecture defined by this standard, all DL, MAC, and PhL layer management services 3062
are provided via a unified data-link management service access point (DMSAP). There are no 3063

62734/2CDV © IEC(E) – 131 –

directly accessible management SAPs for the physical layer and MAC layer, because those 3064
layers sometimes require management actions to be time-synchronous with data flow. Thus te 3065
DLMO provides the attributes of those layers that are accessible remotely. 3066

6.2.8.2.2.2 Physical layer management 3067

Physical layer management entities are manipulated indirectly via the DMSAP. DL attributes 3068
relate to a subset of those defined in IEEE 802.15.4, as described in 9.1.5. 3069

6.2.8.2.2.3 Media access control sublayer management 3070

MAC sublayer management entities are manipulated indirectly via the DMSAP. DL attributes 3071
relate to a subset of those defined in IEEE 802.15.4, as described in 9.1.5. 3072

6.2.8.2.2.4 DL management 3073

DL management attributes and methods are available via the DMSAP. Attributes, methods, 3074
and alerts of the DLMO are defined in 9.4 and 9.6. 3075

6.2.8.2.2.5 NL management 3076

NL management attributes and methods are available via the NMSAP. Attributes, methods 3077
and alerts of the NLMO are defined in 10.4. 3078

6.2.8.2.2.6 TL management 3079

TL management attributes and methods are available via the TMSAP. Attributes, methods, 3080
and alerts of the TLMO are defined in 11.6. 3081

6.2.8.2.2.7 Security management 3082

Device security management attributes and methods are available via the DMSAP and 3083
TMSAP. Attributes, methods and alerts of the DSMO are defined in 7.11. 3084

6.2.8.2.2.8 Application sublayer management 3085

Application sublayer management attributes and methods are available via the ASMSAP. 3086
Attributes, methods, and alerts of the ASLMO are defined in 12.19. 3087

 System manager 6.33088

 General 6.3.13089

The functions of the system manager include security management, address allocation, 3090
software updating, system performance monitoring, device management, system time 3091
services, and communication configuration including contract services, and redundancy 3092
management. 3093

The system manager shall use ASL services to remotely access management objects in the 3094
DMAPs of devices compliant with this standard. 3095

System manager is a role and is not tied into a specific fixed physical address. 3096

 System management architecture 6.3.23097

Conceptually, the system manager can be viewed as an application process running on any 3098
device in the network. Such a device shall be capable of supporting the system manager role. 3099
The SMAP is accessible only on such a device. The SMAP shall use the application sublayer 3100
SAP ASLDE-1 SAP for communicating with the devices. This application sublayer SAP shall 3101
correspond to TL SAP TDSAP-1 which shall correspond to port number 0xF0B1. 3102

 – 132 – 62734/2CDV © IEC(E)

Figure 26 shows the system manager that resides in a field device compliant with this 3103
standard. 3104

Data link layer

Application sub-layer ASMSAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-1

PMSAPPDSAP

NMSAP

NDSAP
TMSAP

TDSAP-0TDSAP-n

MDSAP
DMSAP

DDSAP

MMSAP

Device manager (DMAP)

ASLDE-0 SAP

System manager (SMAP)

SCODSOSTSO PSMO UDODMSO SMO ARO DPSO

ASLDE-1 SAP

 3105

Figure 26 – System manager architecture concept 3106

As shown in Figure 26, TDSAP-1 shall be used to access the management objects in the 3107
SMAP. The definition of these system management objects is necessary to provide remote 3108
access to these functions for the devices in the network that are compliant with this standard. 3109

 Standard system management object types 6.3.33110

Table 12 includes a list of system management object types that are specified in this 3111
standard. 3112

62734/2CDV © IEC(E) – 133 –

Table 12 – System management object types 3113

Standard object
type name

Standard
object type

ID

Standard
object

identifier

Object description

System time service object
(STSO)

100 1 This object facilitates the management of system-
wide time information; see 6.3.10

Directory service object
(DSO)

101 2 This object facilitates the management of
addresses for all existing devices in the network;
see 6.3.5

System communication
configuration object (SCO)

102 3 This object facilitates the communication
configuration of the system including contract
establishment, modification and termination; see
6.3.11

Device management
service object (DMSO)

103 4 This object facilitates device joining, device
leaving, and device communication configuration;
see 6.3.9

System monitoring object
(SMO)

104 5 This object facilitates the monitoring of system
performance; see 6.3.7

Proxy security
management object
(PSMO)

105 6 This object acts as a proxy for the security
manager; see 6.3.4

Upload/download object
(UDO)

3 7 This object facilitates downloading firmware/data
to devices and uploading data from devices; see
6.3.6

Alert-receiving object
(ARO)

2 8 This object receives all the alerts destined for the
system manager; see 6.3.7

Device provisioning object
(DPO)

106 9 This object facilitates device provisioning; see
6.3.8

Reserved for future
editions of this standard

107..113 — —

 3114
Devices that require system management services communicate with the appropriate objects 3115
given above. 3116

 Security management 6.3.43117

The system manager interfaces with the security manager to generate keys and authenticate 3118
devices. The security manager is functionally separated from the system manager so that the 3119
security policies can be common across the networks of the administrator and other types of 3120
networks. Placing the security manager functionally behind the system manager also hides 3121
from the devices the various protocols, such as Kerberos, that may be used by a security 3122
management function. More details are provided in Clause 7. 3123

The interface between the system manager and the security manager is not specified in this 3124
standard. Conceptually, the system manager can be viewed as including a proxy security 3125
management object (PSMO). This PSMO forwards all security related messages between the 3126
security manager and the devices in the network that are compliant with this standard. This 3127
PSMO can be used by the security manager to access information from other system 3128
management objects, such as current TAI time, if necessary. The security manager does not 3129
have a valid address as defined by this standard; thus, devices that wish to communicate with 3130
the security manager can only do so by communicating with the PSMO. 3131

The attributes, methods and alerts of the PSMO are defined in Clause 7. 3132

 – 134 – 62734/2CDV © IEC(E)

 Addresses and address allocation 6.3.53133

6.3.5.1 General 3134

The system manager is responsible for assigning addresses to devices when they join the 3135
network. 3136

6.3.5.2 Address types 3137

Every device compliant with this standard shall have one identifier and two addresses: 3138

• Each device compliant with this standard shall have an EUI64Address identifier that is 3139
presumed to be globally unique (vendors are expected to ensure global uniqueness of 3140
these identifiers). Failover mechanisms for the gateway, system manager and security 3141
manager roles are usually provided through redundancy. Redundancy for the purposes of 3142
failover may involve EUI64Address identifier duplication for the redundant entities. Such 3143
EUI64Address identifier duplication is outside the scope of this standard. 3144

• Each device compliant with this standard shall be assigned one IPv6Address by the 3145
system manager when it joins the network; this IPv6Address shall be unique across the 3146
network. 3147

• Each device compliant with this standard that is accessible through a D-subnet shall have 3148
a D-subnet-unique DL16Address for its IPv6Address. This DL16Address shall be assigned 3149
by the system manager. The scope of any DL16Address is limited to a particular D-subnet. 3150
The ranges and uses of 16-bit D-addresses are: 3151
– 0x0000: reserved by this standard to indicate that a DL16Address has not been 3152

assigned to the device; 3153
– 0x0001..0x7FFF: reserved by IETF RFC 4944 for 6LoWPAN unicast device 3154

addressing; 3155
– 0x8000..0xBFFF: reserved by IETF RFC 4944 for 6LoWPAN multicast; 3156
– 0xC000..0xCFFF: reserved by this standard for graph IDs; 3157
– 0xD000..0xFFFD: reserved; 3158
– 0xFFFE: reserved by IEEE 802.15.4:2012 for the local PAN coordinator; 3159
– 0xFFFF: reserved by IEEE 802.15.4 for local broadcast. 3160

In this standard, DL16Addressing is always used within a D-subnet, with the exception that 3161
EUI64Address identifiers are used in a limited way during the join process until a joining 3162
device has been received a subnet-local DL16Address from the system manager. The join 3163
process is described in 7.4. 3164

6.3.5.3 Address allocation 3165

The system manager shall allocate the IPv6Address, as well as the D-subnet-unique 3166
DL16Address, to a device when it joins the network. This is described in 7.4. 3167

When a source device that belongs to a particular D-subnet communicates over the backbone 3168
with a destination device that belongs to a different D-subnet, the system manager shall 3169
assign local D-subnet-unique DL16Addresses to both devices in each other’s D-subnets. Such 3170
local DL16Addresses for remote devices (i.e., devices residing in another D-subnet) may be 3171
established by the system manager upon a contract request. (Contracts are described in 3172
6.3.11.2.) 3173

When the source sends a message to the destination, the DL16Address of the destination 3174
shall be used at the NL and DL to construct the NPDU and DPDU. These layers can use the 3175
directory look-up service provided by the system manager to obtain the DL16Address of the 3176
destination, if not already known. This service is described in 6.3.5.4. 3177

62734/2CDV © IEC(E) – 135 –

The backbone routers shall do the address translations between the DL16Address (per 3178
D-subnet) and IPv6Address for a given device. Note that the DL16Address is used only 3179
within the DL. Once a message reaches the backbone, the full IPv6Address shall be used. 3180
Informative examples for such scenarios are given in 10.2.7. 3181

This standard does not specify any mechanisms for how the system manager allocates the 3182
IPv6Addresses and DL16Addresses. 10.2.7 contains examples for Ethernet based routing and 3183
fieldbus based routing. The Ethernet-based routing example describes the use of IPv6-based 3184
IPv6Addresses. The fieldbus routing example describes the use of non-IPv6-based 3185
IPv6Addresses. 3186

Devices shall only have one valid IPv6Address. Multi-homing devices that require multiple 3187
IPv6Addresses are not covered in this standard. 3188

Addressed entities on the backbone, such as system managers and gateways, shall also be 3189
assigned DL16Addresses for use within a D-subnet. Thus, the addresses most used within a 3190
D-subnet will be DL16Addresses. 3191

6.3.5.4 Directory service 3192

The directory service object (DSO) in the system manager provides the necessary attributes 3193
for looking up the address translation between the EUI64Address, the IPv6Address, and the 3194
DL16Address(es) of a given device. D-subnet IDs are also maintained by the DSO, but the 3195
allocation of these D-subnet IDs is not specified in this standard. 3196

The attributes of the DSO are defined in Table 13. 3197

Table 13 – DSO attributes 3198

Standard object type name: Directory service object (DSO)

Standard object type identifier: 101

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Address_Translation_Table 1 Address
translation table
containing
EUI64Address,
IPv6Address,
D-subnet ID(s)
and
DL16Address(es)
of all devices in
the network

Type: Array of
Address_Translation_Row

Structured
attribute used to
look-up address
translations; See
Table 14

Classification: Dynamic

Accessibility: Read only

Reserved for future editions
of this standard

2..63 — — —

 3199
The data structure Address_Translation_Row is defined in Table 14. 3200

 – 136 – 62734/2CDV © IEC(E)

Table 14 – Address_Translation_Row data structure 3201

Standard data type name: Address_Translation_Row

Standard data type code: 402

Element name Element
identifier

Element type

EUI64Address 1 Globally unique EUI64Address of device;

Type: EUI64Address

Classification: Static

Accessibility: Read only

IPv6Address 2 IPv6Address of device assigned by system manager;

Type: IPv6Address

Classification: Static

Accessibility: Read only

DL_Subnet_ID 3 D-subnet in which or from which this device is reachable; a device
may be reachable from multiple D-subnets in which case this element
corresponds to one such D-subnet;

Type: Unsigned16

Classification: Static

Accessibility: Read only

DL16Address 4 DL16Address of device in the D-subnet indicated by the
DL_Subnet_ID element given above;

Type: Unsigned16

Classification: Static

Accessibility: Read only

 3202
Address translation look-up service is provided by the Read_Address_Row method defined in 3203
Table 15. 3204

Table 15 – Read_Address_Row method 3205

Standard object type name: Directory Service object (DSO)

Standard object type identifier: 101

Method name Method
ID

Method description

Read_Address_Row 1 Method to use the address translation look-up service for reading the values
of other addresses / identifier of a device given an index (one of its address
/ identifier)

 Input arguments

Argument
number Argument name

Argument type
(data type and

size)
Argument description

1 Attribute_ID Data type:
Unsigned8

Value = 1
(Address_Translation_Table
attribute of DSO)

62734/2CDV © IEC(E) – 137 –

Standard object type name: Directory Service object (DSO)

Standard object type identifier: 101

2 Index_Info Data type:
Unsigned8

Named indices:
0: only EUI64Address
provided;
1: only IPv6Address is
provided;
2: EUI64Address and
D-subnet ID are provided;
3: IPv6Address and
D-subnet ID are provided;
4: D-subnet ID and
DL16Address are provided.

See Table 16

3 Index_EUI64 Data type:
EUI64Address

Value: EUI64Address of
device for which address
look-up is needed

4 Index_128_Bit_Address Data type:
IPv6Address

Value: IPv6Address of
device for which address
look-up is needed

5 Index_DL_Subnet_ID Data type:
Unsigned16

Value: D-subnet ID of
device for which address
look-up is needed

6 Index_DL_address_16_Bit Data type:
DL16Address

Value: DL16Address of
device for which address
look-up is needed

 Output arguments

Argument
number Argument name Argument type

(data type and size) Argument description

1 Value_Type Data type: Unsigned8 Indicates the type of
information being
provided;

Named values:
0: single row if
D-subnet ID value
provided as input
argument;
1: all rows if D-subnet
ID value not provided
as input argument (i.e.,
all rows for given
EUI64Address or
IPv6Address are
returned).

See Table 17

2 Value_Size Data type: Unsigned8 Number of rows being
returned

3 Data_Value_1 Data type:
Address_Translation_Row

EUI64Address,
IPv6Address, D-subnet
ID, DL16Address of
device

2+n Data_Value_n Data type:
Address_Translation_Row

EUI64Address,
IPv6Address, D-subnet
ID, DL16Address of
device

 3206
Some of the input arguments are not applicable if the Index_Info argument has certain values 3207
and so shall not be included in the request. The usage of input arguments for the 3208
Read_Address_Row method is described in Table 16. 3209

 – 138 – 62734/2CDV © IEC(E)

Table 16 – Input argument usage for Read_Address_Row method 3210

Input argument Not applicable for Index_Info value

Attribute_ID —

Index_Info —

Index_EUI64 1, 3, 4

Index_128_Bit_Address 0, 2, 4

Index_DL_Subnet_ID 0, 1

Index_DL_Address_16_Bit 0, 1, 2, 3

 3211
Some of the output arguments are not applicable if the Value_Type argument has certain 3212
values and so shall not be included in the response. The usage of output arguments for the 3213
Read_Address_Row method is described in Table 17. 3214

Table 17 – Output argument usage for Read_Address_Row method 3215

Output argument Not applicable for Value_Type value

Value_Type —

Value_Size 0

Data_Value_1 —

Data_Value_n 0

 3216
High-side interfaces on the DSO to delete addresses or modify addresses are not specified in 3217
this standard. 3218

6.3.5.5 Multicast DL16Address management 3219

DL16Addresses of the form 0x 100x xxxx xxxx xxxx shall be reserved for multicast, following 3220
the convention set by IETF RFC 4944. 3221

Multicast DL16Address management is not specified in this standard. Additional attributes for 3222
the directory service object may be specified by vendors that support multicast DL16Address 3223
management. 3224

 Firmware upgrade 6.3.63225

The system manager provides support for over-the-air firmware upgrades to devices. The 3226
system manager supports communication protocol suite firmware updates. 3227

The system manager shall provide an interface for accepting the firmware upgrades that need 3228
to be sent to any device in the network. The system manager shall use the UDO in the DMAP 3229
of the device for sending this update to the device. Communication protocol suite firmware 3230
updates shall be performed only through the system manager UDO. This UDO is described in 3231
12.15.2.4. 3232

As the system manager maintains information about all the devices in the network, the host 3233
update application can obtain information about the devices that are in the network from the 3234
system manager. The host update application may use this information to determine which 3235
devices need such firmware upgrades. The gateway may also be used to send firmware 3236
upgrades to the device. If these upgrades are communication protocol suite upgrades, they 3237
must be sent through the system manager UDO. This is described in U.3.2. 3238

The firmware upgrade process shall assure that network operations are maintained across 3239
updates. This process may include a cut-over mechanism that specifies a cut-over time (after 3240

62734/2CDV © IEC(E) – 139 –

the update is delivered), at which point devices shall begin using the new firmware. The cut-3241
over time shall use the shared sense of time configured by the system manager. If the system 3242
manager is sending the firmware upgrade to the device, it may send the cut-over time along 3243
with the download, or it may send the cut-over after the download is complete. 3244

Since firmware upgrades may be vendor-specific, the updates are opaque to the system 3245
manager providing the update service. The system manager accepts updates via unspecified 3246
protocols (e.g., a user interface tool with a DVD reader) and provides updating to selected 3247
devices at specified times based on user or other input. Details of how the host update 3248
application communicates with the system manager, such as what devices should be updated, 3249
what their vendor IDs are, when the devices should be updated, and in what order they should 3250
be updated are not specified by this standard, but such functions are expected to be 3251
supported by the system manager. The system manager may schedule updates to the devices 3252
in such a manner that network downtime is either avoided or minimized. This schedule may 3253
depend on network topology. 3254

Multicasting of firmware upgrades is not specified by this standard. 3255

The UDO in the system manager shall be used if the firmware of the system manager itself 3256
needs to be upgraded. The attributes, methods and state machines of the UDO in the system 3257
manager are as per the definition provided in 12.15.2.4. The object identifier for the UDO in 3258
the SMAP shall be 7. 3259

 System performance monitoring 6.3.73260

6.3.7.1 General 3261

System performance monitoring is done by the system manager in order to collect information 3262
that can be used to take necessary actions for optimizing system performance and for 3263
reacting to changes in the radio environment and device status. Such actions are done 3264
through system communication configuration which is described in 6.3.11. 3265

System performance monitoring is accomplished via polling of device attributes or by 3266
configuring devices to generate alerts that provide event-driven information. 3267

System performance monitoring using periodic publication of health reports from the devices 3268
is supported through the use of the HRCO in the DMAP of each device. HRCO is described in 3269
6.2.7.7 and can be configured by the system manager to periodically report the values of one 3270
or more attributes in the management objects of the device. Before the system manager 3271
configures the HRCO of any particular device to publish health reports, it needs to create a 3272
unique dispersion object in the SMAP to act as the subscriber to the data that will be 3273
published by the HRCO of this particular device. Information about this unique dispersion 3274
object shall be conveyed to the HRCO of this particular device by configuring the 3275
CommunicationEndPoint attribute in the HRCO. The dispersion object is described in 3276
12.15.2.6. 3277

Information about the capabilities of a new device is provided to the system manager during 3278
its join process. This is discussed in 6.3.9. 3279

Devices may be configured by the system manager to generate alerts to provide event-driven 3280
information, for example, when a link stops working or when the battery of a field device has 3281
less than 25% remaining capacity. This is described in 6.3.7.2. 3282

While the device implementing the system manager may have an interface that allows plant 3283
operations and maintenance personnel to observe and control the performance of the network 3284
and devices, this interface is neither mandatory nor is it specified by this standard. 3285

The UDO in the DMAP of a device may be used for downloading large blocks of device 3286
performance data from the device to the system manager. Such data may be vendor-specific, 3287

 – 140 – 62734/2CDV © IEC(E)

device model-specific, or device instance-specific. The UDO in the system manager may be 3288
used to upload such data for further analysis. Such data collection and analysis is not 3289
specified by this standard. 3290

6.3.7.2 System management alerts 3291

The system manager contains an alert-receiving object (ARO) that receives communication 3292
diagnostic alerts and security alerts. Such alerts are described in 6.2.7.2. These alerts may 3293
be used by the system manager to monitor system performance and take suitable action when 3294
necessary. The object identifier for the ARO in the SMAP shall be 8. 3295

After a device joins the network, it shall set the Alert_Master_Comm_Diagnostics and 3296
Alert_Master_Security attributes of the ARMO to point to the system manager. 3297

The attributes of the ARO in the system manager are as per the definition given in 12.15.2.3. 3298
The default value for the ARO.Categories attribute shall be 0110 0000. 3299

The state diagram describing the handling of alert reports by the ARO is given in 12.15.2.3. 3300

6.3.7.3 System monitoring object 3301

The attributes of the SMO are given in Table 18. 3302

Table 18 – Attributes of SMO in system manager 3303

Standard object type name: System monitoring object (SMO)

Standard object type identifier: 104

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Reserved for future editions of this
standard

1..63 — — —

 3304
6.3.7.4 System monitoring configuration 3305

System performance monitoring may have its own dynamic configuration such that monitoring 3306
may be increased when necessary. For example, the list of active alerts may be adjusted 3307
depending on the current state of the network. For network diagnostics, if a failure mode is 3308
suspected, activating specific alerts may provide evidence of that failure. Such configuration 3309
of the system manager is not specified by this standard. 3310

 Device provisioning service 6.3.83311

Before a device joins the network, it requires the appropriate security credentials and 3312
network-specific information. These are provided to the device during the provisioning 3313
process. The provisioning process, the role of the system manager in this process, and the 3314
definition of the device provisioning object (DPO) are described in Clause 13. 3315

 Device management services 6.3.93316

6.3.9.1 General 3317

A device compliant with this standard may go through several phases in its operational 3318
lifetime. These phases are described in 5.2.8. The management of a device through some of 3319
these phases is performed by the system manager. Specifically, the system manager plays a 3320
role in the joining and leaving processes as well as the communication configuration of a 3321
device. 3322

62734/2CDV © IEC(E) – 141 –

6.3.9.2 Join process 3323

6.3.9.2.1 General 3324

A new device shall obtain the necessary provisioning information from the provisioning 3325
device. This is described in Clause 13. The Join_Command attribute in the DMO of a device 3326
shall be used to command the device to join the network. Only the provisioning device can set 3327
the Join_Command attribute to 1, hence explicitly triggering the join process of the device, 3328
given that the device has no connectivity with other entities in the network. The 3329
Join_Command attribute shall be set to 1 by the provisioning device only following a 3330
successful provisioning of the device. Advertising routers shall proxy join requests at the rate 3331
indicated by the DMO attribute Proxy_Join_Request_Rate (attribute 36). This rate ensures 3332
that the network is protected from denial of service attacks attempted via the proxy routers. 3333
For a description of Proxy_Join_Request_Rate, see Table 10. 3334

The system manager controls the process of new devices joining the network. Non-joined 3335
devices that implement a DLE as per this standard listen for advertisement messages from 3336
local routers whose advertisement functions are configured by the system manager. Such an 3337
advertising router shall assist during the join process of a new device by acting as a proxy for 3338
the system manager. This advertising router forwards the join request from the new device to 3339
the system manager and forwards the join response from the system manager to the new 3340
device. A join request from the new device shall be processed by the system manager. The 3341
system manager shall generate a join response after communicating with the security 3342
manager. Advertising routers shall proxy join requests at the rate indicated by the DMO 3343
attribute Proxy_Join_Request_Rate (attribute 36). This rate protects the network from denial 3344
of service attacks attempted by the proxy routers. For a description of this attribute, see Table 3345
10. 3346

The join request from a new device shall include non-security information such as the 3347
EUI64Address and capabilities of the device as well as security information of the device. The 3348
join response from the system manager shall include non-security information such as the 3349
assigned IPv6Address, assigned DL16Address and contract information of the device as well 3350
as security information such as T-key. The security information in the join request and join 3351
response is described in 7.4. Contracts are described in 6.3.11.2. 3352

More details about the join process are described in 7.4. 3353

6.3.9.2.2 Device management object methods for advertising router 3354

The new device shall use the Proxy_System_Manager_Join method and 3355
Proxy_System_Manager_Contract method defined for the DMO of the advertising router to 3356
send its non-security information that is part of the join request and to get its non-security 3357
information that is part of the join response. The non-security information that is part of the 3358
join request is split into the network join request and the contract request. The non-security 3359
information that is part of the join response is split into the network join response and the 3360
contract response. Contracts are described in 6.3.11.2. 3361

The Proxy_System_Manager_Join method is defined in Table 19. The 3362
Proxy_System_Manager_Contract method is defined in Table 20. 3363

The new device shall use the methods defined in 7.4 for the DMO of the advertising router to 3364
send its security information that is part of the join request and to get its security information 3365
that is part of the join response. The use of all these methods by the new device is described 3366
in 7.4. 3367

Access to the DMAP of the device is restricted to the SMAP present in the system manager. 3368
The joining shall be only allowed to access the Proxy_System_Manager_Join and 3369
Proxy_System_Manager_Contract DMO methods during the join process. 3370

 – 142 – 62734/2CDV © IEC(E)

Table 19 – Proxy_System_Manager_Join method 3371

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Method name Method ID Method description

Proxy_Syste
m_Manager
_Join

3 Method to use advertising router as proxy system manager to send network join
request of a new device and get network join response

 Input arguments

Argument
number Argument name

Argument
type

(data type and
size)

Argument description

1 EUI64 EUI64Address DMO attribute EUI64; see Table 10

2 DL_Subnet_ID Unsigned16 D-subnet that the new device is
trying to join, which is also the
D-subnet of the advertising router.

Data value:
0: device is not part of any D-subnet

3 Device_Role_
Capability

Unsigned16 DMO attribute
Device_Role_Capability; see Table
10

4 Size_of_Tag_Name Type:
Unsigned8

Size in octets of the Tag_Name

5 Tag_Name Type:
VisibleString
SIZE(0..16)

DMO attribute Tag_Name; see Table
10

6 Comm_SW_Major
_Version

Type:
Unsigned8

DMO attribute
Comm_SW_Major_Version; see
Table 10

7 Comm_SW_Minor
_Version

Type:
Unsigned8

DMO attribute
Comm_SW_Minor_Version; see
Table 10

8 Size_of_Software_
Revision_Information

Type:
Unsigned8

Size in octets of the Software_
Revision_Information

9 Software_Revision_
Information

Type:
VisibleString
SIZE(0..16)

DMO attribute
Software_Revision_Information; see
Table 10

10 DeviceCapability Type:
OctetString

DLMO attribute DeviceCapability;
see Table 141

62734/2CDV © IEC(E) – 143 –

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Method name Method ID Method description

 Output arguments

Argument
number Argument name

Argument
type

(data type and
size)

Argument description

1 Assigned_Network_
Address_128_Bit

Type:
IPv6Address

This value is written to DMO
attribute Network_Address_128_Bit;
see Table 10

2 Assigned_DL_
Address_16_Bit

Type:
DL16Address

This value is written to DMO
attribute DL_Address_16_Bit; see
Table 10

3 Assigned_Device_Rol
e

Type:
BitArray16

This value is written to DMO
attribute Assigned_Device_Role;
see Table 10

4 System_Manager_
Network_Address_
128_Bit

Type:
IPv6Address

This value is written to DMO
attribute
System_Manager_128_Bit_Address;
see Table 10

5 System_Manager_DL
_
Address_16_Bit

Type:
DL16Address

This value is written to DMO
attribute
System_Manager_DL_Address_16_
Bit; see Table 10

6 System_Manager_
EUI64

Type:
EUI64Address

This value is written to DMO
attribute
System_Manager_EUI64Address;
see Table 10

7 MIC Type:
OctetString4

This value is used for protecting
argument 1 through 6 with Join key.
This MIC value is generated by the
Security Manager. The
Advertisement router shall not
overwrite this value. See 7.4.4.3.2

8 Assigned_Max_TSDU
_Size

Type:
Unsigned16

Indicates the maximum TSDU
supported in octets which can be
converted by the source into max
APDU size by taking into account
the TL, security, AL headers and
TMIC sizes

 3372

 – 144 – 62734/2CDV © IEC(E)

Table 20 – Proxy_System_Manager_Contract method 3373

Standard object type name: DMO (Device management object)

Standard object type identifier: 127

Method name Method
ID

Method description

Proxy_System_
Manager_Contract

4 Method to use advertising router as proxy system manager to send contract
request of a new device and get contract response. Contracts are described
in 6.3.11.2

Input arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

1 EUI64 Type: EUI64Address DMO attribute
EUI64; see Table
10

Output arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

1 Contract_Response Type:
New_Device_Contract_Response
(see Table 31

Contract response
to support future
communication
from new device to
system manager;
contracts are
described in
6.3.11.2

2 MIC Type: OctetString4 This value is used
for protecting
argument1 with
join key. This MIC
value is generated
in Security
Manager.
Advertisement
router shall not
overwrite this value

 3374
6.3.9.2.3 Capabilities of new device 3375

Information about the capabilities of a new device with respect to the device role shall be 3376
provided to the system manager during the join process of the device. This information is 3377
described in Table 19. 3378

6.3.9.3 Device configuration 3379

A device is configured after joining a network. Device configuration includes obtaining 3380
communication resources to support the communication needs of the device and configuring 3381
the protocol stack of the device to use these resources to communication. During this 3382
configuration, the system manager may take into account the capabilities of a device. A 3383
device may be reconfigured as the network changes or as the applications on the device need 3384
to change their services. 3385

Device configuration is usually performed during the establishment of contracts. This is 3386
described in 6.3.11.2. Attributes and methods defined for the management objects of the 3387
DMAP shall be used by the system manager to configure the device. 3388

The system manager does not configure the UAPs on the device. This is done by host 3389
applications on plant networks or by handheld maintenance tools. 3390

62734/2CDV © IEC(E) – 145 –

6.3.9.4 Leave process 3391

6.3.9.4.1 General 3392

The system manager controls the process of a previously joined device leaving the network. 3393
This leave process may be initiated by the device when it intends to leave the network, or it 3394
may be initiated by the system manager. 3395

The leave process includes two scenarios: device restart and device reset to factory defaults. 3396

Device restart occurs when either the device itself or the system manager cause the device to 3397
restart. Some examples that lead to this scenario are battery replacement or rebooting to 3398
apply a new firmware image. A device is reset to its factory default settings if the device is 3399
being returned to its factory default state. Some examples that lead to this scenario are the 3400
device being returned to general stock for future deployment or the device being moved to a 3401
different network. 3402

6.3.9.4.2 Device restart 3403

A device restart process may be initiated by the device itself or by the system manager. There 3404
are two types of restarts: warmRestart and restartAsProvisioned. In both cases, the devices 3405
will immediately initiate the join process following the restart event. An explicit writing of the 3406
Join_Command DMO attribute to 1 is not needed following a warmRestart or a 3407
restartAsProvisioned event. 3408

The Join_Command attribute in the DMO of a device shall be used to command the device to 3409
perform either a warmRestart or restartAsProvisioned. 3410

A device that receives the warmRestart command shall reboot itself. If the 3411
Non_Volatile_Memory_Capability attribute in the DMO is 1, the device shall retain the values 3412
of all constant and static attributes in all application objects present in the DMAP as well as in 3413
the UAPs of the device. All other attributes are reset to their default values. If the 3414
Non_Volatile_Memory_Capability attribute in the DMO is 0, the device shall retain all the 3415
information that was provided to it during the provisioning step before it first joined the 3416
network as well as all the constant and static information present in the UAPs. All other 3417
attributes are reset to their default values and the device goes back to its provisioned state. 3418

A device that receives the restartAsProvisioned command shall reset all constant and static 3419
attributes in all application objects present in the DMAP regardless of the 3420
Non_Volatile_Memory_Capability attribute setting present in the DMO except the DPO. A 3421
device that receives the restartAsProvisioned command shall reboot itself while retaining all 3422
the information that was provided to it during the provisioning step before it first joined the 3423
network. This information is described in Clause 13. This information is usually necessary for 3424
the device to rejoin the network without having to go through the provisioning step once 3425
again. The device shall also retain all the constant and static information present in the UAPs. 3426

Table 21 collects and presents the effects of the different join commands on various attribute 3427
sets. 3428

 – 146 – 62734/2CDV © IEC(E)

Table 21 – Effect of different join commands on attribute sets 3429

Join Command Type DMAP attributes
(except DPO)

UAP Attributes DPO Attributes

WarmRestart (Join_Command =2)
when Non_Volatile_Memory_Capability = 1

KEEP KEEP KEEP

WarmRestart (Join_Command =2)
when Non_Volatile_Memory_Capability = 0

CLEAR KEEP KEEP

RestartAsProvisioned (Join_Command = 3) CLEAR KEEP KEEP

Reset to factory defaults (Join_Command = 4) CLEAR CLEAR CLEAR

 3430
A firmware download may also result in a device restart. Information necessary for the device 3431
to use the new firmware and join the network may be stored in the device. The device usually 3432
goes through a restartAsProvisioned cycle in such cases. 3433

6.3.9.4.3 Device reset to factory defaults 3434

A device reset process may be initiated by the device itself or by the system manager. 3435

The Join_Command attribute in the DMO of a device shall be used to command the device to 3436
perform a reset. A reset command forces the device to reset to factory defaults, and all 3437
attributes are reset to their default values. The device is expected to return to the factory 3438
default state which is described in Clause 13. 3439

6.3.9.4.4 Device replacement 3440

If an old device (i.e., joined device) is replaced by a new device (i.e., non-joined device) the 3441
system manager is expected to provide the old IPv6Address to this replacement device. The 3442
host application or the user is expected to inform the system manager about this replacement 3443
through communication path 5 in Figure 23. The system manager may choose to configure 3444
other attributes in the DMAP of the replacement device to match those in the old device. 3445
Configuration of the UAPs in the replacement device is expected to be done by host 3446
applications on plant networks or by handheld maintenance tools. 3447

6.3.9.5 Device management service object 3448

The device management service object (DMSO) in the system manager shall handle the non-3449
security information in the join request from the new device that is forwarded by the 3450
advertising router and shall generate the non-security information in the join response. 3451

The attributes of the DMSO are given in Table 22. 3452

Table 22 – Attributes of DMSO in system manager 3453

Standard object type name: Device management service object (DMSO)

Standard object type identifier: 103

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

Reserved for future editions of this
standard

1..63 — — —

 3454
A new device communicates with an advertising router which acts as a proxy for the system 3455
manager and forwards all the join messages between the new device and the system 3456
manager. The join process is described in 7.4. The methods used for sending join request and 3457
join response messages between the new device and the advertising router are given in 3458
6.3.9.2.2. The advertising router shall use the System_Manager_Join method and the 3459

62734/2CDV © IEC(E) – 147 –

System_Manager_Contract method defined in the DMSO for sending the network join request 3460
and the contract request and for receiving the network join response and the contract 3461
response associated with the join process of this new device. 3462

The source object of the System_Manager_Join and System_Manager_Contract methods is 3463
the DMO of the proxy advertising router that communicates with the system manager on 3464
behalf of the new device. 3465

The System_Manager_Join method is defined in Table 23. The System_Manager_Contract 3466
method is defined in Table 24. 3467

Table 23 – System_Manager_Join method 3468

Standard object type name: Device management service object (DMSO)

Standard object type identifier: 103

Method name Method
ID

Method description

System_Manager_Jo
in

1 Method to send network join request of a new device to system manager and
get network join response

Input arguments

Argumen
t number Argument name

Argument
type

(data type
and size)

Argument description

1 EUI64 Type:
EUI64Addres
s

DMO attribute EUI64; see
Table 10

2 DL_Subnet_ID Type:
Unsigned16

D-subnet that the new device
is trying to join; this is also
the D-subnet of the
advertising router;

Named values:
0: device is not part of any
D-subnet

3 Device_Role_Capability Type:
Unsigned16

DMO attribute
Device_Role_Capability; see
Table 10

4 Size_of_Tag_Name Type:
Unsigned8

Size in octets of the
Tag_Name

5 Tag_Name Type:
VisibleString
SIZE(0..16)

DMO attribute Tag_Name;
see Table 10

6 Comm_SW_Major_Version Type:
Unsigned8

DMO attribute Comm_
SW_Major_Version; see Table
10

7 Comm_SW_Minor_Version Type:
Unsigned8

DMO attribute Comm_
SW_Minor_Version; see Table
10

8 Size_of_Software_
Revision_Information

Type:
Unsigned8

Size in octets of the
Software_Revision_
Information

9 Software_Revision_Informati
on

Type:
VisibleString
SIZE(0..16)

DMO attribute
Software_Revision_
Information; see Table 10

10 DeviceCapability Type:
OctetString

DLMO attribute
DeviceCapability; see Table
141

 – 148 – 62734/2CDV © IEC(E)

Standard object type name: Device management service object (DMSO)

Standard object type identifier: 103

Method name Method
ID

Method description

 Output arguments

Argume
nt

number
Argument name

Argument
type

(data type
and size)

Argument description

1 Assigned_Network_
Address_128_Bit

Type:
IPv6Address

This value is written to DMO
attribute Network_Address_

128_Bit; see Table 10

2 Assigned_DL_Address_16_
Bit

Type:
DL16Address

This value is written to DMO
attribute DL_Address_16_Bit;
see Table 10

3 Assigned_Device_Role Type:
BitArray16

This value is written to DMO
attribute
Assigned_Device_Role; see
Table 10

4 System_Manager_
Network_Address_128_Bit

Type:
IPv6Address

This value is written to DMO
attribute System_Manager_

128_Bit_Address; see Table 10

5 System_Manager_
DL_Address_16_Bit

Type:
DL16Address

This value is written to DMO
attribute System_Manager_

DL_Address_16_Bit; see Table
10

6 System_Manager_EUI64 Type:
EUI64Address

This value is written to DMO
attribute
System_Manager_EUI64Addre
ss; see Table 10

7 MIC Type:
OctetString4

This value is used for
protecting argument 1 through
6. This MIC value is generated
by the Security Manager. See
7.4.4.3.2

8 Assigned_Max_TSDU_Size Type:
Unsigned16

Indicates the maximum TSDU
supported in octets which can
be converted by the source
into max APDU size by taking
into account the TL, security,
AL headers and TMIC sizes

 3469

62734/2CDV © IEC(E) – 149 –

Table 24 – System_Manager_Contract method 3470

Standard object type name: Device management service object (DMSO)

Standard object type identifier: 103

Method name Method ID Method description

System_Manager_Contract 2 Method to send contract request of a new device to system
manager and get contract response; Contracts are described in
6.3.11.2

Input arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

1 EUI64 Type: EUI64Address EUI64Address of the
new device trying to
join the network

Output arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

1 Contract_Respo
nse

Type:
New_Device_Contract_
Response (see Table
31)

Contract response to
support future
communication from
new device to system
manager; contracts
are described in
6.3.11.2

2 MIC Type: OctetString4 This value is used for
protecting argument
1 through 6 with the
join key. This MIC
value is generated in
Security Manager.

See 7.4.4.3.2

 3471
When the DMSO generates the System_Manager_Join and System_Manager_Contract 3472
responses, it first sends these responses to the PSMO which in turn sends them to the 3473
security manager. The security manager shall protect these responses with a MIC field using 3474
the join key and send them back to the PSMO which in turn hands them back to the DMSO. 3475
The DMSO shall then send the responses back to the advertising router. This interaction with 3476
the PSMO is described in 7.4. 3477

 System time services 6.3.103478

6.3.10.1 General 3479

The time in this standard is based on international atomic time (TAI) as the time reference. 3480
The time in this standard is reported as elapsed seconds since 1958/01/01 00:00:00. 3481

The system supports time synchronization so that, at the device level, applications may use 3482
time to coordinate activities or time-stamp information, improving energy use and reliability. 3483
System time shall be available from at least one device (system time source) on the network. 3484

A TAI time source is not required for operation of a network compliant with this standard. 3485
Alternative time sources are converted to TAI units. The time base used by the network shall 3486
be within ±1 second of actual TAI time. The gateway shall convert nominal network TAI time 3487
to the local system time reference if it is available. 3488

The system manager shall configure at least one system time source in each D-subnet of the 3489
network. The system manager itself may be the system time source. This is described in 3490

 – 150 – 62734/2CDV © IEC(E)

6.3.10.3. The system manager shall also configure the distribution topology for the 3491
dissemination of time in the D-subnet and for the synchronization of device clocks. The 3492
system manager configures each device in the D-subnet with the clock parent(s) that the 3493
device shall use for synchronizing its clock. The DL in each device is responsible for 3494
measuring time and keeping the clocks synchronized. This is described in 9.1.9. 3495

Backbone routers are expected to use either proprietary or standardized techniques for 3496
maintaining time synchronization. These techniques are not specified by this standard. 3497

Devices needing to convert TAI time to hh:mm:ss format, such as on a user display, may 3498
account for a coordinated universal time (UTC) accumulated leap second adjustment.6 The 3499
system manager shall provide this UTC adjustment to these devices. If the device needs this 3500
UTC adjustment information from the system manager, it should refresh it infrequently but 3501
periodically, such as at the start of each month or any other arbitrary clock boundary. 3502

All devices in a network compliant with this standard share the TAI time reference with 3503
variable degrees of accuracy. To support sequence of events or other timing related 3504
operations of the application processes, all routing devices within a network compliant with 3505
this standard should be accurate to within ±10 ms. The exact clock accuracy requirement for 3506
each routing device is described in 9.1.9.2.2. 3507

The system manager is responsible for coordinating the time across different D-subnets by 3508
selecting the appropriate system time sources in each D-subnet. This coordination is not 3509
specified by this standard. 3510

To support sequence of events or other timing related operations of the application 3511
processes, backbone routers also should be accurate to within ±10 ms. Neither conversion of 3512
the time units used by the backbone routers nor adjustment to align with the TAI time being 3513
used by the devices compliant with this standard are specified by this standard. 3514

If the system manager is part of the D-subnet, then the DL in the system manager is 3515
responsible for measuring time and keeping the device clock synchronized. If the system 3516
manager is connected to the backbone, it is expected to maintain clock synchronization with 3517
the rest of the network and maintain time information in TAI units. In this case, the techniques 3518
for doing so are not specified by this standard. 3519

Protocol layers that require the current TAI time of the device may obtain it from the DMO in 3520
the DMAP. 3521

6.3.10.2 Device clock accuracy capabilities 3522

The system manager needs to know the clock accuracy of each device. For example, it needs 3523
to know whether a device is capable of maintaining ±1 ms accuracy for 30 s without a clock 3524
update. Such information about a device shall be provided to the system manager by the 3525
DLMO. This is described in Table 147. 3526

6.3.10.3 System time source selection 3527

The device implementing the system manager role may also implement the system time 3528
source role in a network, or it may delegate the system time source role to any device(s) in 3529
the network capable of playing this role as indicated by the Device_Role_Capability attribute 3530
in the DMO of the device. The system manager shall use the Assigned_Device_Role attribute 3531
in the DMO of the device to configure it as a system time source. The system manager may 3532
select the system time source based on the clock accuracy capabilities of the device. 3533

6 A list of such adjustments is maintained at ftp://maia.usno.navy.mil/ser7/tai-utc.dat .

ftp://maia.usno.navy.mil/ser7/tai-utc.dat

62734/2CDV © IEC(E) – 151 –

The system time source is the ultimate source of the time sense in a D-subnet. The system 3534
time source within a D-subnet shall be accurate to within ±1 s of actual TAI time, and shall 3535
monotonically increase at a rate that tracks TAI time with a maximum error of 1×10-6, i.e., the 3536
rate of increase of time shall be relatively precise, even if the time source itself is relatively 3537
inaccurate. 3538

If multiple system time sources exist within a D-subnet, they should track each other within 3539
0,1 ms. If 0,1 ms synchronization among D-subnet system time sources cannot be arranged, 3540
the system manager shall dictate when a device switches from one system time source to the 3541
other. The dlmo.ClockStale attribute described in 9.1.9.2.3 and 9.4.2.14 shall be used to 3542
inform the device when to switch over to the other system time source. Time propagation 3543
paths are described in 6.3.10.4. If devices are to switch system time sources, the time 3544
propagation paths can be re-arranged by the system manager as appropriate. 3545

The system manager shall ensure that each D-subnet has at least one system time source. 3546
Some examples of system time sources include: 3547

• In an outdoor application, the system manager may designate a few devices with global 3548
positioning system (GPS) capabilities as system time sources. Time may be propagated 3549
through the D-subnets from these sources. 3550

• In a large network with an Ethernet backbone, the backbone itself may provide a time 3551
service that is synchronized to within 0,1 ms to a shared time reference for devices that 3552
are on the backbone. The system manager may designate the backbone routers as 3553
system time sources, and time may be propagated from these backbone routers to devices 3554
in the D-subnets. 3555

• The system manager may periodically synchronize to a remote time source via a long-3556
distance wired or wireless connection. This time source provides ±1 s accuracy. The 3557
system manager may then act as the system time source in the network. 3558

If multiple system time sources exist in a D-subnet, the system manager may assign one of 3559
the system time sources as the default and the others as back-ups. The techniques for such 3560
assignment are not specified by this standard. 3561

Clock corrections within a system time source are usually applied at a rate that can ensure 3562
that the correction does not exceed 0,5 ms in a given 30 s period. Discontinuous clock 3563
corrections are supported, with devices on a D-subnet being instructed to adjust their clocks 3564
at a specific time. This is described in 9.1.9.3.6. 3565

6.3.10.4 Time distribution topology 3566

In addition to system time sources, the system manager also configures clock recipients and 3567
clock repeaters in a D-subnet. 3568

All devices in a D-subnet, except for system time sources, are configured as clock recipients, 3569
i.e., they receive periodic clock updates from one or more clock sources in their immediate 3570
neighborhoods. A clock source may be a system time source or a clock repeater. 3571

Clock repeaters are clock recipients that also act as clock sources to certain neighbors. Clock 3572
repeaters propagate time through a D-subnet. The clock accuracy requirement for a clock 3573
repeater is described in 9.1.9.2.2. 3574

Clock source/recipient relationships, and thus time distribution topologies, are defined by the 3575
system manager. Time propagation paths in these topologies usually match routing graphs, 3576
but this is not required. Circular time propagation paths are not allowed. Clock propagation 3577
may be arranged so that clock repeaters provide updates to their recipients soon after they 3578
themselves receive their updates. 3579

 – 152 – 62734/2CDV © IEC(E)

The system manager uses the DLMO of a device to configure its clock source(s). The time of 3580
a clock recipient may be updated during each interaction with a designated clock source. The 3581
selection of clock sources and the timing of clock updates are arranged by the system 3582
manager. These clock updates are described in 9.1.9.2. 3583

6.3.10.5 Monitoring of time synchronization accuracy 3584

System management may support mechanisms for gathering information about the accuracy 3585
of the distributed time sense, as well as for producing an alert when the sense of time 3586
between a pair of devices varies enough to cause problems within the system. The alerts 3587
described in 9.6 may be used for this purpose by the system manager. 3588

Vendor-specified attributes in the DMO of a device may be used for gathering such 3589
information. Vendor-specified alerts from the DMO may be used for diagnosing problems 3590
related to clock synchronization and clock maintenance. 3591

6.3.10.6 System time service object 3592

The system manager contains the system time service object (STSO), which shall provide the 3593
UTC accumulated leap second adjustment to the devices in the network. Other vendor-3594
specified attributes may be added to the STSO. 3595

The attributes of the STSO in the system manager are given in Table 25. 3596

NOTE For more information on this leap second adjustment, see https://en.wikipedia.org/wiki/Leap_second . 3597

https://en.wikipedia.org/wiki/Leap_second

62734/2CDV © IEC(E) – 153 –

Table 25 – Attributes of STSO in system manager 3598

Standard object type name: System time service object (STSO)

Standard object type identifier: 100

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior of
attribute

Current_UTC_Adjustment 1 The current
value of the
UTC
accumulated
leap second
adjustment

Type: Integer16 Devices that need to convert TAI
time to hh:mm:ss format need
this adjustment from the system
manager; units in seconds; note
that the adjustment can be
negative; note that UTC and TAI
are based on different start
dates but this difference is not
covered by this attribute; on
2012.06.30 23:59:60 the value
changed from 34 s to 35 s. The
mechanism used by the system
manager to obtain this
adjustment is not specified

Classification:
Dynamic

Accessibility:
Read only

Default value: 35

Next_UTC_Adjustment_Time 2 The TAI
time when
the UTC
adjustment
value will
change from
the current
one

Type:
TAITimeRounded

If the system manager knows the
next time this UTC adjustment
value will change, the SM is
expected to indicate this time in
TAI units.

If the system manager does not
know this time, it is expected to
indicate the current TAI time and
as a result the value of the
Next_UTC_Adjustment attribute
shall be same as the value of
the Current_UTC_Adjustment

Classification:
Dynamic

Accessibility:
Read only

Default value:
See description

Next_UTC_Adjustment 3 The next
value of the
UTC
accumulated
leap second
adjustment

Type: Integer16 The UTC adjustment that will go
into effect at the time specified
by the
Next_UTC_Adjustment_Time
attribute

Classification:
Dynamic

Accessibility:
Read only

Default value: 35

Reserved for future editions
of this standard

4..63 — — —

NOTE UTC and TAI and GPS-time are based on different start dates but this difference is not covered by this
attribute. On 2009/01/01 the Current_UTC_Adjustment changed from 33 s to 34 s. GPS-time is always 19 s
behind TAI. GPS time information includes the offset needed to convert to/from UTC.

 3599
 System communication configuration 6.3.113600

6.3.11.1 General 3601

The system manager provides control of the runtime system communication configuration. It 3602
supports configuration of the network, including attributes of the protocol suite from DL to AL. 3603

System communication configuration includes the assignment of slots, templates, and graphs 3604
to the devices in the network. The system manager should take into account the capabilities 3605
of the device in the network while configuring such assignments. When necessary, the system 3606
should be reconfigured to recover from failure scenarios. 3607

6.3.11.2 Contract services 3608

6.3.11.2.1 Definition of contract 3609

System communication configuration is achieved through the contract services provided by 3610
the system manager. 3611

 – 154 – 62734/2CDV © IEC(E)

A contract refers to an agreement between the system manager and a device in the network 3612
that shall involve the allocation of network resources by the system manager to support a 3613
particular communication need of this device. This device is the source of the communication 3614
messages and the device it wants to communicate with is the destination. 3615

A contract shall establish and support the communication path between devices in the 3616
network that are compliant with this standard to support the communication need of an 3617
application process. An application process that requires communication with an application 3618
process in another device shall request a contract. Such contract requests may originate from 3619
an application process in any one of the devices compliant with this standard, such as a field 3620
device, gateway, backbone router, or system manager. 3621

As shown in Figure 27, contracts shall be established by the system manager. They shall also 3622
be maintained, modified and terminated by the system manager. The system manager shall 3623
interact with the affected devices in the network to perform each of these operations. 3624

Device

UAP

DMAP System
manager

Contract request from UAP to
system manager via DMAP

Contract response from system
manager to UAP via DMAP 3625

Figure 27 – UAP-system manager interaction during contract establishment 3626

6.3.11.2.2 Directionality of contract 3627

Contracts shall be unidirectional, i.e., a particular contract is limited to the communication 3628
from a source to a destination. For communication in the opposite direction, a separate 3629
contract shall be established. 3630

For a two-way communication between two devices, each device shall obtain an independent 3631
contract from the system manager in order to send its messages to the other device. The peer 3632
application processes in these devices are expected to be configured such that they establish 3633
these contracts before commencing messaging in either direction. Such configurations are 3634
done either by the system manager if the application processes are the DMAPs or by host 3635
applications on plant networks or by handheld maintenance tools if the application processes 3636
are UAPs. 3637

6.3.11.2.3 Definition of contract identifier 3638

A contract ID (contract identifier) is a system manager-assigned identifier that shall be 3639
provided to the source after the necessary network resources have been allocated to provide 3640
the requested communication support. 3641

The contract ID is relevant at the source, as it is used by the system manager to inform each 3642
protocol layer in the source how to treat service data units. The layers need this information 3643
before transmitting SDUs to the destination through the network. The contract requesting 3644
application process shall retrieve the assigned contract ID and shall use it to send protocol 3645
data units down the protocol suite. Protocol suite configurations at each layer for treating such 3646

62734/2CDV © IEC(E) – 155 –

upper layer PDUs shall be referenced to the contract ID. More details are provided in 3647
6.3.11.2.9. 3648

Contract IDs are unique only with respect to the source, i.e., the system manager may assign 3649
the same contract ID numerical value to two independent devices to support their independent 3650
contract requests. The combination of a source IPv6Address and its contract ID shall be 3651
unique across the network. 3652

The contract ID is also relevant at the backbone router that supports communication intended 3653
for a destination in the D-subnet supported by that backbone router. This is because the DL in 3654
the backbone router needs to determine how to send the NPDU through the D-subnet to its 3655
destination. Configuration of the DL in the backbone router for treating such NPDUs shall be 3656
referenced to the combination of the source IPv6Address and its contract ID. More details are 3657
provided in 6.3.11.2.9.2. 3658

The contract ID is not relevant at any other intermediate device along the path between the 3659
source and the destination. 3660

While contract IDs are 2-octet values, the system manager shall restrict the assignment of 3661
contract IDs that fall within the range of 1..255 to contracts involving one or more field 3662
devices, since such devices usually have tighter memory constraints than other devices, thus 3663
enabling such field devices to store contract IDs using only one octet. Contract ID 0 is 3664
reserved to mean noContract. 3665

6.3.11.2.4 Architecture supporting contract related messaging 3666

6.3.11.2.4.1 General 3667

The DMO in each device and the SCO in the system manager shall work together to provide 3668
contract related services such as contract establishment, contract maintenance and 3669
modification, and contract termination to each device. 3670

6.3.11.2.4.2 Handling contract-related services within device 3671

The DMO in each device shall be responsible for requesting, maintaining, modifying, and 3672
terminating each and every contract assigned to that device. 3673

Any application process that requires a contract needs to send the request to the DMO which 3674
in turn shall send the request to the system manager. After the contract has been established, 3675
this application process shall not try to use network resources in excess of the ones allocated 3676
for this contract. After the contract has been established, this application process may later 3677
request for a modification or termination of this contract as appropriate. 3678

The Contract_Table structured attribute of the DMO may be accessed directly or indirectly by 3679
the SCO present in the system manager. 3680

The system manager indirectly accesses the Contract_Table structure attribute when it sends 3681
any contract related response to the device. The device shall update the Contract_Table 3682
structured attribute of the DMO every time a contract response is received from the system 3683
manager. A new entry in the Contracts_Table structured attribute of the DMO shall be created 3684
every time a contract response associated with the successful creation of a new contract is 3685
received from the system manager. 3686

The system manager may directly read or write any element present in the Contract_Table 3687
structured attribute of the DMO once the contract entry exists in the device. 3688

 – 156 – 62734/2CDV © IEC(E)

6.3.11.2.4.3 Handling contract related services in the network 3689

The SCO in the system manager is responsible for establishing, maintaining, modifying, and 3690
terminating all contracts in the network. The SCO shall coordinate with the DMO of each 3691
device to perform these operations. 3692

6.3.11.2.4.4 System communication configuration object 3693

The attributes of the SCO are given in Table 26. The methods of the SCO are given in Table 3694
27. 3695

Table 26 – Attributes of SCO in system manager 3696

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

Reserved for future editions of this
standard

1..63 — — —

 3697
 3698

62734/2C

D
V

 ©
 IE

C
(E

)
– 157 –

Data link layer

Application sub-layer ASMSAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-1

PMSAPPDSAP

NMSAP

NDSAP
TMSAP

TDSAP-0TDSAP-n

MDSAP
DMSAP

DDSAP

MMSAP

Device manager (DMAP)

ASLDE-0
SAP

System manager (SMAP)

SCODSOSTSO PSMO UDODMSO SMO ARO DPSO

ASLDE-1
SAP

Data link layer

Application sub-layer

User
application
process a

User
application
process n

U
A

P
M

E
-

2
S

A
P

U
A

P
M

E
-

n
S

A
P

ASLDE-n
SAP

ASLDE-2
SAP

ASMSAP

ASLDE-0
SAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-2

PMSAPPDSAP

NMSAP

NDSAP

TMSAP

TDSAP-0TDSAP-n

Device manager
(DMAP)

MDSAP

DMSAP

DDSAP

MMSAP

Source System manager

DMO in device

SCO in system manager

 3699

Figure 28 – Contract-related interaction between DMO and SCO 3700

 3701

 – 158 – 62734/2CDV © IEC(E)

6.3.11.2.4.5 Contract-related messages 3702

All contract-related messages between the SCO in the system manager and the DMO of the 3703
device shall be application level client/server messages (i.e., writes and reads on standard 3704
object attributes and executes on standard object methods). This is illustrated in Figure 28. 3705

Contract-related messages include contract requests and contract responses; these are 3706
described in 6.3.11.2.5.4. 3707

6.3.11.2.5 Contract establishment 3708

6.3.11.2.5.1 General 3709

Contracts shall be established by the system manager when it receives a contract request. An 3710
application process, which needs to communicate with a peer process across the network, 3711
issues a contract request to the DMAP within the device. The DMO in this requesting device 3712
shall send this contract request to the SCO in the system manager. Each contract request 3713
shall include arguments that are used by the SCO to determine the network resource 3714
allocation necessary to support this request. These arguments are discussed in 6.3.11.2.5.4. 3715

If a device receives a service request but does not already have a contract needed in order to 3716
send the service response, it should request a contract. The device shall not send the service 3717
response until the contract response is received from the SCO of the system manager and all 3718
resources needed to support the contract are successfully configured. 3719

The algorithms used by the SCO to determine the necessary allocation of network resources 3720
are not specified in this standard, as they are all internal to the system manager. Vendors are 3721
expected to implement algorithms in the system manager that can determine the necessary 3722
allocation of network resources for the contract requests sent by the devices being managed 3723
by that system manager. 3724

Based on this determination, the SCO shall allocate the network resources by communicating 3725
with the necessary devices in the network and providing necessary protocol suite 3726
configurations to each one of them. This shall include the configuration of the destination and 3727
the source. Details are provided in 6.3.11.2.6. Contracts shall be established for both 3728
scheduled and unscheduled communication between applications. 3729

As part of the configuration of the source, the SCO shall also provide the contract ID. When 3730
the source receives this configuration, it shall use this contract information to start 3731
transmitting the TSDUs that needed this communication support. After the contract has been 3732
established, the source shall not try to use network resources in excess of the ones allocated 3733
for this contract. 3734

6.3.11.2.5.2 Relation between contracts and sessions 3735

Sessions shall be established between the T-port in the source and the corresponding T-port 3736
in the destination. All communication between these ports shall be secured using a T-key that 3737
is issued by the security manager. Session establishment is described in 7.5. Contracts shall 3738
support the communication between peer application processes that reside on top of these 3739
T-ports in the protocol stack. 3740

Multiple contracts may be established between these peer application processes to support 3741
different communication needs. As each application process in a device is associated with a 3742
T-port, all these contracts of these peer application processes shall use the same T-ports in 3743
the source and destination and so the same T-key shall be used for securing all the 3744
communication that occurs using these multiple contracts. 3745

The T-key between the corresponding T-ports in the source and the destination needs to be 3746
established before a contract can be used to send messages through these T-ports. So, 3747

62734/2CDV © IEC(E) – 159 –

before the DMO sends the contract request to the SCO it is expected to check with the DSMO 3748
in the DMAP to see if a T-key exists between the corresponding T-ports in the source and the 3749
destination. If such a T-key does not exist, the DSMO is expected to send a T-key request to 3750
the security manager and obtain a new T-key. This T-key request is described in 7.6.3. If a 3751
T-key already exists between the corresponding T-ports, the DMO can send the contract 3752
request to the SCO immediately. 3753

If an existing T-key of a particular T-port in the device is terminated for some reason by the 3754
security manager or by the device itself, any contract that uses this particular T-port will fail 3755
as the message will not get sent down the protocol stack in the device. In this case, TL is 3756
expected to send back a failure indication to the application process that generated the 3757
message. This application process in turn is expected to send a contract request to the DMO 3758
which checks with the DSMO for a T-key. The DSMO may send a new T-key request to the 3759
security manager if necessary. 3760

6.3.11.2.5.3 Devices that can request contracts 3761

Only a traffic source shall submit a contract request to the system manager. Other devices in 3762
the network are not allowed to submit a contract request on behalf of the source. 3763

6.3.11.2.5.4 Contract request and response arguments 3764

Contract request arguments are pieces of information that are provided by the contract 3765
requesting application process. They are based on the communication need that the 3766
requesting application process is interested in. 3767

Applications should be designed such that they request only the least amount of 3768
communication support needed to satisfy their communication needs. For example, an 3769
application that needs to publish periodic messages every 1 minute should not request a 3770
10 second period. 3771

The contract response arguments shall include the contract ID and other information. This 3772
information is intended to provide the basic protocol suite configuration necessary at the 3773
source. 3774

The arguments included in the contract request and response messages are described in 3775
Table 27. 3776

 – 160 – 62734/2CDV © IEC(E)

Table 27 – SCO method for contract establishment, modification, or renewal 3777

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

Method name Method ID Method description

Contract_
Establishment
_
Modification_
Renewal

1 Method to establish a new contract / modify an existing contract / renew an
existing contract by sending request to system manager

 Input arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 1 Contract_Request_ID Unsigned8 A numerical value, uniquely assigned
by the device sending the request to
the system manager, to identify the
request being made.

Defaults to zero, and resets to zero.
Increments with each use. This ID
shall be repeated if exactly the same
request is re-sent due to lack of
response. Rolls over to zero

 2 Request_Type Unsigned8 Type of contract request sent to the
system manager.

Named values:
0: new contract
1: contract modification
2: contract renewal

Some of the input arguments below
are not applicable based on this
argument value; see Table 28 for
details

 3 Contract_ID Unsigned16 Existing contract ID that needs to be
modified or renewed

 4 Communication_
Service_Type

Unsigned8 Type of communication service for
which the contract is being requested.

Named values:
0: periodic / scheduled
1: aperiodic / unscheduled

Some of the input arguments below
are not applicable based on this
argument value; see Table 28 for
details

 5 Source_SAP Unsigned16 TDSAP in the source that will be using
this contract, once it is assigned, to
send application messages down the
protocol stack

 6 Destination_Address IPv6Address The address of the device that the
source wants to send application
messages to; note that this
information may be provided to the
source during provisioning or during
configuration of the application
process

 7 Destination_SAP Unsigned16 TDSAP in the destination that will be
used to send these messages to the
AL; note that this information may be
provided to the source during
provisioning or during configuration of
the application process

 3778

62734/2CDV © IEC(E) – 161 –

Table 27 (continued)

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

 Input arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 8 Contract_Negotiability BitString8 Determines if the system manager can
change the requested contract to
meet the network resources available
and if the system manager can revoke
this contract to make resources
available to higher priority contracts.

Named indices:
0: not revocable;
1: non-negotiable;
2..7: reserved

Contract negotiability is described in
6.3.11.2.7.2

 9 Contract_Expiration_Ti
me

Unsigned32 Determines how long the system
manager should keep the contract
before it is terminated; units in
seconds

 10 Contract_Priority Unsigned8 Requests a base priority for all
messages sent using the contract.

Named values:
0: best effort queued;
1: real time sequential;
2: real time buffer;
3: network control

Contract priority is described in
6.3.11.2.7.3

 11 Payload_Size Unsigned16 Indicates the maximum payload size
in octets (represented as APDU size)
that the source is interested in
transmitted.

Value range: 3..1 252

 12 Reliability_And_Publish
DoNotAutoRetransmit

Unsigned8 PublishDoNotAutoRetransmit: Bit 0
indicates whether retransmission of
old publish data is not supported
because the prior buffer value is
always overwritten with new publish
data.

Bit 0 is only applicable for periodic
communication and has value 0 for
aperiodic communication (see 12.12.2
for description). (Note 1)

Reliability: Bits 1..7 indicate the
supported reliability for delivering the
transmitted APDUs to the destination.

Bit 0: Unsigned1:
Named values:
0: auto-retransmit;
1: do not auto-retransmit.

Bits 1..7: Unsigned7:
Named values:
0: low;
1: medium;
2: high

 – 162 – 62734/2CDV © IEC(E)

Table 27 (continued)

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

 Input arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 13 Requested_Period Integer16 Used for periodic communication; to
identify the desired publishing period
in the contract request.

Valid range: A value of N > 0 specifies
a period of N s, while N < 0 specifies
a period of -1/N s. N = 0 disables the
communication

 14 Requested_Phase Unsigned8 Used for periodic communication; to
identify the desired phase (within the
publishing period) of publications in
the contract request.

Valid range:
0..99;
any other value indicates that device
only cares about period and does not
care about phase.

See 6.3.11.2.7.4

 15 Requested_Deadline Unsigned16 Used for periodic communication to
identify the maximum end-to-end
transport delay desired.

Unit:10 ms

 16 Committed_Burst Integer16 Used for aperiodic communication to
identify the long term rate that needs
to be supported for client/server or
source/sink messages.

Valid range: A value of N > 0 specifies
a mean rate of APDUs per second,
while N < 0 specifies a mean rate
of -1/N APDUs per second. N = 0 is
invalid.

 17 Excess_Burst Integer16 Used for aperiodic communication to
identify the short term rate that needs
to be supported for client/server or
source/sink messages.

Valid range: see input argument 16

 18 Max_Send_Window_
Size

Unsigned8 Used for aperiodic communication; to
identify the maximum number of client
requests that may be simultaneously
awaiting a response

 Output arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 1 Contract_Request_ID Unsigned8 The input argument
Contract_Request_ID that was
received in the corresponding contract
request is used as this output
argument

 3779

62734/2CDV © IEC(E) – 163 –

Table 27 (continued)

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

 Output arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 2 Response_Code Unsigned8 Indicates if the system manager was
successful or not in supporting the
contract request; indicates if the
source can use the contract
immediately or if it has to wait; also
indicates if the requested
communication is being supported as
is or if the system manager negotiated
the request down.

Named values:
0: success with immediate effect;
1: success with delayed effect;
2: success with immediate effect but
negotiated down;
3: success with delayed effect but
negotiated down;
4: failure with no further guidance;
5: failure with retry guidance;
6: failure with retry and negotiation
guidance

Depending on the value of this
argument, some of the output
arguments below are not applicable.
See Table 29 for details and
6.3.11.2.12 for failure scenarios

 3 Contract_ID Unsigned16 A numeric value uniquely assigned by
the system manager to the contract
being established and sent to the
source. Contract IDs are unique per
device. Depending on the requested
resources, multiple contract request
IDs from a device may be mapped to
a single contract ID. In the device, the
contract ID is passed in the DSAP
control field of each layer and is used
to look up the contracted actions that
shall be taken on the associated PDU
as it goes down the protocol suite at
each layer (value 0 reserved to mean
no contract)

 4 Communication_Service
_Type

Unsigned8 Type of communication service
supported by this contract.

Unsigned8:
see input argument 4

Some of the output arguments below
are not applicable based on this
argument value; see Table 29 for
details

 5 Contract_Activation_Ti
me

TAINetwork
Time

Start time for the source to start using
the assigned contract

 6 Assigned_Contract_
Expiration_Time

Unsigned32 Determines how long the system
manager shall keep the contract
before it is terminated.

Units: s

 – 164 – 62734/2CDV © IEC(E)

Table 27 (continued)

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

 Output arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 7 Assigned_Contract_
Priority

Unsigned8 Establishes a base priority for all
messages sent using the contract.

see input argument 10

Contract priority is described in
6.3.11.2.7.3

 8 Assigned_Max_TSDU_
Size

Unsigned16 Indicates the maximum TSDU in
octets which can be converted by the
source into max APDU size supported
by taking into account the TL,
security, AL header and TMIC sizes.

Valid range: 70..1 280.

The system manager shall take into
account the Max_NSDU_Size
constant attribute reported by the
NLMOs of the source and the
destination (see Table 206) while
determining the value of this
argument.

Fragmentation is done at the NL if the
NPDU exceeds the max size of a
DSDU. Fragmentation and reassembly
is described in 10.2.5

 9 Assigned_Reliability_
And_PublishDoNot
AutoRetransmit

Unsigned8 see input argument 12

 10 Assigned_Period Integer16 see input argument 13

 11 Assigned_Phase Unsigned8 Used for periodic communication; to
identify the assigned phase (within the
publishing period) of publications in
the contract

Valid range:
0..99

 12 Assigned_Deadline Unsigned16 Used for periodic communication; to
identify the maximum end-to-end
transport delay supported by the
assigned contract.

Unit: 10 ms

 13 Assigned_Committed_
Burst

Integer16 Used for aperiodic communication to
identify the long term rate that is
supported for client/server or
source/sink messages.

Valid range: A value of N > 0 specifies
a mean rate of APDUs per second,
while N < 0 specifies a mean rate
of -1/N APDUs per second. N = 0 is
invalid.

 14 Assigned_Excess_Burst Integer16 Used for aperiodic communication to
identify the short term rate that is
supported for client/server or
source/sink messages.

Valid range: A value of N > 0 specifies
a mean rate of APDUs per second,
while N < 0 specifies a mean rate
of -1/N APDUs per second. N = 0 is
invalid.

62734/2CDV © IEC(E) – 165 –

Table 27 (continued)

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

 Output arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 15 Assigned_Max_Send_

Window_Size

Unsigned8 Used for aperiodic communication; to
identify the allowed maximum number
of client requests that can
simultaneously await a response

 16 Retry_Backoff_Time Unsigned16 Used in the case of response code =
failure with retry guidance or failure
with retry and negotiation guidance;
indicates the amount of time the
source should back off before
resending the contract request; units
in seconds; failure scenarios are
described in 6.3.11.2.12

 17 Negotiation_Guidance BitString8 Used in the case of response code =
failure with retry and negotiation
guidance; indicates the
Contract_Negotiability value
supportable by system manager.

index assignments:
see input argument 8

Failure scenarios are described in
6.3.11.2.12

 18 Supportable_Contract_
Priority

Unsigned8 Indicates the base priority supportable
by system manager for all messages
sent using the contract.

Unsigned8:
see input argument 10

 19 Supportable_max_
TSDU_Size

Unsigned16 Indicates the maximum NSDU
supportable by the system manager;
units in octets. Valid range:

70..1 280

 20 Supportable_Reliability_
And_PublishDoNot
AutoRetransmit

Unsigned8 See input argument 12

 21 Supportable_Period Integer16 Used for periodic communication; to
identify the supportable publishing
period by the system manager.

Valid range: see input argument 13

 22 Supportable_Phase Unsigned8 Used for periodic communication; to
identify the phase (within the
publishing period) of publications
supportable by the system manager.

Valid range:
0..99

 23 Supportable_Deadline Unsigned16 Used for periodic communication to
identify the maximum end-to-end
transport delay supportable by the
system manager.

Unit:10 ms

 24 Supportable_Committed
_Burst

Integer16 Used for aperiodic communication to
identify the long term rate that can be
supported for client/server or
source/sink messages.

Valid range: see input argument 16

 – 166 – 62734/2CDV © IEC(E)

Table 27 (continued)

Standard object type name: System communication configuration object (SCO)

Standard object type identifier: 102

 Output arguments

 Argument
number

Argument
name

Argument
type

(data type
and size)

Argument
description

 25 Supportable_Excess_
Burst

Integer16 Used for aperiodic communication to
identify the short term rate that can be
supported for client/server or
source/sink messages.

Valid range: A value of N > 0 specifies
a mean rate of APDUs per second,
while N < 0 specifies a mean rate
of -1/N APDUs per second. N = 0 is
invalid.

 26 Supportable_Max_Send
_Window_Size

Unsigned8 Used for aperiodic communication; to
identify the supportable maximum
number of client requests that can
simultaneously await a response

NOTE 1 The coding of this attribute is the inverse of the related attribute 7 of Table 265.

 3780
Table 27 also contains input and output arguments that shall be used for contract modification 3781
and contract renewal. Contract modification and contract renewal are discussed in 3782
6.3.11.2.11. 3783

Table 27 also contains output arguments that shall be used for failure scenarios when the 3784
system manager is not able to support the contract request. These failure scenarios are 3785
discussed in 6.3.11.2.12. 3786

Some of the input arguments in Table 27 are not applicable when the Request_Type and/or 3787
Communication_Service_Type arguments are given certain values and so shall not be 3788
included in the request. This information is provided in Table 28. 3789

62734/2CDV © IEC(E) – 167 –

Table 28 – Input argument usage for SCO method 3790
for contract establishment, modification, or renewal 3791

Input argument Not applicable for

Request_Type
value

Communication_Service_Type
value

Contract_Request_ID — —

Request_Type — —

Contract_ID 0 —

Communication_Service_Type — —

Source_SAP — —

Destination_Address — —

Destination_SAP — —

Contract_Negotiability — —

Contract_Expiration_Time — —

Contract_Priority — —

Payload_Size — —

Reliability_And_PublishDoNotAutoRetransmit — —

Requested_Period — 1

Requested_Phase — 1

Requested_Deadline — 1

Committed_Burst — 0

Excess_Burst — 0

Max_Send_Window_Size — 0

 3792
Some of the output arguments in Table 27 are not applicable when the Response_Code 3793
and/or Communication_Service_Type arguments are given certain values and so shall not be 3794
included in the response. This information is provided in Table 29. 3795

 – 168 – 62734/2CDV © IEC(E)

Table 29 – Output argument usage for SCO method 3796
for contract establishment, modification, or renewal 3797

Output argument Not applicable for

Response_Code
value

Communication_Service_Type
value

Contract_Request_ID — —

Response_Code — —

Contract_ID 4, 5, 6 —

Communication_Service_Type 4, 5 —

Contract_Activation_Time 0, 2, 4, 5, 6 —

Assigned_Contract_Expiration_Time 4, 5, 6 —

Assigned_Contract_Priority 4, 5, 6 —

Assigned_Max_TSDU_Size 4, 5, 6 —

Assigned_Reliability_And_PublishDoNotAutoRetransmit 4, 5, 6 —

Assigned_Period 4, 5, 6 1

Assigned_Phase 4, 5, 6 1

Assigned_Deadline 4, 5, 6 1

Assigned_Committed_Burst 4, 5, 6 0

Assigned_Excess_Burst 4, 5, 6 0

Assigned_Max_Send_Window_Size 4, 5, 6 0

Retry_Backoff_Time 0, 1, 2, 3, 4 —

Negotiation_Guidance 0, 1, 2, 3, 4, 5 —

Supportable_Contract_Priority 0, 1, 2, 3, 4, 5 —

Supportable_max_TSDU_Size 0, 1, 2, 3, 4, 5 —

Supportable_Reliability_And_PublishDoNotAutoRetransmit 0, 1, 2, 3, 4, 5 —

Supportable_Period 0, 1, 2, 3, 4, 5 1

Supportable_Phase 0, 1, 2, 3, 4, 5 1

Supportable_Deadline 0, 1, 2, 3, 4, 5 1

Supportable_Committed_Burst 0, 1, 2, 3, 4, 5 0

Supportable_Excess_Burst 0, 1, 2, 3, 4, 5 0

Supportable_Max_Send_Window_Size 0, 1, 2, 3, 4, 5 0

 3798
6.3.11.2.6 Protocol suite configuration 3799

6.3.11.2.6.1 General 3800

As part of contract establishment, the SCO shall configure the necessary devices in the 3801
network by providing necessary protocol suite configurations to each one of them. This shall 3802
include the configuration of the destination and the source, as illustrated in Figure 29. 3803

62734/2CDV © IEC(E) – 169 –

 3804

Figure 29 – Contract source, destination, and intermediate devices 3805

Intermediate devices in the network that support the communication path being established 3806
between the source and the destination shall be configured by the SCO. Such intermediate 3807
devices along the path may include both field routers and backbone routers. 3808

6.3.11.2.6.2 Configuration of intermediate field routers 3809

Configuration of intermediate field routers shall be limited to the DLE in each field router, as 3810
the message from the source to the destination traverses only through the DLE of each field 3811
router along the path. 3812

Attributes and methods defined for the DLMO of the field routers shall be used by the system 3813
manager to configure the intermediate field routers. 3814

6.3.11.2.6.3 Configuration of intermediate backbone routers 3815

Configuration of intermediate backbone routers shall be limited to the NL and, in some cases, 3816
the DLE in each backbone router, as the message from the source to the destination 3817
traverses through the DLE in the case of backbone routers that belong to the corresponding 3818
source and destination D-subnets, and the NLE of each backbone routers along the path. 3819

Attributes and methods defined for the DLMO and NLMO of the backbone routers shall be 3820
used by the system manager to configure the intermediate backbone routers. 3821

 – 170 – 62734/2CDV © IEC(E)

6.3.11.2.6.4 Configuration of destination 3822

Configuration of destination shall include the configuration of all the protocol layers. The 3823
attributes and methods defined for the DLMO, NLMO, and TLMO shall be used by the system 3824
manager to configure the destination. 3825

6.3.11.2.6.5 Configuration of source 3826

The output arguments described in Table 27 are used at various layers of the source to 3827
determine the treatment of PDUs belonging to this contract. 3828

The attributes and methods defined for the DLMO, NLMO, and TLMO shall be used by the 3829
system manager to configure the source. 3830

A contract response shall be sent to the source either after all necessary network resources 3831
have been configured or after the system manager determines the time it would take to 3832
configure all necessary network resources. Depending on the situation, the system manager 3833
shall indicate if the assigned contract can be used with immediate effect or with delayed 3834
effect. The message sequence diagram in Figure 30 illustrates the case of immediate effect. 3835

After the contract has been established, the source shall not try to use network resources in 3836
excess of the ones allocated for this contract. 3837

6.3.11.2.6.6 Contract information in device management object 3838

The DMO in the source shall maintain a list of all assigned contracts using the 3839
Contracts_Table attribute. This attribute shall be based on the data structure Contract_Data. 3840
When a new contract gets established, a new row shall be added to this Contracts_Table 3841
attribute with the relevant contract information. When an existing contract gets modified or 3842
terminated, the corresponding row shall be modified or deleted in this Contracts_Table 3843
attribute. 3844

The SCO can also modify the parameters of the Contract_Table attributes by accessing them 3845
directly without exchanging entire Contract_Data structures. 3846

The elements of the data structure Contract_Data are defined in Table 30. 3847

62734/2CDV © IEC(E) – 171 –

Table 30 – Contract_Data data structure 3848

Standard data type name: Contract_Data

Standard data type code: 401

Element name Element
identifier

Element type

Contract_ID* 1 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Named values:
0: no contract;

This element is the same as output argument
Contract_ID in Table 27

* This element is used as the index field for methods
described in Table 33 and Table 34.

Contract_Status 2 Type: Unsigned8

Classification: Static

Accessibility: Read only

Named values:
0: success with immediate effect;
1: success with delayed effect;
2: success with immediate effect but negotiated down;
3: success with delayed effect but negotiated down.

This element is related to the output argument
Response_Code in Table 27

Communication_Service_Type 3 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Named values:
0: periodic / scheduled communication;
1: aperiodic / unscheduled communication.

This element is the same as output argument
Communication_Service_Type in Table 27

Contract_Activation_Time 4 Type: TAINetworkTime

Classification: Static

Accessibility: Read/write

This element is the same as output argument
Contract_Activation_Time in Table 27

Source_SAP 5 Type: Unsigned16

Classification: Static

Accessibility: Read/write

This element is the same as input argument
Source_SAP in Table 27

Destination_Address 6 Type: IPv6Address

Classification: Static

Accessibility: Read/write

This element is the same as input argument
Destination_Address in Table 27

 – 172 – 62734/2CDV © IEC(E)

Standard data type name: Contract_Data

Standard data type code: 401

Element name Element
identifier

Element type

Destination_SAP 7 Type: Unsigned16

Classification: Static

Accessibility: Read/write

This element is the same as input argument
Destination_SAP in Table 27

Assigned_Contract_Expiration_Time 8 Type: Unsigned32

Classification: Static

Accessibility: Read/write

Unit: 1 s

This element is the same as output argument
Assigned_Contract_Expiration_Time in Table 27

Assigned_Contract_Priority 9 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Named values:
0: best effort queued;
1: real time sequential;
2: real time buffer;
3: network control.

This element is the same as output argument
Assigned_Contract_Priority in Table 27

Assigned_Max_TSDU_Size 10 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Valid range: 70..1 280

This element is the same as output argument
Assigned_Max_TSDU_Size in Table 27

Assigned_Reliability_And_
PublishDoNotAutoRetransmit

11 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Valid range:

Bit 0: 0 -- i.e., always auto-retransmit (Note 1)

Bits 1..7::
Named values:
0: low;
1: medium;
2: high.

This element is the same as output argument
Assigned_Reliability_And_PublishDoNotAutoRetransmit
in Table 27

Assigned_Period 12 Type: Integer16

Classification: Static

Accessibility: Read/write

Valid range: A value of N > 0 specifies a period of N s,
while N < 0 specifies a period of -1/N s. N = 0 is invalid.

This element is the same as output argument
Assigned_Period in Table 27

62734/2CDV © IEC(E) – 173 –

Standard data type name: Contract_Data

Standard data type code: 401

Element name Element
identifier

Element type

Assigned_Phase 13 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Valid range: 0..99

This element is the same as output argument
Assigned_Phase in Table 27

Assigned_Deadline 14 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Unit:10 ms

This element is the same as output argument
Assigned_Deadline in Table 27

Assigned_Committed_Burst 15 Type: Integer16

Classification: Static

Accessibility: Read/write

Valid range: A value of N > 0 specifies a mean rate of
APDUs per second, while N < 0 specifies a mean rate
of -1/N APDUs per second. N = 0 is invalid.

This element is the same as output argument
Assigned_Committed_Burst in Table 27

Assigned_Excess_Burst 16 Type: Integer16

Classification: Static

Accessibility: Read/write

Valid range: A value of N > 0 specifies a mean rate of
APDUs per second, while N < 0 specifies a mean rate
of -1/N APDUs per second. N = 0 is invalid.

This element is the same as output argument
Assigned_Excess_Burst in Table 27

Assigned_Max_Send_Window_Size 17 Type: Unsigned8

Classification: Static

Accessibility: Read/write

This element is the same as output argument
Assigned_Max_Send_Window_Size in Table 27

NOTE 1 The coding of this attribute is the inverse of the related attribute 7 of Table 265.

 3849
6.3.11.2.6.7 Configuration of new device 3850

The process for a new device to join is described in 7.4. As part of the join process for a new 3851
device, a contract between the new device and the system manager shall be established. 3852

The new device shall use the Proxy_System_Manager_Contract method defined for the DMO 3853
of the advertising router to send this contract request, which is then forwarded to the system 3854
manager, and to get the contract response from the system manager via the advertising 3855
router. The Proxy_System_Manager_Contract method is defined in Table 20. The advertising 3856
router shall use the System_Manager_Contract method defined in the DMSO for forwarding 3857
this contract request and for receiving the contract response associated with the join process 3858
of this new device. The System_Manager_Contract method is defined in Table 24. The DMSO 3859
works with the SCO to generate this contract response. When the new device gets this 3860

 – 174 – 62734/2CDV © IEC(E)

contract response, a new row shall be added to the Contracts_Table attribute in the DMO of 3861
the new device with the relevant contract information. 3862

The output arguments in both these methods shall be based on the data structure 3863
New_Device_Contract_Response. The elements of the data structure 3864
New_Device_Contract_Response are defined in Table 31. 3865

Table 31 – New_Device_Contract_Response data structure 3866

Standard data type name: New_Device_Contract_Response

Standard data type code: 405

Element name Element
identifier

Element type

Contract_ID 1 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Named values:
0: no contract

This element is related to the output argument Contract_ID in
Table 27

Assigned_Max_TSDU_Size 2 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Valid range: 70..1 280

This element is related to the output argument
Assigned_Max_TSDU_Size in Table 27

Assigned_Committed_Burst 3 Type: Integer16

Classification: Static

Accessibility: Read/write

Valid range: A value of N > 0 specifies a mean rate of APDUs
per second, while N < 0 specifies a mean rate of -1/N APDUs
per second. N = 0 is invalid.

This element is related to the output argument
Assigned_Committed_Burst in Table 27

Assigned_Excess_Burst 4 Type: Integer16

Classification: Static

Accessibility: Read/write

Valid range: A value of N > 0 specifies a mean rate of APDUs
per second, while N < 0 specifies a mean rate of -1/N APDUs
per second. N = 0 is invalid.

This element is related to the output argument
Assigned_Excess_Burst in Table 27

Assigned_Max_Send_Window_Size 5 Type: Unsigned8

Classification: Static

Accessibility: Read/write

This is related to the output argument
Assigned_Max_Send_Window_Size in Table 27

NL_Header_Include_Contract_Flag 6 Type: Boolean1

Classification: Static

Accessibility: Read/write

This is related to the corresponding element in Table 208 and
is used for configuring the NL of the new device to use the
contract assigned to the new device

62734/2CDV © IEC(E) – 175 –

Standard data type name: New_Device_Contract_Response

Standard data type code: 405

Element name Element
identifier

Element type

NL_Next_Hop 7 Type: IPv6Address

Classification: Static

Accessibility: Read/write

This is related to the corresponding element in Table 208 and
is used for configuring the NL of the new device to use the
contract assigned to the new device

NL_NWK_HopLimit 8 Type: Unsigned8

Classification: Static

Accessibility: Read/write

This is related to the corresponding element in Table 208 and
is used for configuring the NL of the new device to use the
contract assigned to the new device

NL_Outgoing_Interface 9 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Named values:
0: DL;
1: backbone

This is related to the corresponding element in Table 208 and
is used for configuring the NL of the new device to use the
contract assigned to the new device

 3867
The new device shall use the DL information provided in the advertisement DPDU to support 3868
this contract. After the device joins the network, the system manager shall access the relevant 3869
DLMO attributes in the device to modify this DL information as appropriate. More information 3870
about this DL information and the DLMO attributes is given in 9.1.14. 3871

If the new device is not allowed by the security manager to join the network, the security 3872
manager should inform the system manager to free up this contract and the associated 3873
network resources. When so notified, the system manager shall free up the contract and the 3874
associated network resources of such a device that is not allowed to join the network. 3875

6.3.11.2.7 Quality of service 3876

6.3.11.2.7.1 General 3877

The contract assigned by the system manager to a requesting application process also 3878
indicates the quality of service (QoS) for the provided communication service. The contract 3879
establishment shall be used to reach this QoS agreement between the requesting application 3880
process and the system manager. 3881

An application process that wants to communicate with its peer may indicate the QoS desired 3882
for this communication in its contract request. The input arguments described in Table 27 may 3883
be used for this purpose. 3884

The input arguments Contract_Priority and Payload_Size may be used in contract requests 3885
pertaining to both periodic and aperiodic communication services. Input arguments 3886
Requested_Period, Requested_Phase and Requested_Deadline are relevant for periodic 3887
communications. Input arguments Committed_Burst, Excess_Burst and 3888
Max_Send_Window_Size are relevant for aperiodic communications. The input argument 3889
Reliability_And_PublishDoNotAutoRetransmit contains information about desired reliability 3890
which is relevant for both periodic and aperiodic communications. It also indicates if the 3891

 – 176 – 62734/2CDV © IEC(E)

application process wants to retransmit old periodic communication data if new data is not 3892
available. 3893

In the contract response, the system manager shall indicate the QoS level provided for the 3894
assigned communication service. The output arguments described in Table 27 corresponding 3895
to the above mentioned input arguments shall be used for this purpose. 3896

6.3.11.2.7.2 Contract negotiability 3897

A source that is sending a contract request shall also indicate whether the requested 3898
communication service and the QoS are negotiable, i.e., whether the system manager can 3899
assign a contract that provides a different communication service and QoS than the ones 3900
requested if it cannot support the request as is, and whether the system manager can revoke 3901
the contract if necessary. The input argument Contract_Negotiability shall be used for this 3902
purpose. 3903

Table 27 contains arguments that are necessary for contract negotiation between the source 3904
and the system manager. If the system manager is unable to support a contract request, it 3905
may choose to provide contract negotiation guidance. Such guidance shall be provided using 3906
the output arguments in Table 27 that start with the word supportable, e.g., 3907
Supportable_Contract_Priority. 3908

If the system manager is unable to support the contract request at the time it was received but 3909
expects to be able to support such a request in the future, it may indicate this by using the 3910
output argument Retry_Backoff_Time. 3911

6.3.11.2.7.3 Contract priorities and message priorities 3912

Two priority levels shall be supported in the system, contract priority and message priority. 3913

Contract priority shall establish a base priority for all messages sent using that contract. Four 3914
contract priorities shall be supported using 2 bits: 3915

• Network control = 3. Network control may be used for critical management of the network 3916
by the system manager. 3917

• Real time buffer = 2. Real time buffer may be used for periodic communications in which 3918
the message buffer is overwritten whenever a newer message is generated. 3919

• Real time sequential = 1. Real time sequential may be used for applications such as voice 3920
or video that need sequential delivery of messages. 3921

• Best effort queued = 0. Best effort queued may be used for client/server communications. 3922

Message priority shall establish priority within a contract. Two message priorities shall be 3923
supported using 1 bit, low = 0 and high = 1. Another 1 bit is reserved for future releases of 3924
this standard and shall be set to 0. 3925

Contract priority shall be specified by the application, during contract establishment time, in 3926
its contract request. It may be used by the system manager to establish preferred routes for 3927
high priority contracts and for load balancing the network. The system manager shall convey 3928
the assigned contract priority to the source in the contract response. 3929

Message priority shall be supplied by the application for every message sent down the 3930
protocol suite. In the source, the message priority shall flow down the protocol suite. The 3931
contract priority shall be added at the NL. Contract priority shall have precedence over 3932
message priority. 3933

Combined contract/message priority shall be used to resolve contention for scarce resources 3934
when these messages are forwarded through the network. DL shall use this information to 3935
drive queuing decisions when forwarding messages on the D-subnet. It shall be included only 3936

62734/2CDV © IEC(E) – 177 –

in the DL header. When a message is sent on a backbone, priority shall be included in the 3937
network headers. The NL shall use priority to drive queuing decisions on a backbone. 3938

6.3.11.2.7.4 Arguments related to phase 3939

The input argument Requested_Phase shall be used by the application process requesting 3940
the contract to request a phase which is the time offset from the beginning of a period. This 3941
time offset is expressed as a percentage of the time within a period. All periods shall be 3942
calculated such that their start times are synchronous with the beginning of TAI time. 3943
Applications may use the Requested_Phase to achieve time-synchronized, distributed loop 3944
execution with minimum latency and bounded jitter. The exact timing of the phase as it relates 3945
to the DL is specified by the link number, which is described in 9.4.3.7. 3946

6.3.11.2.8 Contract establishment message sequence diagram 3947

Figure 30 shows an example of a message sequence chart for the establishment of a 3948
contract. This example does not involve any timeouts and the source device accepts the 3949
contract established by the system manager even if this contract provides a different 3950
communication service than the one requested. 3951

 3952

Figure 30 – Contract establishment example 3953

6.3.11.2.9 Use of contract identifier 3954

6.3.11.2.9.1 General 3955

The contract ID shall be provided by the system manager to the source. The contract 3956
requesting application process shall retrieve the assigned contract ID and shall use it to send 3957
protocol data units down the protocol suite. As described previously, each layer of the source 3958
is configured for treating such upper layer PDUs that are accompanied by the contract ID, 3959
which is passed along as a DSAP control parameter. 3960

Figure 31 illustrates how the contract ID shall be used as the data unit flows down the 3961
protocol suite of the source. 3962

 – 178 – 62734/2CDV © IEC(E)

Data link layer

Application sub-layer

User
application
process a

User
application
process n

U
A

P
M

E
-

2
S

A
P

U
A

P
M

E
-

n
S

A
P

ASLDE-n
SAP

ASLDE-2
SAP

ASMSAP

ASLDE-0
SAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-2

PMSAPPDSAP

NMSAP

NDSAP

TMSAP

TDSAP-0TDSAP-n

Device manager
(DMAP)

MDSAP

DMSAP

DDSAP

MMSAP

Source

Packet to destination

• Use contract ID to determine max APDU size

• Include contract ID (and message priority) as
DSAP control parameter along with PDU

• Use contract ID to determine destination EUI-64
and destination SAP/port, which then determine
the session key

• Include contract ID (and message priority) as
DSAP control parameter along with PDU

• Use contract ID to determine 128-bit destination
address, destination alias, and whether contract
ID should be included in network layer header

• If layer below is DL, include contract ID (and
contract priority + message priority) as DSAP
control parameter, along with PDU

• If layer below is backbone, include traffic class/
priority field and hop limit field in network layer
header

• Use contract ID to select appropriate DL info
(e.g. graph, route, 16-bit DL address of next
hop, timeslot template, etc.

• Include necessary info in DL header and send
packet down to MAC/PHY for transmission

 3963

Figure 31 – Contract ID usage in source 3964

6.3.11.2.9.2 Use of contract identifier in intermediate backbone routers 3965

Inclusion of the contract ID in the network header of the NPDU by the source shall be 3966
configured by the system manager. If the communication path from the source to the 3967
destination goes through the backbone, then the system manager shall inform the source to 3968
include the contract ID in its network header. More details are provided in 10.5.3. 3969

6.3.11.2.9.3 Relation between contracts and alerts 3970

Access to the DMAP is restricted to the SMAP that resides in the system manager. In 3971
contradiction to this general principle, alert masters are allowed to access the ARMO object 3972
present in the DMAP. DMAP access by alert masters shall be limited to the ARMO, unless the 3973
alert master uses the DMAP-SMAP session established when the device joined the network. 3974
The ARMO in the DMAP shall transmit alerts that belong to the different alert categories to 3975
the respective alert masters which are described in 6.2.7.2. If these alert masters are different 3976
devices with their own unique IPv6Addresses, the ARMO shall have a separate contract with 3977
each one to communicate the alerts. The ARMO in the device requests for these contracts 3978
from the system manager through the DMO in the device. 3979

6.3.11.2.10 Contract termination, deactivation and reactivation 3980

6.3.11.2.10.1 General 3981

Contracts may be terminated when the communication need that established the contract has 3982
been satisfied. Contracts may also be terminated when either the source or the destination 3983
are no longer available. 3984

62734/2CDV © IEC(E) – 179 –

When there is a contract termination, the SCO shall inform the DMO of the source, if the 3985
source is still available. The DMO in turn informs the application process that was using this 3986
contract. 3987

When there is a contract termination, the SCO may also free up the network resources that 3988
were allocated for supporting the contract. In addition, security information, including T-keys 3989
between the source and the destination, may also be deleted by the security manager based 3990
on interactions with the system manager. 3991

A contract may also be deactivated if the communication need is expected to be suspended 3992
for a period of time. The contract can be reactivated when the communication need resumes. 3993

6.3.11.2.10.2 Contract termination when a device leaves the network or is no longer 3994
available 3995

When the system manager determines that a device is no longer part of the network, it shall 3996
terminate all the contracts associated with that device and free up the network resources that 3997
were allocated for supporting those contracts. The system manager may use information from 3998
other devices in the neighborhood of this device to decide that this device is no longer part of 3999
the network. The system manager may read the dlmo.Neighbor attribute (described in 9.4.3.4) 4000
of these neighboring devices to make this decision. 4001

When a device that has DMO attribute Non_Volatile_Memory_Capability = 1 loses network 4002
connectivity / power cycles or goes through a warm restart for any reason, it shall maintain all 4003
necessary information related to contracts as described in 6.3.9.4.2. So, this device can 4004
resume normal operation as soon as it re-establishes time synchronization with the network. 4005
The device is expected to re-establish time synchronization by listening for advertisements or 4006
by soliciting advertisements. 4007

If the system manager terminated all the contracts of this device while the device was not part 4008
of the network, the device is expected to be unsuccessful in resuming normal operation and 4009
so is expected to execute a restartAsProvisioned cycle. This device shall retain all the 4010
information that was provided to it during the provisioning step before it first joined the 4011
network as well as all the constant and static information present in the UAPs. 4012

When a device that has DMO attribute Non_Volatile_Memory_Capability = 0 loses network 4013
connectivity, cycles power, or undergoes a restartAsProvisioned cycle for any reason, it is 4014
expected to repeat the join process by using the information that was provided to it during the 4015
provisioning step before it first joined the network. This device shall also retain all the 4016
constant and static information present in the UAPs. 4017

The DMO of a device that is resetting to the factory default state or is undergoing a 4018
restartAsProvisioned cycle shall terminate all its contracts by using the method defined in 4019
Table 27 before resetting or restarting. 4020

6.3.11.2.10.3 Contract termination when the T-key is terminated 4021

The system manager may terminate a contract of a particular device if it is informed by the 4022
security manager that a corresponding T-key of that device has been terminated. Any contract 4023
of the device that uses the T-port corresponding to this particular T-key may be terminated. 4024

6.3.11.2.10.4 Devices that can terminate, deactivate and reactivate contracts 4025

Only the source or the system manager shall have the ability to terminate an existing contract 4026
of the source. 4027

Only the source shall have the ability to deactivate and reactivate an existing contract of the 4028
source. 4029

 – 180 – 62734/2CDV © IEC(E)

6.3.11.2.10.5 Contract termination, deactivation, and reactivation request and response 4030
arguments 4031

If the source decides to terminate a contract, it shall send a contract termination request to 4032
the SCO. The SCO shall then send the response back to the source informing it that the 4033
contract has been terminated. The request shall be an Execute.Request to the SCO with the 4034
contract ID as one of the input arguments, and the response shall be an Execute.Response 4035
with status as the output argument. This is described in Table 32. 4036

If the source decides to deactivate / reactivate a contract, it shall send a contract deactivation 4037
/ reactivation request to the SCO. The SCO shall then send the response back to the source 4038
informing it that the contract has been deactivated / reactivated. The request shall be an 4039
Execute.Request to the SCO with the contract ID as one of the input arguments, and the 4040
response shall be an Execute.Response with status as the output argument. This is described 4041
in Table 32. 4042

Table 32 – SCO method for contract termination, deactivation and reactivation 4043

Standard object type name:System communication configuration object (SCO)

Standard object type identifier: 102

Method name Method
ID

Method description

Contract_Termination
_Deactivation_Reactivation

2 Method to terminate, deactivate or reactivate a contract

Input arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

1 Contract
ID

Unsigned16 ID of contract being
terminated, deactivated or
reactivated

2 Operation Unsigned8 Named values:
0: contract termination;
1: contract deactivation;
2: contract reactivation.

Output arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

1 Error Unsigned8 Named values:
0: success;
>0: failure

 4044
If the system manager decides to terminate a contract, it shall send a contract termination 4045
command with the contract ID to the DMO of the source. The DMO shall then return a 4046
response with the status. 4047

The DMO method to notify an application that an existing contract has been terminated is 4048
described in Table 33. 4049

62734/2CDV © IEC(E) – 181 –

Table 33 – DMO method to notify of contract termination 4050

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Method name Method
ID

Method description

Contract_Terminated 1 Method to notify an application of the termination of an existing contract, as
found in the Contracts_Table attribute in Table 10. This method uses the
Delete_Row method template defined in Table J.5 with the following
arguments:

Attribute_ID: 26 (Contracts_Table)

Index_1: 1 (Contract_ID)

 4051
6.3.11.2.10.6 Protocol suite configuration 4052

When the SCO terminates a contract, in addition to informing the source about the 4053
termination, it may also free up the network resources that were allocated in the source, 4054
destination, and intermediate devices. Procedures similar to those used for protocol suite 4055
configuration during contract establishment (see 6.3.11.2.6) may be used by the SCO to free 4056
up these network resources. 4057

The SCO informs the security manager through the PSMO about the contract termination. The 4058
security manager may decide to delete the T-key that has been assigned for the 4059
communication between the source and the destination. In this case, the security manager 4060
shall send T-key delete messages to the source and the destination through the PSMO. 4061

6.3.11.2.10.7 Contract termination message sequence diagram 4062

Figure 32 shows the message sequence chart for termination of a contract initiated by the 4063
system manager. 4064

UAP DMO
System

manager (SCO)
Destination

device

Free resources in
network devices

network
devices

Contract active

Contracted messages
to the destination device

Contract deleted

Source device

The order
of these
system

manager
actions

can vary

Free up reserved
resources

Delete
contract
request

Execute.Request

Execute.Response

Execute.Request (delete contract)
Execute. Response (delete success)

 4065

Figure 32 – Contract termination 4066

 – 182 – 62734/2CDV © IEC(E)

6.3.11.2.11 Contract maintenance and modification 4067

6.3.11.2.11.1 General 4068

The SCO needs to maintain established contracts by ensuring that the allocated network 4069
resources are available under normal conditions. If the allocated network resources become 4070
unavailable, the SCO may choose to allocate alternate network resources in order to continue 4071
to maintain the established contract. 4072

A contract may be modified if the communication need of the corresponding application 4073
(supported by that contract) changes. A contract may also be modified if the system manager 4074
decides to change the network resources allocated for the contract. 4075

Contract modifications fall into two categories: 4076

• modifications resulting in a reduction of the allocated network resources, and 4077

• modifications resulting in a change or increase of allocated network resources. 4078

For application-initiated contract modifications, these two categories follow slightly different 4079
steps. 4080

Contract modifications that result in a reduction of the allocated network resources may go 4081
into immediate effect, i.e., the source may start using the protocol suite configuration of the 4082
modified contract as soon as it receives the response along with this configuration information 4083
from the SCO if this response indicates so in the Response_Code output argument. 4084

Contract modifications that result in an increase or change of the allocated network resources 4085
shall not go into immediate effect, i.e., the source shall not start using the protocol suite 4086
configuration of the modified contract as soon as it receives the response along with this 4087
configuration information from the SCO. This is because the SCO still needs to increase or 4088
change the allocation of network resources. The response from the SCO shall include an 4089
Activation_Time output argument that indicates to the source when it can start using the new 4090
protocol suite configuration. This results in a delayed effect. 4091

6.3.11.2.11.2 Devices that can modify contracts 4092

Only the source or the system manager shall have the ability to modify an existing contract of 4093
this source. 4094

6.3.11.2.11.3 Contract modification request and response arguments 4095

If the source decides to modify a contract, it shall send a contract modification request to the 4096
SCO. The SCO shall then send a response back to the source informing it that the contract 4097
has been modified. The request shall be an Execute.Request to the SCO, and the response 4098
shall be an Execute.Response message. The input and output arguments are provided in 4099
Table 27. The SCO may also communicate with relevant devices to allocate or de-allocate the 4100
necessary network resources. 4101

If the system manager decides to modify a contract, it shall send a contract modification 4102
command to the DMO of the source by using the Modify_Contract method. The DMO shall 4103
then send a response back with the status. The SCO may also communicate with relevant 4104
devices to allocate or de-allocate the necessary network resources. 4105

The DMO method to notify an application that an existing contract has been modified is 4106
described in Table 34. 4107

62734/2CDV © IEC(E) – 183 –

Table 34 – DMO method to notify of contract modification 4108

Standard object type name: Device management object (DMO)

Standard object type identifier: 127

Method name Method
ID

Method description

Contract_Modified 2 Method to notify an application of the modification of an existing contract, as
found in the Contracts_Table attribute in Table 10. This method uses the
Write_Row method template defined in Table J.3 with the following arguments:

Attribute_ID: 26 (Contracts_Table)

Index_1: 1 (Contract_ID)

 4109
6.3.11.2.11.4 Contract renewal 4110

Contract renewal is equivalent to a simple contract modification, with only the 4111
Contract_Expiration_Time input argument being updated and all other input arguments being 4112
the same as those in the original contract request. 4113

6.3.11.2.11.5 Protocol suite configuration 4114

As part of contract modification, the SCO shall configure / re-configure the necessary devices 4115
in the network by providing necessary protocol suite configurations to each of them. This shall 4116
include the re-configuration of the destination and the source. Procedures similar to the ones 4117
used for protocol suite configuration during contract establishment (see 6.3.11.2.6) may be 4118
used by the SCO for this purpose. 4119

6.3.11.2.11.6 Contract modification message sequence diagram 4120

Figure 33 shows the message sequence chart for modifying a contract with immediate effect. 4121

UAP DMO
System

manager (SCO)
Destination

device

Modify resources
in network devices

network
devices

Modified contract
messages to the

destination device

Contract active

Current contracted
messages to the destination

device

Source device

Local?
Change
contract
request

Check contract
parameters

Start using modified contract

OK

Modify reserved resources

Execute.Request (modify contract,
reduced resources)

Execute.Response (indicate
modification accepted)

Execute.Request

Execute.Response

No: request change or
delete (not shown)

The order
of these
system

manager
actions

can vary

 4122

Figure 33 – Contract modification with immediate effect 4123

 – 184 – 62734/2CDV © IEC(E)

6.3.11.2.11.7 Contract modification and T-key updates 4124

T-key updates are not treated as contract modifications. Such key updates shall be sent from 4125
the security manager, through the proxy security management object (PSMO) in the system 4126
manager, to the relevant devices that have the corresponding session. 4127

6.3.11.2.12 Contract failure scenarios 4128

Table 27 contains output arguments for failure scenarios in which the system manager is not 4129
able to support the contract request. Such failures may occur if the requested communication 4130
service cannot be supported at all, if it cannot be supported due to a temporary condition, or if 4131
it cannot be supported unless the request is resent by the source with arguments negotiated 4132
down. In such cases, the system manager may choose to include output arguments in the 4133
response that provide some guidance to the source. These include Retry_Backoff_Time and 4134
Negotiation_Guidance. 4135

 Redundancy management 6.3.124136

Although this standard incorporates features that provide for both simplex and fully-redundant 4137
wireless connection from field devices to a backbone plant network, the management of that 4138
redundancy is not specified in this standard. 4139

The system manager is expected to be capable of configuring path redundancy in the 4140
D-subnet through the field routers. Field devices, including field routers, can be configured to 4141
communicate with redundant backbone routers. 4142

Device-level redundancy that requires synchronization between the redundant devices to 4143
maintain state information is allowed, but is not specified in this standard. 4144

 System management protocols 6.3.134145

Management-related communication between devices compliant with this standard and the 4146
system manager shall be accomplished via standard application sublayer messaging, as 4147
described in 12.12. 4148

 Management policies and policy administration 6.3.144149

Management policies and policy administration are not specified by this standard. A default 4150
policy may be established to make all device information available to the system manager 4151
(with appropriate security). Overview information may be made available outside the network 4152
(e.g., the network is operating within nominal limits). 4153

 Operational interaction with plant operations or maintenance personnel 6.3.154154

While the device implementing the system manager may have an interface that allows plant 4155
operations and maintenance personnel to observe and control the performance of the network 4156
and devices, this interface is neither mandatory nor is it specified by this standard. 4157

62734/2CDV © IEC(E) – 185 –

7 Security 4158

 General 7.14159

Clause 7 describes the security component functionality, its interface with the DLE and the 4160
TLE, and the protection of data in transit. It also describes the security manager role. 4161

The primary focus of Clause 7 is to provide transmission security and related security aspects 4162
including the join process, session establishment, key updates, and associated policies. This 4163
standard does not address other types of security, such as security of data-at-rest or physical 4164
device security. 4165

The specific messages that are protected are single-hop (hop-by-hop) DPDUs, end-to-end 4166
transport TPDUs, and security management data structures when conveyed in APDUs. A 4167
steady-state data flow using DPDUs and TPDUs that may be protected is outlined in Figure 4168
34. The TLE endpoints of a T-security association are defined by the endpoint devices as well 4169
as the end application. 4170

 4171

Figure 34 – Examples of DPDU and TPDU scope 4172

 – 186 – 62734/2CDV © IEC(E)

 Security services 7.24173

 Overview 7.2.14174

The security services in this standard are selected by policy. The policy is distributed with 4175
each cryptographic material, permitting focused policy application. Since a single key is used 4176
at a time at the DL, except for a brief period of key switchover, the entire sub-network is 4177
subject to the same policies at the DL. The security manager controls the policies for all the 4178
cryptographic materials it generates. 4179

Devices with appropriate credentials participate in secured communications with other such 4180
devices through the use of a shared-secret symmetric key that is used to authenticate and, by 4181
security configuration, to encrypt their messages to each other. 4182

NOTE 1 Although authentication involves use of an encryption primitive, it does not result in confidentiality of the 4183
message contents; a separate encryption process (pass) is required for message content confidentiality. 4184

The security services are applied at the bottom of the communication protocol stack, hop-by-4185
hop at the DL, and at the top of the communication protocol stack, end-to-end at the TL. 4186
Security management services are also used by the AL for the join process, key distribution 4187
and session management. When secret keys are used, DL security defends against attackers 4188
which are outside the system and do not share system secrets, while TL security defends 4189
against attackers which may be on the network path between the source and the destination. 4190

In both cases, a symmetric data key (also known as a T-key), shared among intended 4191
communicants, is used to add a cryptographically-hard, keyed, message integrity check (MIC) 4192
to the PDU and, when so specified, to provide confidentiality (via encryption) of the PDU’s 4193
payload. Attackers that do not share the key cannot modify the message without a very high 4194
probability of detection and cannot decrypt any encrypted payload. 4195

The security operation is based on a shared sense of time that usually is aligned with TAI 4196
time (see 5.6). The sending DLE and TLE authenticate to their receiving peers using the 4197
nominal TAI time of DPDU transmission and the approximate time of TPDU creation. 4198

When three or more devices share a common secret key, source authentication is no longer 4199
guaranteed within that group because of the shared symmetric key. In this case, intra-group 4200
source authentication requires complex mechanisms; thus, authentication of the specific 4201
sending node (within the multicast group) is not addressed. 4202

The primary security components of the provided services include: 4203

• authorization of secure communications relationships between entities; 4204

• message authenticity, ensuring that messages originate from an authorized member of a 4205
communications relationship and that they have not been modified while in transit between 4206
originator and receiver by an entity outside of the relationship; 4207

• assurance that delivery timing and message reordering does not exceed anticipated 4208
bounds; 4209

• data confidentiality that conceals the contents (other than size) among message payloads; 4210
and 4211

• protection against malicious replay attack. 4212

Various combinations of these services are provided to both a DLE and a TLE. Additionally, 4213
various cryptographic services are available for use by the DSMO for the join process, 4214
session establishment and key update. 4215

NOTE 2 Protection against compromise of the cryptographic boundaries inside the hardware of devices compliant 4216
with this standard is beyond the scope of this standard. Other publications, including ISO/IEC 15408 and 4217
ISO/IEC 19790 (similar to the [US] NIST FIPS 140 series), address those issues. Compliance decisions are left to 4218
those who evaluate devices. 4219

62734/2CDV © IEC(E) – 187 –

 Keys 7.2.24220

7.2.2.1 General 4221

Symmetric keys are used for data encryption and authentication; see 7.3.2.5, 7.3.2.6, 7.3.3.8, 4222
and 7.3.3.9. Asymmetric keys can be used for the join process, see 7.4. Each key is limited in 4223
time and can be updated. Figure 35 shows the types of keys specified by this standard and 4224
their associated lifetimes, including an asymmetric-key security certificate (should one exist). 4225

Time

Provisioned Joined Revoked

Join Key

Master key

DL Key

Session Key

Session Key

Session Key
Session Key

Session Key
Session Key

DL Key
DL Key

.....

.....

Master key
Master key

.....

New Join Key (opt)

Root and Device Certificates
Device Certificate 1 (opt)

Device Certificate 2(opt)

 4226

Figure 35 – Keys and associated lifetimes 4227

7.2.2.2 Symmetric keys 4228

All WISN symmetric keys shall be 128-bit values. The symmetric keys used include: 4229

• Global key: a well-known key that cannot be used to guarantee any security properties 4230
and which never expires. 4231

• K_open: a global key used as the join key in the provisioning step described in 13.3. The 4232
actual value for this key is 0x004F 0050 0045 004E 0000 0000 0000 0000, which is the 4233
representation of the null-terminated 16-octet Unicode string “OPEN(null)(null)(null)(null)”. 4234
The crypto key identifier for this key is 1. 4235

• K_global: a global key used as the join key in the provisioning phase, and as the D-key in 4236
the joining phase. Use of this key in the provisioning phase is described in 13.3. The 4237
actual value for this key is 0x0049 0053 0041 0020 0031 0030 0030 0000, which is the 4238
representation of the null-terminated 16-octet Unicode string “ISA(space)100(null)“. The 4239
crypto key identifier for this key is 0. 4240

• Join key (K_join): a key received at the conclusion of the provisioning step, is used to join 4241
a network for which the device was provisioned. The default value of the K_join key is the 4242
same as the default value of K_global. 4243

• Master key: a key derived at the conclusion of a key agreement scheme, which is used as 4244
a KEK for communication between the security manager and the device, as well as a basis 4245
for deriving other keys. This key expires and needs to be updated periodically. 4246

• D-key: a key used to encrypt/decrypt and/or authenticate DPDUs. This key expires and 4247
needs to be updated periodically. 4248

• T-key: a key used to encrypt/decrypt and/or authenticate TPDUs. That key expires and 4249
needs to be periodically updated. 4250

 – 188 – 62734/2CDV © IEC(E)

7.2.2.3 Asymmetric keys and certificates 4251

Support of asymmeric cryptography is a device construction option. 4252

All WISN asymmetric keys shall have a cryptographic strength of at least 128 –bits. The 4253
asymmetric keys used include: 4254

• CA_root: The public key of the certificate authority that signed the device’s asymmetric-4255
key certificate. This key is commonly referred to as a root key; it is used in verifying the 4256
true identity of the device communicating the certificate, as well as some related keying 4257
information. 4258

• Cert-A: The asymmetric-key certificate of device A, used to evidence the true identity of 4259
the device, as well as related keying information. It is used during execution of an 4260
authenticated asymmetric-key key establishment protocol. 4261

The description of the asymmetric-key cryptographic material is provided in H.3. 4262

7.2.2.4 Key lifetime 4263

7.2.2.4.1 General 4264

Symmetric keys are limited by a lifetime and should be invalidated after the lifetime expires. 4265
To maintain security of ongoing communications, the current keys are updated. In this 4266
specification, the key lifetimes (and related information) are defined as follows: 4267

ValidNotBefore: TAI time at which a key will be enabled; 4268
ValidNotAfter: TAI time after which a key will become invalid; 4269
SoftExpirationTime: TAI time when a device should prepare for updating a key; 4270
HardLifeSpan: Relative duration from ValidNotBefore to ValidNotAfter; 4271
KeyExchangeMargin: Minimum time required to complete a key update cycle. 4272

NOTE 1 Since the above are used herein as variables in formulae they use the typeface for variables. 4273

The relationship of the above lifetime definitions is illustrated in Figure 36. The key update 4274
mechanism using those time definitions is described in 7.6. 4275

The special value 0xFFFF FFFF is used to designate keys that never expire, which is used for 4276
Global keys specified in 7.2.2.2. Thus any compution of the expiration time of a key shall 4277
increment a result value of 0xFFFF FFFF to 0x0000 0000. Similarly, any logic that determines 4278
whether a key has expired because the key’s expiration time is in the near past shall 4279
determine that expiry has not occurred when that value for that expiration time is 4280
0xFFFF FFFF. 4281

NOTE 2 DL, TL and KEKs / master keys are safer if they do expire, since keys that do not expire increase the 4282
system’s vulnerability to prolonged observation and attack. 4283

62734/2CDV © IEC(E) – 189 –

Valid period of a key

HardLifeSpan

SoftLifeSpan KeyExchangeMargine

Time

Current time

ValidNotBefore

SoftExpirationTime

ValidNotAfter

 4284

Figure 36 – Key lifetimes 4285

NOTE 3 A key used after its hard lifetime can make communications vulnerable to replay attacks. 4286

Asymmetric-key certificates should have a lifetime (ValidNotBefore and ValidNotAfter), as 4287
defined in 7.4.6.2.1.1. 4288

KeyExchangeMargin can be used as a trigger for invoking the PSMO.Key_Update_Request() 4289
method to keep the continuous secure session. It is recommended that KeyExchangeMargin is 4290
set to “5 times DSMO.pduMaxAge” seconds, consisting of: 4291

• 2 × DSMO.pduMaxAge seconds for a Security_New_Session() method round-trip 4292
communication; 4293

• 2 × DSMO.pduMaxAge seconds for a New_Key() method round-trip communication; and 4294

• another DSMO.pduMaxAge seconds for processing time. 4295

7.2.2.4.2 Key lifetime expiration 4296

7.2.2.4.2.1 SoftExpirationTime 4297

When the SoftExpirationTime is past, the device owning the key prepares to get a new key 4298
from the security manager. The device may call the PSMO.Security_New_Session() method 4299
on the system manager to explicitly request a key, or it can wait to have its DSMO.New_Key() 4300
method called by the security manager. If the device wants to be certain about updating a 4301
key, it should call the PSMO.Security_New_Key() on the system manager method explicitly. 4302

It is not necessary for the device to start the key update process immediately after 4303
SoftExpirationTime. The key update can be accomplished at any time up to ValidNotAfter. To 4304
keep the current secure session with a peer, a request for a new key can be issued at some 4305
point between SoftExpirationTime and ValidNotAfter. The device should call the 4306
PSMO.Security_New_Key() method before (HardExpirationTime – KeyExchangeMargin). 4307

7.2.2.4.2.2 ValidNotAfter 4308

The key shall not be used in active communication after ValidNotAfter and should be zeroized 4309
by all devices using the key. However, the key can be archived in a secure manner, 4310
depending on system key archiving policy. 4311

 – 190 – 62734/2CDV © IEC(E)

 PDU security 7.34312

 General 7.3.14313

7.3.1.1 Security level 4314

The security level specifies the method to be applied to certain PDUs. The security level 4315
consists of a combination of the MIC size (0 bits, 32 bits, 64 bits or 128 bits) and whether the 4316
associated PDU payload is to be encrypted or not. Table 35 shows the security levels used in 4317
this specification and their corresponding security attributes. 4318

Table 35 – Security levels 4319

Security level value Security attributes Where usable

0 none TPDU

1 MIC-32 Data DPDU, ACK/NAK DPDU, TPDU

2 MIC-64 Data DPDU, TPDU

3 MIC-128 TPDU

4 ENC-only never

5 ENC-MIC-32 TPDU, Data DPDU

6 ENC-MIC-64 TPDU, Data DPDUL

7 ENC-MIC-128 TPDU

NOTES

PhPDU size constraints and loss rates dictate the ACK/NAK DPDU restriction
to MIC-32 and the Data DPDU restriction to MIC-32, ENC-MIC-32, MIC-64, or
ENC-MIC-64.

ACK/NAK DPDUs do not contain a payload field to which the ENC operation
could apply.

ENC-only is excluded because it is not possible to determine whether the
eventual decryption is correct.

 4320
7.3.1.2 Security control field 4321

The security control field is part of each DL and TL security header. Its value specifies the 4322
presence of the key identifier and the security level to be applied to the PDU. The 4323
SecurityControl field octets shall conform to IEEE 802.15.4:2011, 7.4.1. 4324

Table 36 shows the structure of the security control field. 4325

Table 36 – Structure of the security control field 4326

Octet Bits

7 6 5 4 3 2 1 0

1 Reserved Crypto key identifier mode Security level

 4327
The CryptoKeyIdentifierMode field encodes the size of the CryptoKeyIdentifier field that 4328
immediately follows the SecurityControl field in the PDU. If the key identifier mode is set to 0, 4329
the following CryptoKeyIdentifier field is elided. 4330

The security level field shall consist of 3 bits as defined in IEEE 802.15.4:2011, Table 58, and 4331
summarized in Table 35 of this standard. The security level 0x04, corresponding to encryption 4332
only, shall never be used for a TPDU, or the first DPDU of a D-transaction, of this standard. 4333
The security level of 0x00, corresponding to no protection shall never be used for a DPDU in 4334
this standard. 4335

62734/2CDV © IEC(E) – 191 –

NOTE ENC, encryption-only, does not provide any protection against an active attacker, because such an 4336
attacker is able to arbitrarily complement selected bits of any PDU in transit. Without a cryptographically-difficult-4337
to-forge integrity field, there is no secure method for the recipient to detect such a change, and thus any active 4338
attacker can easily fabricate a malicious PDU. 4339

 DPDU security 7.3.24340

7.3.2.1 General 4341

The degree to which a device is permitted to participate in a D-subnet shall be determined by 4342
system policy applied to credentials supplied by the device. Devices without credentials shall 4343
be permitted full, limited, or no participation beyond join attempts, as determined by system 4344
policy for such devices. 4345

All DPDUs include security fields and a cryptographically-strong DMIC. The details of the 4346
cryptographic building blocks are in Annex H. In non-secure mode, the key distributed might 4347
have traveled over an insecure channel. When a properly secured secret D-key is used, the 4348
following security services are always provided: 4349

a) DPDU source-set authentication; 4350
b) DPDU integrity; and 4351
c) proof that the DPDU was received at the intended time, providing rejection of DPDUs 4352

– that were not sourced by a device within the network that shares an appropriate data 4353
key, or 4354

– that were not received within an acceptable time window relative to their nominal time 4355
of formation or transmission, or 4356

– that were previously received. 4357

NOTE 1 Authorization is implied by the fact that the sending device has knowledge of a shared symmetric data 4358
key. When the key is not a shared secret, the authorization extends to all possible devices through the use of the 4359
global key. When the key is a shared secret, an inference is available that the sending device obtained the shared-4360
secret key from a security manager, and that it would have obtained the key only if the security manager’s 4361
authorization database permitted the resulting protected communications relationship. Such permission usually is 4362
based on the device’s role. See Device_Role_Capability (standard object type identifier 127, attribute identifier 4, 4363
in Table 10) for a definition of the roles and their respective bitmap. 4364

NOTE 2 The detection of reception at an inappropriate time renders ineffective attacks on the MAC message 4365
stream that are based on DPDU delay, reordering, or replay, since the transmission duration of each DPDU is 4366
greater than the 1 ms window within which such reordering would be undetectable. 4367

NOTE 3 This service uses the sender’s time of transmission, the receiver’s time of reception, and the fact that 4368
MAC transmission and reception are highly concurrent to ensure that any DPDU received at an unintended time, 4369
including DPDU replay or DPDU stream reordering, will be detected and the anachronistic DPDU(s) rejected. 4370

The amount of redundancy (i.e., DMIC size) that is used to provide DPDU integrity is selected 4371
by policy associated with the relevant data key. 4372

The following additional DL security service is selectable by policy associated with the 4373
relevant D-key: 4374

d) DPDU payload confidentiality (i.e., encryption). 4375

This confidentiality service shall not be offered with the K_open and K_global keys specified 4376
in 7.2.2.2, because use of these keys with their well-known constant values renders 4377
confidentiality impossible. 4378

7.3.2.2 DPDU structure 4379

The structure of a DPDU is described in 9.3.1 and outlined in Figure 88 and Figure 37 in this 4380
standard, with the DSDU possibly encrypted and the MHR, DHR and DSDU protected by the 4381
DMIC. 4382

 – 192 – 62734/2CDV © IEC(E)

 4383

Figure 37 – DPDU structure 4384

The complete DPDU from the start of the MHR to the end of the DSDU shall be protected by 4385
the DMIC. Information relevant to the DSC is the DL’s MAC extension header (DMXHR) as 4386
outlined in Table 112, the 8-bit DPDU sequence number as outlined in Table 110, and the 4387
PhPDU’s channel number (in the range 0..15). 4388

7.3.2.3 DPDU headers 4389

7.3.2.3.1 IEEE 802.15.4:2011 MAC header 4390

DPDU security is provided by the protocol stack defined in this standard, above the 4391
IEEE 802.15.4 MAC sublayer. The MAC header is defined in 9.3.3.2. 4392

7.3.2.3.2 DL MAC extension header 4393

The DMXHR outlined in Table 112 shall contain 2 fields used by the security layer. The first 4394
field shall contain the security control field as outlined in 7.3.1.2. The second field shall 4395
contain the Crypto Key Identifier as specified in IEEE 802.15.4:2011, 7.4.3. In the DMXHR, 4396
the Crypto Key Identifier shall never be elided with the Crypto Key Identifier Mode = 0. 4397

The default value of the security level for the DL shall be set to 1 (MIC-32), corresponding to 4398
authentication only with a DMIC size of 32 bits. 4399

For the DPDU processing steps, the following constraints shall be observed: 4400

• DMIC sizes of 0 bits and 128 bits are prohibited, therefore prohibiting DPDU security 4401
levels of 0 (none), 3 (MIC-128), 4 (ENC-only) and 7 (ENC-MIC-128); 4402

NOTE 1 MIC-64 provides adequate protection for Data DPDUs, given their small maximal size. That size 4403
constraint makes MIC-128 problematic, whereas the error rate of the underlying PhPDUs dictates that some 4404
MIC be used for additional DPDU integrity. A MIC also provides statistical protection against spoofing by an 4405
attacker that does not know the relevant symmetric enryption key. 4406

NOTE 2 ENC-only is not useful because it is not possible on receipt to determine that the DPDU is received 4407
unchange. 4408

• ACK/NAK DPDUs shall use only 32-bit DMICs, regardless of the security level of the Data 4409
DPDU of a D-transaction. 4410

NOTE 3 MIC-32 provides adequate protection for ACK/NAK DPDUs, given their minimal size and regulatory 4411
constraints on the duration of short control signaling (SCS), for which they qualify. ACK/NAK DPDUs carry no 4412
payload to which the DL’s ENC (encryption) capabilities could be applied. 4413

7.3.2.4 Interface between the DLE and DSC 4414

7.3.2.4.1 General 4415

Figure 38 summarizes the relationship between the DLE and DSC for DPDU transactions. 4416
This flow covers the normal case where a DPDU is transmitted and acknowledged, and no 4417
errors occur. For more detail, see the documentation for the corresponding DSAPs in 4418
7.3.2.4.2, 7.3.2.4.3, 7.3.2.4.4, 7.3.2.4.5, 7.3.2.4.6, 7.3.2.4.7, 7.3.2.4.8, and 7.3.2.4.9. 4419

62734/2CDV © IEC(E) – 193 –

All interfaces between the DLE and DSC are internal interfaces within the DLE, and thus are 4420
unobservable. Therefore they are not subject to standardization. 4421

 4422

Figure 38 – DLE and DLS processing for a D-transaction initiator 4423

The DLE assembles the DPDU to be protected. By documentation convention, security fields 4424
in the DPDU’s header are populated by the DSC. 4425

Certain DPDU security information is provided by the DLE to the DSC: 4426

• the scheduled TAI time of the timeslot, used in the nonce to detect delayed and replayed 4427
DPDUs; 4428

NOTE 1 The scheduled TAI time passed to the DSC is the scheduled TAI start time of the timeslot to which the 4429
D-transaction is assigned. The DSC truncates this time to 2-10 s (approximately 1 ms). 4430

NOTE 2 There is one scenario under this standard where a single device might initiate multiple transmissions that 4431
all have the same scheduled timeslot start time. In that case a device (usually a backbone router) operates on 4432
multiple channels simultaneously, using synchronized timeslot templates in such a way that it can use either a 4433
single shared antenna or multiple closely-spaced antennas, phased in such a way that transmissions on one or 4434
more channels do not disrupt reception on other channels. While such operation is not explicitly described by this 4435
standard it is also intentionally not prohibited. Support for such concurrent operation gives rise to the following two 4436
nonce components that are included in the DPDU’s nonce construction. 4437

• the channel number of each DPDU, used in the nonce to detect DPDUs constructed for 4438
use in one channel that are replayed within the same timeslot in another channel; 4439

NOTE 3 The channel number uses the channel-numbering convention of this standard, where the numbers 0..15 4440
correspond to IEEE 802.15.4 channels 11..26 respectively. 4441

• the one-octet sequence number found in the MAC header, used in the nonce to 4442
differentiate between the Data DPDU of a D-transaction and any ACK/NAK DPDUs that 4443
might be generated in timeslots with the same scheduled TAI start time; 4444

NOTE 4 The low-order bits of the MHR sequence number octet encode the DPDU’s zero-origin position in the 4445
D-transaction: 0 for the Data DPDU, 1 for the first ACK/NAK DPDU, 2 for a second ACK/NAK DPDU, etc. 4446

 – 194 – 62734/2CDV © IEC(E)

• the DSC needs the EUI64Address of the destination device in order to process its 4447
ACK/NAK DPDU; 4448

NOTE 5 When known to the DLE, this D-address is retrieved directly from the dlmo.Neighbor table. 4449

• when a unicast destination’s EUI64Address is not known to the DLE, the EUI64Address-4450
requested indicator in the DHDR frame control octet (Table 111) shall be set (to 1), which 4451
triggers the destination to return its EUI64Address in the ACK/NAK DPDU. 4452

NOTE 6 The DSC uses the DSDU size to encrypt only the DSDU and not the DPDU header, whereas the DMIC 4453
protects the entire DPDU. This detail is not shown in Figure 38 or Figure 39. 4454

The DLE retains a copy of the outgoing DMIC, to be used subsequently to unambiguously 4455
connect the reply ACK/NAK DPDUs to the Data DPDU of the D-transaction. The DLE then 4456
appends an IEEE 802.15.4 FCS to the DPDU and transmits it without undue delay. 4457

When the DLE receives an ACK/NAK DPDU, it requests the DSC to authenticate the DPDU. 4458
Certain DPDU security information is provided by the DLE to the DSC: 4459

• Each ACK/NAK DPDU shall echo the D-transaction’s intial DPDU’s DMIC as a virtual field 4460
(see Table 117) in the computation of its D-MIC. The full ACK/NAK DPDU, including this 4461
virtual field, is reconstructed by the DLE before it is checked by the DSC. 4462

• The EUI64Address of the ACK/NAK DPDU’s originator is either looked up or provided 4463
within the ACK/NAK DPDU itself. 4464

• The scheduled TAI time of the start of the D-transaction’s timeslot, which is usually the 4465
same as the TAI start-of-timeslot time used by the D-transaction initiator. However, when 4466
slow-channel-hopping is used, the ACK/NAK DPDU may include a timeslot offset (see 4467
9.3.4), in which case the nonce formed to check the ACK/NAK DPDU shall use the 4468
scheduled TAI start time of the timeslot referenced by the timeslot offset; that is, the 4469
scheduled timeslot of the acknowledging DLE. 4470

• The channel number for sending the ACK/NAK DPDU is provided to the DSC. 4471

• The MHR sequence number is provided to the DSC in the same manner that it is provided 4472
for the Data DPDU of the D-transaction. 4473

Figure 39 illustrates the relationship between a DLE and its DSC for D-transactions in which 4474
the DLE is a recipient of or respondent to the D-transaction’s Data DPDU. 4475

62734/2CDV © IEC(E) – 195 –

 4476

Figure 39 – Received DPDUs – DLE and DSC 4477

When receiving a DPDU, the DLE sends a request to the DSE to authenticate the DPDU and, 4478
if necessary, decrypt the DPDU payload. The scheduled TAI time and the channel number are 4479
included with this request. The EUI64Address of the DPDU’s source needs to be known by 4480
the DLE a priori, except in the case of a join request where it is carried in the DPDU header 4481
as a source address. The DSC normally responds with a positive authentication. 4482

The DLE constructs the ACK/NAK DPDU. The ACK/NAK DPDU shall use the same scheduled 4483
TAI time as the received Data DPDU of the D-transaction, except when a slow-channel-4484
hopping-offset correction is provided in the ACK/NAK DPDU as discussed above. The 4485
ACK/NAK DPDU shall also echo the DMIC of the initial received DPDU of the D-transaction as 4486
a virtual field, as shown in Table 117. The DSC then secures the ACK/NAK DPDU, including 4487
the DPDU’s DMIC as a virtual field. The DLE elides the virtual field, appends an 4488
IEEE 802.15.4 FCS, and transmits the ACK/NAK DPDU. 4489

When a DLE’s local time sense is corrected by an ACK DPDU, such that its time is reset to an 4490
earlier timeslot, there shall be a forced pause in service, equal to the magnitude of the 4491
timeslot correction plus at least one timeslot. 4492

7.3.2.4.2 Sec.DpduPrep.Request 4493

7.3.2.4.2.1 General 4494

Sec.DpduPrep.Request instructs the DSC to protect a DL protocol data unit as appropriate. 4495

7.3.2.4.2.2 Semantics of the service primitive 4496

The semantics of Sec.DpduPrep.Request are as follows: 4497

Sec.DpduPrep.Request (4498

 DPDU, 4499

 EUI64, 4500

 ScheduledTAI, 4501

 – 196 – 62734/2CDV © IEC(E)

 ChannelNumber, 4502

 AckHandle) 4503

Table 37 specifies the elements for the Sec.DpduPrep.Request. 4504

Table 37 – Sec.DpduPrep.Request elements 4505

Element name Element identifier Element scalar type

DPDU (the DPDU to be transmitted) 1 Type: OctetString

EUI64 (the EUI64Address of the sending device) 2 Type: EUI64Address

ScheduledTAI (32-bits of the start time of the slot truncated to a
2-10 s resolution)

3 Type: Unsigned32

ChannelNumber (the channel number used in the transmitted
DPDU)

4 Type: Unsigned8

Valid range: 0..15

AckHandle (abstraction that connects each invocation of
Sec.DpduPrep.Request with the subsequent callback by
Sec.DpduPrep.Response)

5 Type: Abstract

 4506
The DSC provides the DLE with the appropriate security control (octet 1) and the Crypto Key 4507
Identifier (octet 2) obtained from the KeyDescriptor for the current D-key, to be used in the 4508
DPDU’s DMXHR subheader, the format of which is described in 9.3.3.4. See 7.3.2.5 on 4509
selecting the proper D-key. 4510

The DSC populates the DMIC field as specified by the policy of the selected D-key. 4511

7.3.2.4.2.3 Appropriate usage 4512

The DLE invokes the Sec.DpduPrep.Request primitive to add security protection to a DPDU 4513
before it is transmitted. 4514

7.3.2.4.2.4 Effect on receipt 4515

On receipt of the Sec.DpduPrep.Request primitive, the DSC starts the appropriate DPDU 4516
processing steps to protect the DPDU as dictated by policy. 4517

7.3.2.4.3 Sec.DpduPrep.Response 4518

7.3.2.4.3.1 General 4519

Sec.DpduPrep.Response reports the result of a Sec.DpduPrep.Request. 4520

7.3.2.4.3.2 Semantics 4521

The semantics of Sec.DpduPrep.Response are as follows: 4522

Sec.DpduPrep.Response (4523

 DPDU, 4524

 Status, 4525

 AckHandle) 4526

Table 38 specifies the elements for Sec.DpduPrep.Response. 4527

62734/2CDV © IEC(E) – 197 –

Table 38 – Sec.DpduPrep.Response elements 4528

Element name Element identifier Element scalar type

DPDU 1 Type: OctetString

Status (the result of a Sec.DpduPrep.Request primitive) 2 Type: Unsigned

Named values:
0: success;
>0: failure

AckHandle (abstraction that connects each invocation of
Sec.DpduPrep.Request with the subsequent callback by
Sec.DpduPrep.Response)

3 Type: Abstract

 4529
7.3.2.4.3.3 When generated 4530

The DSC generates Sec.DpduPrep.Response in response to a Sec.DpduPrep.Request. The 4531
Sec.DpduPrep.Response returns a status value that indicates either SUCCESS and the 4532
unsecured DPDU or the appropriate error code. 4533

7.3.2.4.3.4 Appropriate usage 4534

On receipt of Sec.DpduPrep.Response, the DL is notified of the result of request to protect an 4535
outgoing DPDU. 4536

7.3.2.4.4 Sec.DAckCheck.Request 4537

7.3.2.4.4.1 General 4538

Sec.DAckCheck.Request instructs the DSC to verify an incoming ACK/NAK DPDU. 4539

7.3.2.4.4.2 Semantics of the service primitive 4540

The semantics of Sec.DAckCheck.Request are as follows: 4541

Sec.DAckCheck.Request (4542

 AckPDU, 4543

 EUI64, 4544

 ScheduledTAI, 4545

 ChannelNumber, 4546

 AckHandle) 4547

Table 39 specifies the elements for the Sec.DAckCheck.Request. 4548

 – 198 – 62734/2CDV © IEC(E)

Table 39 – Sec.DAckCheck.Request elements 4549

Element name Element
identifier

Element scalar type

AckPDU (the AckPDU to be verified) 1 Type: OctetString

EUI64 (the EUI64Address of the acknowledging device) 2 Type: EUI64Address

ScheduledTAI (32-bits of the start time of the slot truncated to
a 2-10 s resolution)

3 Type: Unsigned32

ChannelNumber (the channel number used to receive the
incoming ACK/NAK DPDU)

4 Type: Unsigned

Valid range: 0..15

AckHandle (abstraction that connects each invocation of
Sec.DAckCheck.Request with the subsequent callback by
Sec.DAckCheck.Response)

5 Type: Abstract

 4550
The DSC verifies that the DHR of the ACK/NAK DPDU has employed the DMIC mode (see 4551
Table 118) specified by the current D-key policy. The D-key used in authenticating the 4552
ACK/NAK DPDU is the same as that used for the Data DPDU of the D-transaction. 4553

The DSC verifies the DMIC field as dictated by the DPDU processing steps and current 4554
policies. 4555

7.3.2.4.4.3 Appropriate usage 4556

The DLE invokes the Sec.DAckCheck.Request primitive to verify an ACK/NAK DPDU after its 4557
reception. 4558

7.3.2.4.4.4 Effect on receipt 4559

On receipt of the Sec.DAckCheck.Request primitive, the DSC performs the appropriate DPDU 4560
processing steps to verify the received ACK/NAK DPDU as specified in 7.3.2.6. 4561

7.3.2.4.5 Sec.DAckCheck.Response 4562

7.3.2.4.5.1 General 4563

Sec.DAckCheck.Response reports the result of a Sec.DAckCheck.Request. 4564

7.3.2.4.5.2 Semantics 4565

The semantics of Sec.DAckCheck.Response are as follows: 4566

Sec.DInitialCheck.Response (4567

 AckPDU, 4568

 Status, 4569

 AckHandle) 4570

Table 40 specifies the elements for Sec.DAckCheck.Response. 4571

62734/2CDV © IEC(E) – 199 –

Table 40 – Sec.DAckCheck.Response elements 4572

Element name Element identifier Element scalar type

AckPDU 1 Type: OctetString

Status (the result of a Sec.DAckPrep.Request primitive) 2 Type: Unsigned

Named values:
0: success;
>0: failure

AckHandle (abstraction that connects each invocation of
Sec.DAckCheck.Request with the subsequent callback by
Sec.DAckCheck.Response)

3 Type: Abstract

 4573
7.3.2.4.5.3 When generated 4574

The DSC generates Sec.DAckCheck.Response in response to a Sec.DAckCheck.Request. 4575
The Sec.DAckCheck.Response returns a status value that indicates either SUCCESS or the 4576
appropriate error code. 4577

7.3.2.4.5.4 Appropriate usage 4578

On receipt of Sec.DAckCheck.Response, the DL is notified of the result of verifying and 4579
possibly decrypting an incoming DPDU. 4580

7.3.2.4.6 Sec.DInitialCheck.Request 4581

7.3.2.4.6.1 General 4582

Sec.DInitialCheck.Request instructs the DSC to verify and possibly decrypt an incoming DL 4583
protocol data unit as appropriate. 4584

7.3.2.4.6.2 Semantics of the service primitive 4585

The semantics of Sec.DInitialCheck.Request are as follows: 4586

Sec.DInitialCheck.Request (4587

 DPDU, 4588

 EUI64, 4589

 ScheduledTAI, 4590

 ChannelNumber, 4591

 AckHandle) 4592

Table 41 specifies the elements for the Sec.DInitialCheck.Request. 4593

 – 200 – 62734/2CDV © IEC(E)

Table 41 – Sec.DInitialCheck.Request elements 4594

Element name Element identifier Element scalar type

DPDU (the DPDU to be verified and possibly decrypted) 1 Type: OctetString

EUI64 (the EUI64Address of the sending device) 2 Type: EUI64Address

ScheduledTAI (32-bits of the start time of the slot truncated to a
2-10 s resolution)

3 Type: Unsigned32

ChannelNumber (the channel number used to receive the
incoming DPDU)

4 Type: Unsigned

Valid range: 0..15

AckHandle (abstraction that connects each invocation of
Sec.DInitialCheck.Request with the subsequent callback by
Sec.DInitialCheck.Response)

5 Type: Abstract

 4595
The DSC verifies that the DMXHR of the DPDU has the appropriate security control (octet 1) 4596
by comparing it to the current policy. The Crypto Key Identifier (octet 2) is used to retrieve the 4597
correct key material. See 7.3.2.6. 4598

The DSC verifies the DMIC field as dictated by the current policies. 4599

7.3.2.4.6.3 Appropriate usage 4600

The DL invokes the Sec.DInitialCheck.Request primitive to verify and possibly decrypt a 4601
DPDU before it is transmitted. 4602

7.3.2.4.6.4 Effect on receipt 4603

On receipt of the Sec.DInitialCheck.Request primitive, the DSC starts the appropriate PDU 4604
processing steps to verify the incoming DPDU as dictated by the incoming PDU processing 4605
steps in 7.3.2.6. 4606

7.3.2.4.7 Sec.DInitialCheck.Response 4607

7.3.2.4.7.1 General 4608

Sec.DInitialCheck.Response reports the result of a Sec.DInitialCheck.Request. 4609

7.3.2.4.7.2 Semantics 4610

The semantics of Sec.DInitialCheck.Response are as follows: 4611

Sec.DInitialCheck.Response (4612

 DPDU, 4613

 Status, 4614

 AckHandle) 4615

Table 42 specifies the elements for Sec.DInitialCheck.Response. 4616

62734/2CDV © IEC(E) – 201 –

Table 42 – Sec.DInitialCheck.Response elements 4617

Element name Element identifier Element scalar type

DPDU 1 Type: OctetString

Status (the result of a Sec.DpduPrep.Request primitive) 2 Type: Unsigned

Named values:
0: success;
>0: failure

AckHandle (abstraction that connects each invocation of
Sec.DInitialCheck.Requestwith the subsequent callback
by Sec.DInitialCheck.Response)

3 Type: Abstract

 4618
7.3.2.4.7.3 When generated 4619

The DSC generates Sec.DInitialCheck.Response in response to a Sec.DInitialCheck.Request. 4620
The Sec.DInitialCheck.Response returns a status value that indicates either SUCCESS or the 4621
appropriate error code. 4622

7.3.2.4.7.4 Appropriate usage 4623

On receipt of Sec.DInitialCheck.Response, the DL is notified of the result of verifying and 4624
possibly decrypting an incoming DPDU. 4625

7.3.2.4.8 Sec.DAckPrep.Request 4626

7.3.2.4.8.1 General 4627

Sec.DAckPrep.Request instructs the DSC to protect an ACK/NAK DPDU as appropriate. 4628

7.3.2.4.8.2 Semantics of the service primitive 4629

The semantics of Sec.DAckPrep.Request are as follows: 4630

Sec.DAckPrep.Request (4631

 AckPDU, 4632

 EUI64, 4633

 ScheduledTAI, 4634

 ChannelNumber, 4635

 AckHandle) 4636

Table 43 specifies the elements for the Sec.DAckPrep.Request. 4637

 – 202 – 62734/2CDV © IEC(E)

Table 43 – Sec.DAckPrep.Request elements 4638

Element name Element
identifier

Element scalar type

AckPDU (includes the virtual header) 1 Type: OctetString

EUI64 (the EUI64Address of the acknowledging device) 2 Type: EUI64Address

ScheduledTAI (32-bits of the start time of the slot truncated to a
2-10 s resolution)

3 Type: Unsigned32

ChannelNumber (the channel number used to transmit the
ACK/NAK DPDU)

4 Type: Unsigned8

Valid range: 0..15

AckHandle (abstraction that connects each invocation of
Sec.DAckPrep.Request with the subsequent callback by
Sec.DAckPrep.Response)

5 Type: Abstract

 4639
The DSC populates the ACK/NAK DPDU with the appropriate security control (octet 1) as 4640
described in Table 118. In the case where multiple D-keys are currently valid, the key used to 4641
authenticate the ACK/NAK DPDU is the same one used as the corresponding DPDU for this 4642
ACK/NAK DPDU. 4643

The DSC populates the DMIC field as dictated by the current policies. Note that the DMIC 4644
field in an ACK/NAK DPDU is always 32 bits. 4645

7.3.2.4.8.3 Appropriate usage 4646

The DL invokes the Sec.DAckPrep.Request primitive to protect an ACK/NAK DPDU before it 4647
is transmitted. 4648

7.3.2.4.8.4 Effect on receipt 4649

On receipt of the Sec.DAckPrep.Request primitive, the DSC starts the appropriate PDU 4650
processing steps to protect the ACK/NAK DPDU as dictated by policy. Note that the ACK/NAK 4651
DPDU is only authenticated and never encrypted. 4652

7.3.2.4.9 Sec.DAckPrep.Response 4653

7.3.2.4.9.1 General 4654

Sec.DAckPrep.Response reports the result of a Sec.DAckPrep.Request. 4655

7.3.2.4.9.2 Semantics 4656

The semantics of Sec.DAckPrep.Response are as follows: 4657

Sec.DAckPrep.Response (4658

 AckPDU, 4659

 Status, 4660

 AckHandle) 4661

Table 44 specifies the elements for Sec.DAckPrep.Response. 4662

62734/2CDV © IEC(E) – 203 –

Table 44 – Sec.DAckPrep.Response elements 4663

Element name Element
identifier

Element scalar type

AckPDU 1 Type: OctetString

Status (the result of a Sec.DAckPrep.Request
primitive)

2 Type: Unsigned

Named values:
0: success;
>0: failure

AckHandle (abstraction that connects each
invocation of Sec.DAckPrep.Request with the
subsequent callback by Sec.DAckPrep.Response)

3 Type: Abstract

 4664
7.3.2.4.9.3 When generated 4665

The DSC generates Sec.DAckPrep.Response in response to a Sec.DAckPrep.Request. 4666
Sec.DAckPrep.Response returns a status value that indicates either SUCCESS or the 4667
appropriate error code. 4668

7.3.2.4.9.4 Appropriate usage 4669

On receipt of Sec.DAckPrep.Response, the DL is notified of the result of request to verify an 4670
incoming AckPDU. 4671

7.3.2.4.10 Nonce construction for DPDUs 4672

This standard uses a different DPDU nonce construction from that of IEEE 802.15.4:2011. A 4673
13-octet nonce is required for the CCM* engine. The nonce shall be constructed as the 4674
concatenation from first (leftmost) to last (rightmost) octets of data fields as shown in Table 4675
45, wherein: 4676

• the EUI64Address shall be used as an array of 8 octets (in MSB convention) in the same 4677
manner as the source address of the CCM* nonce in IEEE 802.15.4:2011, 7.3.2; 4678

• the TAI time shall be the least significant 32 bits of the TAI time in units of 2-10 s as 4679
described in Table 46; 4680

• the last octet shall be constructed as follows: 4681
– Bit 7 shall be zero, thereby reserving the value 0xFF for the transport layer (see Table 4682

57). 4683
– Bits 6..3 (4 bits) shall indicate the radio channel of transmission, in a range of 0..15, 4684

corresponding to IEEE 802.15.4 channel numbers 11..26, in the same order. 4685
– Bits 2..0 shall be copied from the corresponding low-order 3 bits of the MHR’s 4686

sequence number. 4687

 – 204 – 62734/2CDV © IEC(E)

Table 45 – Structure of the WISN DPDU nonce 4688

Octet Bits

7 6 5 4 3 2 1 0

1 EUI64Address of DPDU originator

...

8

9 Least significant 32 bits of TAI time of nominal slot start (in units of 2-10 s)

...

12

13 Reserved
= 0

Channel number (0..15) Low-order 3 bits of MHR
sequence number

 4689
The TAI time used shall be a 32-bit truncated fixed-point fractional representation of TAI time 4690
at a granularity of 2-10 s and a span of 222 s. With this representation, there will be over 48,5 4691
days before the same value of TAI time recurs. Thus, the maximum lifetime of a D-key shall 4692
be 48,5 days before a new D-key needs to be deployed. The TAI time for this operation shall 4693
be that maintained by the DLE. 4694

NOTE 1 It is important that the value of the 32-bit representation of TAI time does not recur within the lifetime of 4695
any relevant secret symmetric key, to avoid a potential nonce collision resulting in an identical keystream. 4696

The representation in the D-nonce of this truncated 32-bit TAI time, specified to 2-10 s, is 4697
described in Table 46. 4698

Table 46 – Structure of the 32-bit truncated TAI time used in the D-nonce 4699

Octet Bits

7 6 5 4 3 2 1 0

1 Truncated TAI time (bits with weight 221..214 s)

2 Truncated TAI time (bits with weight 213..26 s)

3 Truncated TAI time (bits with weight 25..2-2 s)

4 Truncated TAI time (bits with weight 2-3..2-10 s)

 4700
The lower order 3 bits of the MHR sequence number, together with the channel number, are 4701
used to construct the last octet of a D-nonce. The sending DLE shall ensure that the MHR 4702
sequence number bits used in the D-nonce are unique among all those it generates within the 4703
same 2-10 s interval for the same channel and same D-key (see 9.3.3.2 and 9.3.4). The value 4704
of 0xFF shall not be used for the MHR. Because this D-nonce has at most eight distinct 4705
values for a given channel and 2-10 s interval, a DLE shall not transmit more than eight 4706
DPDUs per 2-10 s on the same channel using the same D-key. 4707

NOTE 2 Inclusion of the channel number in the D-nonce provides support for devices that operate concurrently on 4708
multiple channels. 4709

NOTE 3 The construction of the MHR sequence number is described in 9.3.3.2. 4710

7.3.2.5 Processing of a DPDU to be transmitted 4711

The inputs to the DPDU security procedure are: 4712

• the DPDU to be secured; 4713

• the EUI64Address of the source DLE; 4714

• the nominal TAI start time of the timeslot being used for the D-transaction; 4715

62734/2CDV © IEC(E) – 205 –

• the MHR sequence number octet; and 4716

• the channel number (0..15) to be used for the D-transaction. 4717

The outputs from this procedure are: 4718

• the status of the procedure; and 4719

• if this status is success, the secured DPDU. 4720

The security procedure for DPDUs that are being constructed for transmission consists of the 4721
following steps: 4722

a) The procedure shall obtain the KeyDescriptor from Table 93 meeting the following 4723
selection criteria: 4724
1) The entries with KeyUsage = ‘0x00’ (i.e., D-key). In the initial case, where a joining 4725

DLE does not have any KeyDescriptor, the joining device creates a KeyDescriptor with 4726
K_global. The KeyDescriptor shall include at least the following parameters: 4727

• Crypto Key Identifier = 0; 4728

• Security Level = 0x01 (MIC-32); 4729

• KeyUsage = 0x00 (group key for PDU processing); 4730

• Key lifetime = never-expires (0xFFFF FFFF). 4731
2) Of those entries, the entries valid for the current period, satisfying the inequality 4732

ValidNotBefore < currentTime < ValidNotAfter 4733
shall be selected. If none are available, the procedure shall return with a status of 4734
UNAVAILABLE_KEY. 4735

3) Of those entries, if two or more keys are valid for the current time, and the procedure 4736
was called from DAckPrep.Request or an DAckCheck.Request, the procedure shall 4737
select the key used to authenticate the Data DPDU of the D-transaction. 4738
Otherwise, if two or more keys are valid for the current time, the procedure shall select 4739
the key with the larger ValidNotAfter value. 4740

4) Of those entries, if two or more keys have the same ValidNotAfter, the procedure shall 4741
select the key with the larger ValidNotBefore. 4742

5) Of those entries, if two or more keys have the same SoftExpirationTime, the procedure 4743
shall select the key with the highest Crypto Key Identifier. 4744

b) The procedure shall retrieve the policy from the selected KeyDescriptor. 4745
c) The procedure shall determine whether the DPDU to be secured satisfies the constraint on 4746

the maximum size of DPDUs, as follows: 4747
1) The procedure shall set the size M, in octets, of the DMIC authentication field from the 4748

security level. 4749
2) The Crypto Key Identifier Mode field in the DMXHR shall have the value 1. If the 4750

DMXHR includes the slow-channel-hopping timeslot offset field, the size of DMXHR is 4751
3 octets; otherwise it is 2 octets. 4752

3) The procedure shall determine the resulting data expansion as (DMXHR_size + M). 4753
4) The procedure shall check whether the size of the DPDU to be secured, including data 4754

expansion, is less than or equal to the maximum DPDU size. If this check fails, the 4755
procedure shall return a status of DPDU_TOO_LONG. 4756

d) The procedure shall use the scheduled TAI time of the start of the timeslot, as described 4757
in Table 46. If there is a potential for the device to send multiple DPDUs with the same TAI 4758
time value, then the procedure shall select a value to be conveyed in the DPDU’s MHR 4759
header that is different from all other such values originated by the device at this particular 4760
value of TAI time. A procedure for determining the sequence number from whch MHR is 4761
derived is defined in 9.3.3.2. 4762

 – 206 – 62734/2CDV © IEC(E)

e) The procedure shall insert the DMXHR into the DPDU outlined in Table 112, with fields set 4763
as follows: 4764
1) The security level subfield of the security control field shall be set to the security level 4765

001 by default. 4766
2) The Crypto Key Identifier Mode subfield of the security control field shall be set to the 4767

Crypto Key Identifier Mode parameter 01 by default. 4768
f) The procedure shall set the Crypto Key Identifier octet in the DMXHR. See Table 112. 4769
g) The procedure shall insert the MHR sequence number in the Data DPDU MHR. See Table 4770

110. 4771
h) The procedure shall use the EUI64Address of the transmitting device, the 32 least 4772

significant bits of TAI time in 2-10 s, the low-order 3 bits of the MHR sequence number, 4773
and the channel number to build the nonce as outlined in Table 45. 4774

i) The procedure shall use the nonce, the key material, the header, the payload and the 4775
CCM* mode of operation as described in IEEE 802.15.4:2011, 7.3.4, to secure the DPDU: 4776
1) If the SecurityLevel parameter specifies the use of encryption (see 4777

IEEE 802.15.4:2011, Table 58), the encryption operation shall be applied only to the 4778
DPDU’s payload field. The corresponding payload field is passed to the CCM* 4779
transformation process described in IEEE 802.15.4:2011, 7.3.4, as the unsecured 4780
payload. The resulting encrypted payload shall be substituted for the original payload. 4781

2) The remaining fields in the DPDU, up to but not including the payload field, shall be 4782
passed to the CCM* transformation process described in IEEE 802.15.4:2011, 7.3.4, 4783
as the non-payload field. 4784

3) The ordering and exact manner of performing the encryption and integrity operations 4785
and the placement of the resulting encrypted data or integrity code within the DPDU 4786
payload field shall be as defined in IEEE 802.15.4:2011, 7.3.4. 4787

j) The procedure shall return the secured DPDU and a status of SUCCESS. 4788

7.3.2.6 Processing of received DPDUs 4789

The inputs to the security procedure for received DPDUs are the DPDU to be unsecured, the 4790
channel number on which the DPDU was received, and the nominal TAI time of the start of 4791
the time slot in which the DPDU was received. The outputs from this procedure are the 4792
unsecured DPDU, the security level, the Crypto Key Identifier Mode, the Crypto Key Identifier, 4793
and the status of the procedure. All outputs of this procedure are assumed to be invalid 4794
unless and until explicitly set in this procedure. It is assumed that the KeyDescriptors with a 4795
single, unique device or a number of devices will have been established by the DSMO. 4796

The security procedure on DPDU reception consists of the following steps: 4797

a) The procedure shall set the security level and the Crypto Key Identifier Mode to the 4798
corresponding subfields of the security control field of the DMXHR of the incoming DPDU, 4799
and the Crypto Key Identifier to the corresponding subfields of the Crypto Key Identifier 4800
field of the DMXHR of the DPDU to be unsecured. 4801

b) The procedure shall obtain the KeyDescriptor from Table 93 meeting the following 4802
selection criteria: 4803
1) The entries with KeyUsage = ‘0x00’ (D-key). In the initial case, where a joining device 4804

does not have any KeyDescriptors, the joining device creates a temporary 4805
KeyDescriptor with K_global. The KeyDescriptor shall include at least following 4806
parameters: 4807

• CryptoKeyIdentifier = 0; 4808

• Security Level = 0x01 (MIC-32); 4809

• KeyUsage = 0x00 (group key for PDU processing); 4810

• Key lifetime = never-expires (0xFFFF FFFF). 4811

NOTE The usage of the KeyDescriptor for K_global is described in 9.1.10. 4812

62734/2CDV © IEC(E) – 207 –

2) Of those entries, the entry with the CryptoKeyIdentifier matching the Crypto Key 4813
Identifier of the incoming PDU shall be selected. 4814

3) If that procedure fails, the procedure shall return with a status of UNAVAILABLE_KEY. 4815
c) The procedure shall determine whether the security level of the incoming DPDU conforms 4816

to the security level policy by comparing the SecurityLevel of the matching KeyDescriptor 4817
obtained from step b) above. If there is a mismatch, the procedure shall return with a 4818
status of IMPROPER_SECURITY_LEVEL. 4819

d) If the lifetime in the KeyDescriptor is finite (> 0x0000), the procedure shall verify that the 4820
8-bit MHR sequence number has not been received previously for the same value of the 4821
source EUI64Address, the same 32-bit fixed-point fractional representation of TAI time, 4822
and the same key. If this check fails, the procedure shall return with a status of 4823
DUPLICATE_DPDU. 4824

e) The procedure shall then use the EUI64Address of the sender, the scheduled TAI time, 4825
and low-order 3 bits of the MHR sequence number, and the channel number to generate 4826
the nonce as outlined in Table 45. Additionally, the procedure shall verify that the 8-bit 4827
MHR sequence number is not 0xFF. If the 8-bit MHR sequence number is 0xFF, the 4828
procedure shall return with a status of INVALID_SEQUENCE_NUMBER. 4829

f) The procedure shall use the nonce, the crypto key from the KeyDescriptor obtained in step 4830
2, the actual headers (the non-payload fields), the payload and the MIC of the incoming 4831
DPDU and the CCM* mode of operation as described in operations (see 4832
IEEE 802.15.4:2011, 7.3.5) to authenticate and, when specified, decrypt the DPDU: 4833
1) If the security level specifies the use of encryption (see IEEE 802.15.4:2011, Table 4834

58), the decryption operation shall be applied only to the actual DPDU payload field 4835
(see IEEE 802.15.4:2011, 5.2.2.2.2). The corresponding payload field shall be passed 4836
to the CCM* inverse transformation process described in IEEE 802.15.4:2011, 7.3.5 as 4837
the secure payload. 4838

2) The remaining fields in the DPDU shall be passed to the CCM* inverse transformation 4839
process described in IEEE 802.15.4:2011, 7.3.5 as the non-payload fields (see 4840
IEEE 802.15.4:2011, Table 57). 4841

3) The ordering and exact manner of performing the decryption and integrity checking 4842
operations and the placement of the resulting decrypted data within the DPDU payload 4843
field shall be as defined in IEEE 802.15.4:2011, 7.3.5. 4844

g) If the CCM* inverse transformation process fails, the procedure shall set the unsecured 4845
DPDU to be the DPDU to be unsecured and return a status of SECURITY_ERROR. 4846

h) If the lifetime in the KeyDescriptor is one that expires, the procedure shall insert the nonce 4847
value (includes MHR sequence number, channel number, source EUI64Address, and 4848
scheduled TAI time) in the NonceCache field of the corresponding KeyDescriptor, to 4849
enable replay protection. 4850

i) The procedure shall return with the unsecured DPDU, the security level, the Crypto Key 4851
Identifier Mode, the Crypto Key Identifier, and a status of SUCCESS. 4852

7.3.2.7 Detection and discard of duplicated or replayed protocol data units 4853

See 7.3.2.6, d). 4854

 TL security functionality 7.3.34855

7.3.3.1 General 4856

The interaction of the DSC and the TL is outlined. The TL processing steps were written to 4857
reuse the commonalities between the DL and the TL. However, since the DL and the TL exist 4858
at different network abstraction layers with different requirements and assumptions, there are 4859
significant differences between the DL and TL processing steps. 4860

Security services at the TL are selected by policy associated with the relevant transport data 4861
key, obtained as part of a new session request or a key update and based on transport policy 4862
maintained by the security manager associated with any or all of: 4863

 – 208 – 62734/2CDV © IEC(E)

• the sending device; 4864

• the requesting UAP; and/or 4865

• the transport association, as defined by its endpoints. 4866

The following transport security service shall always be provided with an active key: 4867

• Authorized communication with TPDU authentication, integrity, and conveyance of the 4868
nominal time of TPDU creation, providing rejection of outdated TPDUs: 4869
– that were not sourced by a device within the network that shares an appropriate data 4870

key; or 4871
– that were severely outdated, i.e., not received at a time within DSMO.pduMaxAge 4872

seconds of the TPDU’s nominal time of creation. 4873

• Confidentiality of the application-layer payload within the TPDU. 4874

NOTE 1 Sixteen bits of time information are transmitted with each TPDU. 4875

NOTE 2 This service uses the originator’s nominal time of transmission as authenticated at the receiver to cause 4876
rejection of TPDUs that are delayed excessively and to provide detection of duplicated TPDUs within that time 4877
window. 4878

The confidentiality service shall not be employed with keys that are not shared secrets, 4879
because this would render true confidentiality impossible, and because this aspect of the 4880
policy associated with such keys is constant. 4881

The MIC should be validated within the DSMO.pduMaxAge period. If the check fails, the MIC 4882
validation can be repeated by decrementing a time window to recover the creation time of the 4883
PDU. 4884

7.3.3.2 TPDU structure 4885

7.3.3.2.1 General 4886

The structure of a TPDU is described in 11.5 and outlined in Figure 109 and in Figure 40 in 4887
this standard, with the TSDU possibly encrypted and the contents of the UDP header, security 4888
header, and TSDU protected by the TMIC. 4889

Uncompressed
UDP header Security header Application Payload TMIC

Authenticated by TMIC
Possibly

Encrypted/Decrypted

 4890

Figure 40 – TPDU structure and protected coverage 4891

The complete TPDU from the start of the UDP header to the end of the Application Payload 4892
shall be protected by the TMIC. Each parameter in the UDP header is protected by using the 4893
Transport Security Component (TSC) pseudo-header for the TMIC calculation. The TSC 4894
pseudo-header is described in 7.3.3.2.2. 4895

NOTE TSC is described in 11.2. See also the brief discussion of the use of pseudo-headers in 4.5.2.1. 4896

7.3.3.2.2 TPDU Protection 4897

The TMIC is used to protect the information in the UDP header, the TL security header and 4898
the TSDU. It also protects the NL source and destination IPv6 addresses by using an 4899
extended form of the UDP pseudo-header for IPv6. The UDP pseudo-header for IPv6 is 4900
described in 11.4.2 and RFC 2460, 8.1. The UDP payload size and the (virtual) checksum in 4901
the UDP header are not used for the TMIC calculation. 4902

62734/2CDV © IEC(E) – 209 –

NOTE Checksum and UDP payload size do not appear in the pseudo-header since the checksum is elided (i.e., 4903
not present in the TPDU) when the TMIC is present, and the UDP payload size is determined from the NSDU size 4904
in the UDP pseudo-header for IPv6. 4905

The parameters for the TMIC are shown in Figure 41. 4906

UDP pseudo header
for IPv6 Security header Application Payload TMIC

Authenticated by TMIC
Possibly

Encrypted/Decrypted
UDP

Destination port
UDP

Source port

TSDUTSS Pseudo header 4907

Figure 41 – TMIC parameters 4908

The TSC constructs the TMIC parameters as outlined in Figure 41, with the received TPDU, 4909
the nominal TAI time at which the TPDU was created, the KeyDescriptor and the contract 4910
information provided by the TL. The TSC can then use the parameters for the appropriate 4911
security operation on the TPDU. 4912

The IPv6 header and the UDP source and destination ports are passed from the TL to the 4913
TSC. The combination of those parameters is an extended UDP pseudo-header that is called 4914
the TSC pseudo-header in this standard. The structure of the TSC pseudo-header is shown in 4915
Table 47. The appropriate usage is described in 7.3.3.5.4, 7.3.3.5.5, and 7.3.3.5.8. 4916

Table 47 – TSC pseudo-header structure 4917

Element name Element
identifier

Element scalar type

Source
IPv6Address

1 Type: IPv6Address

Description: Uncompressed IPv6 address of the TPDU initiator

Destination
IPv6Address

2 Type: IPv6Address

Description: Uncompressed IPv6Address of the intended TPDU recipient

NSDU size 3 Type: Unsigned16

Description: NDSU size in octet

Reserved 4 Type: Unsigned8

Description: Reserved field. Currently filled with 0

Next header 5 Type: Unsigned8

Valid range: 17 (UDP)

Description: Next header value in the IPv6 header. This value should be only
17

UDP source port 6 Type: Unsigned16

Description: The source UDP port number of the TPDU initiator.

UDP destination
port

7 Type: Unsigned16

Description: The destination UDP port number of the intended TPDU recipient

 4918
7.3.3.3 Interface with the TL for a TPDU being formed for transmission 4919

The TL interaction with the security layer for a TPDU being formed for transmission is 4920
summarized in Figure 42. When the TSC receives the source address, source port, 4921
destination address, destination port, and payload size, it performs a lookup in the 4922
KeyDescriptor table to see whether security is enabled for that particular session. 4923

If the session’s security level is 0: none, a header size of 3 (octets) and a TMIC size of 0 4924
octets shall be returned. 4925

 – 210 – 62734/2CDV © IEC(E)

NOTE When the security level is zero, the standard, trivially-forged UDP checksum is used to detect errors that 4926
occur during TPDU conveyance. 4927

Otherwise the TSC shall return the appropriate Crypto Key Identifier and TMIC sizes. All 4928
sessions at the TL are unicast; therefore, the Crypto Key Identifier size shall be either 0 or 1 4929
depending on the number of valid keys available at that time for that security association. 4930

The TL will then call the TSC with the header and the payload. Depending on the security 4931
policy for that particular session, the payload may be encrypted, and a TMIC may be 4932
generated. The resulting header and payload will be returned to the TL for transmission. 4933

Transport layer Security sub-layer

TpduOutCheck.Request
(src addr and port, dest addr and port, payload size)

TpduOutCheck.Response
(header size, MIC size)

TpduSecure.Request
(header, payload)

TpduSecure.Response
(header, payload, MIC)

 4934

Figure 42 – TL and TSC interaction, outgoing TPDU 4935

7.3.3.4 Processing overview for received TPDUs 4936

The TL interaction with the security layer for a received TPDU is summarized in Figure 43. 4937
When the TSC receives the source address, source port, destination address, and destination 4938
port, it performs a lookup in the MIB to see whether security is enabled for that particular 4939
session and returns SEC_CHECK_REQUIRED or SEC_CHECK_NOT_REQUIRED. 4940

The TL shall then call the TSC with the header, the payload, and the MIC. Depending on the 4941
security policy for that particular session, the payload may be decrypted, and a MIC may be 4942
verified. If the security check fails, a status of FAILURE will be returned, with the payload 4943
returned untouched. If the operation succeeds, the resulting payload and the recovered time 4944
of TPDU encoding will be returned to the TL. 4945

62734/2CDV © IEC(E) – 211 –

Transport layer Security sub-layer

TpduInCheck.Request
(src addr and port, dest addr and port)

TpduInCheck.Response
(check required (or) not required)

TpduVerify.Request
(header, payload, MIC, priority)

TpduVerify.Response
(fail (or) payload, time)

 4946

Figure 43 – TL and TSC interaction, incoming TPDU 4947

7.3.3.5 TL interface to the TSC 4948

7.3.3.5.1 General 4949

The relationship between the TL and the TSC is outlined in 7.3.3.2 for TL interface for an 4950
outgoing TPDU and 7.3.3.4 for TL interface for an incoming TPDU. 4951

7.3.3.5.2 Sec.TpduOutCheck.Request 4952

7.3.3.5.2.1 General 4953

Sec.TpduOutCheck.Request is a check from the TL to the TSC to obtain the size of the 4954
security fields (if any) required in the outgoing TPDU. 4955

7.3.3.5.2.2 Semantics of the service primitive 4956

The semantics of Sec.TpduOutCheck.Request are as follows: 4957

Sec.TpduOutCheck.Request (4958

 Source_Address, 4959

 Source_Port, 4960

 Destination_Address, 4961

 Destination_Port, 4962

 Payload_Size) 4963

Table 48 specifies the elements for the Sec.TpduOutCheck.Request. 4964

 – 212 – 62734/2CDV © IEC(E)

Table 48 – Sec.TpduOutCheck.Request elements 4965

Element name Element
identifier

Element scalar type

Source_Address 1 Type: IPv6Address

Valid range: all with high-order bit reset

Source_Port 2 Type: Integer

Destination_Address 3 Type: IPv6Address

Destination_Port 4 Type: Integer

Payload_Size 5 Type: Integer

Valid range: 0..Assigned_Max_TSDU_Size; see 11.4.3.3

 4966
The TSC shall use the Source_Address, Source_Port, Destination_Address, and 4967
Destination_Port to retrieve the appropriate policy (if any) for this security association. 4968

7.3.3.5.2.3 Appropriate usage 4969

The TL invokes the Sec.TpduOutCheck.Request primitive to protect a TPDU before it is 4970
transmitted. 4971

7.3.3.5.2.4 Effect on receipt 4972

On receipt of the Sec.TpduOutCheck.Request primitive, the TSC determines if the TPDU 4973
needs to be protected and returns the corresponding header and TMIC sizes. 4974

7.3.3.5.3 Sec.TpduOutCheck.Response 4975

7.3.3.5.3.1 General 4976

Sec.TpduOutCheck.Response reports the result of a Sec.TpduOutCheck.Request. 4977

7.3.3.5.3.2 Semantics 4978

The semantics of Sec.TpduOutCheck.Response are as follows: 4979

Sec. TpduOutCheck.Response (4980

 Sec_Header_Size, 4981

 TMIC_Size) 4982

Table 49 specifies the elements for Sec.TpduOutCheck.Response. 4983

Table 49 – Sec.TpduOutCheck.Response elements 4984

Element name Element
identifier

Element scalar type

Sec_Header_Size (the additional
header size required by the TSC, in full
octets)

1 Type: Integer

Valid range: 0..Assigned_Max_TSDU_Size; see Table 30

TMIC_Size (the size of the Transport
Integrity Code, in full octets)

2 Type: Integer

Valid values: 0, 4, 8 or 16

 4985
7.3.3.5.3.3 When generated 4986

The TSC generates Sec.TpduOutCheck.Response in response to a 4987
Sec.TpduOutCheck.Request. The Sec.TpduOutCheck.Response returns the additional sizes 4988

62734/2CDV © IEC(E) – 213 –

required to support the security layer functionality. A security association is a secure TL 4989
association based on: 4990

• source address; 4991

• source port; 4992

• destination address; 4993

• destination port. 4994

7.3.3.5.3.4 Appropriate usage 4995

On receipt of Sec.TpduOutCheck.Response, the TL is notified of the need to apply a security 4996
operation on the TPDU, along with the additional octets required to support that operation. 4997

7.3.3.5.4 Sec.TpduSecure.Request 4998

7.3.3.5.4.1 General 4999

Sec.TpduSecure.Request instructs the TSC to carry out the appropriate steps to secure an 5000
outgoing TPDU. The information about the security association is contained in the pseudo-5001
header passed to the TSC. See Figure 108 in 11.4.2. 5002

7.3.3.5.4.2 Semantics of the service primitive 5003

The semantics of Sec.TpduSecure.Request are as follows: 5004

Sec. TpduSecure.Request (5005

 TSC_Pseudo_Header, 5006

 TSC_Pseudo_Header_Size, 5007

 TSDU, 5008

 TSDU_Size) 5009

Table 50 specifies the elements for the Sec.TpduSecure.Request. 5010

Table 50 – Sec.TpduSecure.Request elements 5011

Element name Element
identifier

Element scalar type

TSC_Pseudo_Header 1 Type: OctetStringN

TSC_Pseudo_Header_Size 2 Type: Integer

Valid range: 0..127

TSDU 3 Type: OctetStringN

TSDU_Size 4 Type: Integer

Valid range: 0..Assigned_Max_TSDU_Size; see Table 30

 5012
The TSC shall obtain the source address, source port, destination address, and destination 5013
port from the TSC pseudo-header. That information is used to retrieve the appropriate keying 5014
material and policies for this security association. 5015

The TSC includes the Priority information in the TPDU header, provides data confidentiality 5016
for the TPDU, and generates the TMIC field as dictated by the PDU processing steps and 5017
current policies. 5018

The TSC populates the TL security header as specified in the TPDU processing steps and 5019
policies. 5020

 – 214 – 62734/2CDV © IEC(E)

7.3.3.5.4.3 Appropriate usage 5021

The TL invokes the Sec.TpduSecure.Request primitive to protect an outgoing TPDU after the 5022
TL receives the number of additional octets required in the transport header and the TMIC. 5023

7.3.3.5.4.4 Effect on receipt 5024

On receipt of the Sec.TpduSecure.Request primitive, the TSC starts the appropriate PDU 5025
processing steps to protect the outgoing TPDU as dictated by the outgoing TPDU processing 5026
steps in 7.3.3.8. 5027

7.3.3.5.5 Sec.TpduSecure.Response 5028

7.3.3.5.5.1 General 5029

Sec.TpduSecure.Response reports the result of a Sec.TpduSecure.Request. 5030

7.3.3.5.5.2 Semantics 5031

The semantics of Sec.TpduSecure.Response are as follows: 5032

Sec. TpduSecure.Response (5033

 TSC_Pseudo_Header, 5034

 TSC_Pseudo_Header_Size, 5035

 TSDU, 5036

 TSDU_Size, 5037

 TMIC, 5038

 TMIC_Size, 5039

 Status) 5040

Table 51 specifies the elements for Sec.TpduSecure.Response. 5041

Table 51 – Sec. TpduSecure.Response elements 5042

Element name Element
identifier

Element scalar type

TSC_Pseudo_Header 1 Type: OctetStringN

TSC_Pseudo_Header_Size 2 Type: Unsigned7

Valid range: 0..127

TSDU 3 Type: OctetStringN

TSDU_Size 4 Type: Unsigned

Valid range: 0..Assigned_Max_TSDU_Size; see Table 30

TMIC 5 Type: OctetStringN

TMIC_Size 6 Type: Integer

Valid values: 0, 4, 8, 16

Status 7 Type: Unsigned

Named values:
0: success;
>0: failure

 5043

62734/2CDV © IEC(E) – 215 –

7.3.3.5.5.3 When generated 5044

The TSC generates Sec.TpduSecure.Response in response to a Sec.TpduSecure.Request. 5045
The Sec.TpduSecure.Response returns a populated security transport header, a possibly 5046
encrypted TSDU and a TMIC along with the appropriate sizes. Finally the 5047
Sec.TpduSecure.Response returns a status value that indicates either SUCCESS or the 5048
appropriate error code. 5049

7.3.3.5.5.4 Appropriate usage 5050

On receipt of Sec.TpduSecure.Response, the TL is notified of the result of protecting an 5051
outgoing TPDU. 5052

7.3.3.5.6 Sec.TpduInCheck.Request 5053

7.3.3.5.6.1 General 5054

Sec.TpduInCheck.Request instructs the TSC to verify and possibly decrypt an incoming TL 5055
protocol data unit as appropriate. 5056

7.3.3.5.6.2 Semantics of the service primitive 5057

The semantics of Sec. TpduInCheck.Request are as follows: 5058

Sec.TpduInCheck.Request (5059

 Source_Address, 5060

 Source_Port, 5061

 Destination_Address, 5062

 Destination_Port, 5063

 Payload_Size) 5064

Table 52 specifies the elements for the Sec.TpduInCheck.Request. 5065

Table 52 – Sec.TpduInCheck.Request elements 5066

Element name Element
identifier

Element scalar type

Source_Address 1 Type: IPv6Address

Source_Port 2 Type: Unsigned16

Destination_Address 3 Type: IPv6Address

Destination_Port 4 Type: Unsigned16

Payload_Size 5 Type: Unsigned

Valid range: 0..Assigned_Max_TSDU_Size

 5067
The TSC uses the Source_Address, Source_Port, Destination_Address, and Destination_Port 5068
to retrieve the appropriate policy (if any) for this security association. 5069

7.3.3.5.6.3 Appropriate usage 5070

The TL invokes the Sec.TpduInCheck.Request primitive to check if a secure verification and 5071
possibly a decryption of a TPDU beforehand are required. 5072

 – 216 – 62734/2CDV © IEC(E)

7.3.3.5.6.4 Effect on receipt 5073

On receipt of the Sec.TpduInCheck.Request primitive, the TSC determines if the TPDU needs 5074
to be verified and, potentially, decrypted and returns a status of success or failure. 5075

7.3.3.5.7 Sec. TpduInCheck.Response 5076

7.3.3.5.7.1 General 5077

Sec.TpduInCheck.Response reports the result of a Sec.TpduInCheck.Request. 5078

7.3.3.5.7.2 Semantics 5079

The semantics of Sec.TpduInCheck.Response are as follows: 5080

Sec.TpduInCheck.Response (5081

 Status) 5082

Table 53 specifies the elements for Sec.TpduInCheck.Response. 5083

Table 53 – Sec.TpduInCheck.Response elements 5084

Element name Element
identifier

Element scalar type

Status (the result of a
Sec.TpduInCheck.Request primitive)

1 Type: Unsigned

Named values:
0: success;
>0: failure

 5085
7.3.3.5.7.3 When generated 5086

The TSC generates Sec.TpduInCheck.Response in response to a Sec.TpduInCheck.Request. 5087
The Sec.TpduInCheck.Response returns a status value that indicates either TRUE or FALSE 5088
depending on the policies on the current security association. 5089

7.3.3.5.7.4 Appropriate usage 5090

On receipt of Sec.TpduInCheck.Response, the TL is notified of the need to call the 5091
Sec.TpduVerify.Request to verify and possibly decrypt the incoming TPDU. 5092

7.3.3.5.8 Sec.TpduVerify.Request 5093

7.3.3.5.8.1 General 5094

Sec.TpduVerify.Request instructs the TSC to verify and, where so configured, decrypt an 5095
incoming TPDU. 5096

7.3.3.5.8.2 Semantics of the service primitive 5097

The semantics of Sec.TpduVerify.Request are as follows: 5098

Sec.TpduVerify.Request (5099

 TSC_Pseudo_Header, 5100

 TSC_Pseudo_Header_Size, 5101

 TSDU, 5102

 TSDU_Size, 5103

62734/2CDV © IEC(E) – 217 –

 TMIC, 5104

 TMIC_Size) 5105

Table 54 specifies the elements for the Sec.TpduVerify.Request. 5106

Table 54 – Sec.TpduVerify.Request elements 5107

Element name Element
identifier

Element scalar type

TSC_Pseudo_Header 1 Type: OctetString

TSC_Pseudo_Header_Size 2 Type: Unsigned

Valid range: 0..127

TSDU 3 Type: OctetString

TSDU_Size 4 Type: Unsigned

Valid range: 0..Assigned_Max_TSDU_Size; see Table 30

TMIC 5 Type: OctetString

TMIC_Size 6 Type: Integer

Valid values: 0, 4, 8 or 16

Priority 7 Type: Unsigned4

 5108
The TSC verifies that the TL Security Header of the TPDU has the appropriate security control 5109
(octet 1) by comparing it to the current policy. The Crypto Key Identifier (octet 2), if present, is 5110
used to retrieve the correct key material. See 7.3.3.9. 5111

The TSC verifies the TMIC field as dictated by the current policies. 5112

The time conveyed in the TL security header is used in the nonce construction for the 5113
authentication and, where configured, decryption of the received TPDU. 5114

The priority is provided to the TSC in order to allow efficient implementation of replay 5115
protection. 5116

7.3.3.5.8.3 Appropriate usage 5117

The TL invokes the Sec.TpduVerify.Request primitive to verify and possibly decrypt a TPDU 5118
before it is transmitted. 5119

7.3.3.5.8.4 Effect on receipt 5120

On receipt of the Sec.TpduVerify.Request primitive, the TSC starts the appropriate TPDU 5121
processing steps to verify and, where configured, decrypt the received TPDU as dictated by 5122
the processing steps for received TPDUs in 7.3.3.9. 5123

7.3.3.5.9 Sec.TpduVerify.Response 5124

7.3.3.5.9.1 General 5125

Sec.TpduVerify.Response reports the result of a Sec.TpduVerify.Request. 5126

7.3.3.5.9.2 Semantics 5127

The semantics of Sec.TpduVerify.Response are as follows: 5128

Sec.TpduVerify.Response (5129

 – 218 – 62734/2CDV © IEC(E)

 TSDU, 5130

 TSDU_Size, 5131

 Time_Of_TPDU_Creation, 5132

 Status) 5133

Table 55 specifies the elements for Sec.TpduVerify.Response. 5134

Table 55 – Sec.TpduVerify.Response elements 5135

Element name Element
identifier

Element scalar type

TSDU (after any required decryption) 1 Type: OctetString

TSDU_Size 2 Type: Unsigned

Valid range: 0..Assigned_Max_TSDU_Size; see 11.4.3.3

Time_Of_TPDU_Creation (32-bit fixed-
point fractional representation of TAI
time, modulo 222 s, used in the nonce)

3 Type: Unsigned32

Status 4 Type: Unsigned

Named values:
0: success;
>0: failure

 5136
7.3.3.5.9.3 When generated 5137

The TSC generates Sec.TpduVerify.Response in response to a Sec.TpduVerify.Request. The 5138
Sec.TpduVerify.Response returns a status value that indicates either SUCCESS or the 5139
appropriate error code. 5140

7.3.3.5.9.4 Appropriate usage 5141

On receipt of Sec.TpduVerify.Response, the TL is notified of the result of verifying and 5142
possibly decrypting the incoming TPDU. 5143

7.3.3.6 TPDU security header structure 5144

The TPDU security header structure is as described in Table 56. 5145

Table 56 – Structure of TL security header 5146

Octet Bits

7 6 5 4 3 2 1 0

1 Security_Control

2 (opt) Crypto_Key_Identifier

3
Nominal_Time

4

 5147
The TL security header shall be added all TPDU to use header compression in NL. In case of 5148
no KeyDescriptor corresponding to certain TPDU, the TPDU shall be treated as no security 5149
(security level = NONE). 5150

NOTE 1 If the TPDU has no TMIC, the UDP checksum is used for error detection. 5151

Fields include: 5152

62734/2CDV © IEC(E) – 219 –

• Security_Control: As defined in 7.3.1.2. 5153

• Crypto_Key_Identifier: Specifies the current Crypto Key Identifier used to protect this 5154
TPDU. 5155

• Nominal_Time: The time portion shall be 16 bits of TAI time, expressed modulo 26 s in 5156
units of 2-10 s, presented in MSB order. 5157

NOTE 2 Fixing the time granularity to 2-10 s gives the TL the ability to transmit 1 023 TPDUs per second. 5158
With the maximum payload size of a TPDU, this is adequate for the throughput specified by 6LoWPAN. A 5159
varying granularity for TPDU time, suitable for supporting higher-rate automation processes, is a possible area 5160
of future standardization. 5161

7.3.3.7 Nonce construction for TPDUs 5162

This standard uses a different (but related) TPDU nonce construction than that of its DPDUs. 5163
A 13-octet nonce is required for the CCM* engine. The nonce shall be constructed as the 5164
concatenation from first (leftmost) to last (rightmost) octets of data fields as shown in Table 5165
57, wherein: 5166

• the EUI64Address shall be used as an array of 8 octets and the truncated TAI time; 5167

• the nominal TAI time of the TPDU creation shall be set at a granularity of 2-10 s, and shall 5168
be no more than 1 s earlier than the actual local time of start of TPDU creation, and no 5169
more than 1 s later than the actual local time of end of TPDU creation. Each outgoing 5170
TPDU from a given source EUI64Address that uses a given key shall be created with a 5171
unique value for the 32-bit truncated nominal TAI time of TPDU creation. This encoding 5172
restricts the maximum data rate of the TL to 1 024 TPDUs per second, which shall not be 5173
exceeded. The structure of the 32-bit truncated nominal TAI time shall be as described in 5174
Table 58. 5175

Table 57 – Structure of the TPDU nonce 5176

Octet Bits

7 6 5 4 3 2 1 0

1

EUI64Address ...

8

9

Truncated nominal TAI time of TPDU creation ...

12

13 0xFF

 5177
The 32-bit truncated nominal representation of TAI time used in the T-nonce is described in 5178
Table 58. 5179

Table 58 – Structure of 32-bit truncated nominal TAI time used in the T-nonce 5180

Octet Bits

7 6 5 4 3 2 1 0

1 Nominal TAI time (bits with weight 221..214 s)

2 Nominal TAI time (bits with weight 213..26 s)

3 Nominal TAI time (bits with weight 25..2-2 s)

4 Nominal TAI time (bits with weight 2-3..2-10 s)

 5181

 – 220 – 62734/2CDV © IEC(E)

At a 2-10 s granularity, there will be 48,5 days before this 32-bit time representation repeats, 5182
thus providing at most 48,5 days before a new key needs to be deployed to avoid a potential 5183
nonce collision with resultant keystream reuse. 5184

NOTE This representation is chosen because the sender and intended receivers are presumed to share 5185
approximately the same time sense and same nominal start time for any MAC transaction timeslot. 5186

7.3.3.8 Processing for TPDUs to be transmitted 5187

The inputs to the security procedure for TPDUs to be transmitted are: 5188

• the TPDU to be secured; 5189

• the EUI64Address of the source device; 5190

• the nominal TAI time; 5191

• the source and destination IPv6Addresses; and 5192

• the source and destination port. 5193

The outputs from this procedure are: 5194

• the status of the procedure; and 5195

• if this status is SUCCESS, the secured TPDU. 5196

The security procedure for TPDUs being constructed for transmission consists of the following 5197
steps: 5198

a) The procedure shall obtain the KeyDescriptor from Table 93 meeting the following 5199
selection criteria: 5200

• The entries with Type = 10 (TL). If none are available, the procedure shall return with a 5201
status of UNAVAILABLE_KEY. 5202

• Of those entries, the entries with the KeyLookupData matching the 5203
SourceAddress||SourcePort||DestinationAddress||DestinationPort (see Table 94) for 5204
this TPDU. If no KeyDescriptor is available and the following two conditions are both 5205
true, the procedure shall treat the TPDU as a no-security (security level = NONE) 5206
TPDU. Otherwise, the procedure shall return with a status of UNAVAILABLE_KEY. 5207

• Condition1: Join state of the receiving device is Provisioned or Joining (see Table 79). 5208

• Condition2: Source and destination ports are both for the DMAP (i.e., 0xF0B0). 5209
Those conditions need to be satisfied to transmit a join TPDUs that has a security level of 5210
NONE. 5211

• Of those entries, the entries valid for the current period, satisfying the inequality 5212
ValidNotBefore < current time < ValidNotAfter shall be selected. If none are available, 5213
the procedure shall return with a status of UNAVAILABLE_KEY. 5214

• Of those entries, if two or more keys are valid for the current time, the procedure shall 5215
select the key with the longest ValidNotAfter value. 5216

• Of those entries, if two or more keys have the same ValidNotAfter, the procedure shall 5217
select the key with the smallest ValidNotBefore. 5218

• Of those entries, if two or more keys have the same ValidNotBefore, the procedure 5219
shall select the key with the highest Crypto Key Identifier. 5220

If the procedure fails, the procedure shall handle the TPDU as no security (security level = 5221
NONE). 5222

b) The procedure shall retrieve the policy from selected KeyDescriptor. 5223
c) The procedure shall determine whether the TPDU to be secured satisfies the constraint on 5224

the maximum size of TPDUs, as follows: 5225

• The procedure shall set the size M, in octets, of the TMIC authentication field from the 5226
security level. 5227

62734/2CDV © IEC(E) – 221 –

• The size of the Key Index field in the TL security header shall be 1 octet, if more than 5228
1 key is valid for the current security association and 0 otherwise. 5229

• The procedure shall determine the data expansion as Crypto Key Identifier size + M. 5230

• The procedure shall check whether the size of the TPDU to be secured, including data 5231
expansion, is less than or equal to the Assigned_Max_TSDU_Size (see Table 30). If 5232
this check fails, the procedure shall return a status of TPDU_TOO_LONG. 5233

d) The procedure shall build the security control octet of the TL security header. If the 5234
security level matches more than one KeyDescriptor from the current Key Descriptor, the 5235
Crypto Key Identifier shall be used with the Crypto Key Identifier Mode = 0x01; otherwise 5236
the procedure shall set the Crypto Key Identifier Mode = 0x00. 5237

e) The procedure shall set the Crypto Key Identifier = Crypto Key Identifier from the current 5238
Key Descriptor (if present) in the TL security header. See Table 56. 5239

f) The procedure shall build the nominal TAI time in TAITimeRounded format as outlined in 5240
Table 58. 5241

g) The procedure shall set the Nominal_Time octets in the outgoing TL security header as 5242
the last 16 bits of the nominal TAI time in TAITimeRounded format. See octets 3 and 4 in 5243
Table 58. 5244

h) If no Key Descriptor was found, then go to step j); otherwise, the procedure shall use the 5245
EUI64Address, the nominal TAI time in TAITimeRounded format and the 8-bit value 0xFF 5246
to build the nonce as outlined in Table 57. 5247

i) The procedure shall use the nonce, the key material, the TPDU header, the TPDU payload 5248
and the CCM* mode of operation as described in IEEE 802.15.4:2011, 7.3.4, to secure the 5249
TPDU: 5250

• If the SecurityLevel parameter specifies the use of encryption (see 5251
IEEE 802.15.4:2011, Table 58), the encryption operation shall be applied only to the 5252
TPDU’s payload field. The corresponding payload field is passed to the CCM* 5253
transformation process described in IEEE 802.15.4:2011, 7.3.4, as the unsecured 5254
payload. The resulting encrypted payload shall be substituted for the original payload. 5255

• The remaining fields in the TPDU, up to but not including the payload field, plus any 5256
required virtual fields, shall be passed to the CCM* transformation process described 5257
in IEEE 802.15.4:2011, 7.3.4, as the non-payload field. 5258

• The ordering and exact manner of performing the encryption and integrity operations 5259
and the placement of the resulting encrypted data or integrity code within the TPDU 5260
payload field shall be as defined in IEEE 802.15.4:2011, 7.3.4. 5261

j) The procedure shall return the secured TPDU and a status of SUCCESS. 5262

7.3.3.9 Processing for received TPDUs 5263

The input to the security procedure for received TPDUs is the TPDU to be unsecured, which 5264
contains the source and destination IPv6Addresses and the source and destination ports. The 5265
outputs from this procedure are the unsecured TPDU, the security level, the Crypto Key 5266
Identifier Mode, the key source, the key index, and the status of the procedure. All outputs of 5267
this procedure are assumed to be invalid unless and until explicitly set in this procedure. Each 5268
receiver of TPDUs maintains a cache of authenticated nonce values of recently received 5269
TPDUs. 5270

The security procedure on TPDU reception consists of the following steps: 5271

a) The procedure shall obtain the security level and the Crypto Key Identifier Mode from the 5272
corresponding subfields of the security control field and the key index from the 5273
corresponding subfields of the Crypto Key Identifier (if present) of the security header of 5274
the incoming TPDU. 5275

b) The procedure shall reconstruct the inferred originator’s nominal TAI time of TPDU 5276
formation (see Note 2). 5277

 – 222 – 62734/2CDV © IEC(E)

c) The procedure shall compare the time in step b) and the receiver's current TAI time. If the 5278
time in step b) is more than 2 s ahead of the receiver's current TAI time, or more than N 5279
seconds behind the receiver's current TAI time (where N is a policy-determined parameter 5280
whose default value is 62 s) the security process returns 5281
FAILURE_TPDU_DID_NOT_AUTHENTICATE. 5282

d) The procedure shall obtain the KeyDescriptor from Table 93 meeting the following 5283
selection criteria: 5284

• The entries with Type = 10 (TL). 5285

• Of those entries, the entries with the KeyLookupData matching the 5286
SourceAddress||SourcePort||DestinationAddress||DestinationPort (see Table 94) for 5287
this TPDU. If no KeyDescriptor is available and the following two conditions are all 5288
true, the procedure shall treat the TPDU as no security (security level = NONE) TPDU. 5289
Otherwise, the procedure shall return with a status of UNAVAILABLE_KEY. 5290

• Condition1: Join state of the receiving device is Provisioned or Joining (see Table 79). 5291

• Condition2: Source and destination ports are for both DMAP’s (i.e. 0xF0B0). 5292

NOTE 1 This information is used when processing a received join TPDU that has a security level of NONE. 5293

• Of those entries, the entries valid for the current period, satisfying the inequality 5294
ValidNotBefore < current time < ValidNotAfter shall be selected. If none is available, 5295
the procedure shall return with a status of UNAVAILABLE_KEY. 5296

• Of those entries, if two or more keys are valid for the current time, the procedure shall 5297
select the key with the longest ValidNotAfter value. 5298

• Of those entries, if two or more keys have the same ValidNotAfter, the procedure shall 5299
select the key with the smallest ValidNotBefore. 5300

• Of those entries, if two or more keys have the same ValidNotBefore, the procedure 5301
shall select the key with the highest Crypto Key Identifier. 5302

• If the procedure fails, the procedure shall return with a status of UNAVAILABLE_KEY. 5303
e) The procedure shall determine whether the security level of the incoming TPDU conforms 5304

to the security level policy by comparing the SecurityLevel of the matching Key Descriptor 5305
obtained from step b) above. If there is a mismatch, the procedure shall return with a 5306
status of IMPROPER_SECURITY_LEVEL. 5307

f) The procedure shall then use the EUI64Address of the originator, the nominal TAI time of 5308
TPDU formation from step b), the received low-order 16 bits of nominal TAI time (see 5309
Table 58) to generate the nonce outlined in Table 57. 5310

g) The procedure shall use the nonce, the key from the Key Descriptor obtained in step d, 5311
the headers (the non-payload fields), the payload and the MIC of the incoming TPDU and 5312
the CCM* mode of operation as described in operations (see IEEE 802.15.4:2011, 7.3.5) 5313
to authenticate and, where configured for the transport association, decrypt the TPDU: 5314

• If the security level specifies the use of encryption (see IEEE 802.15.4:2011, Table 5315
58), the decryption operation shall be applied only to the actual TPDU payload field 5316
(see IEEE 802.15.4:2011, 5.2.2.2.2). The corresponding payload field shall be passed 5317
to the CCM* inverse transformation process described in IEEE 802.15.4:2011, 7.3.5 as 5318
the secure payload. 5319

• The remaining fields in the TPDU, plus any required virtual fields, shall be passed to 5320
the CCM* inverse transformation process described in IEEE 802.15.4:2011, 7.3.5 as 5321
the non-payload fields (see IEEE 802.15.4:2011, Table 57). 5322

• The ordering and exact manner of performing the decryption and integrity checking 5323
operations and the placement of the resulting decrypted data within the TPDU payload 5324
field shall be as defined in IEEE 802.15.4:2011, 7.3.5. 5325

h) If the CCM* inverse transformation process fails, then the procedure may decrement the 5326
nominal TAI time by 64 s and repeat the above process during DSMO.pduMaxAge period. 5327
Otherwise, the procedure shall set the TPDU to be unsecured and return a status of 5328
SECURITY_ERROR. 5329

62734/2CDV © IEC(E) – 223 –

i) The procedure shall look up the nonce of the just authenticated TPDU in the cache, with 5330
the following possible outcomes: 5331

• The time of the nonce is older than the oldest time in the cache and the cache does 5332
not have space for an additional older entry, so the security process returns 5333
FAILURE_OVERAGE_TPDU. 5334

• The nonce is already in the cache, so the security process returns 5335
FAILURE_DUPLICATE_TPDU. 5336

• Any encrypted payload of the TPDU is decrypted, and the security process returns 5337
SUCCESS. 5338

j) The procedure shall insert the nonce value in the cache, if necessary bumping from the 5339
cache the cache entry with the oldest inferred nominal TAI time of TPDU formation and 5340
return with the unsecured TPDU, the security level, the Crypto Key Identifier Mode, the 5341
key source, the key index (if present) and a status of SUCCESS. 5342

NOTE 2 The originator's nominal TAI time of TPDU formation is inferred initially from the receiver's current TAI 5343
time and the fractional nominal TAI time of TPDU creation specified in the TPDU such that it satisfies the 5344
relationship 5345
 ((current-receiver-time + 2 s) ≥ originator's-nominal-time ≥ (current-receiver-time - DSMO.pduMaxAge)). 5346
The time duration of 2 s is intended to cover ±1 s boundary conditions. 5347

It is permitted for the cache to be segmented into separate caches for each sending 5348
EUI64Address. It is further permitted for the cache to be segmented by the reported network-5349
layer QoS, so that a cache that holds only a few nonces of low-priority TPDUs need not also 5350
hold dozens to hundreds of nonces for overtaking higher-priority TPDUs. It is further permitted 5351
for the cache size to be adaptive, so that repeated occurrences of the first outcome in step g) 5352
above cause the cache to grow, with appropriate reduction in cache size if and when the 5353
excess cache capacity has not been used for an extended period of time. 5354

7.3.3.10 Detection and discard of duplicated or replayed TPDUs 5355

See 7.3.3.9, i). 5356

 Join process 7.45357

 General 7.4.15358

The join process describes the steps by which a new device is admitted into a standard-5359
compliant network and obtains all the relevant information to be able to communicate with 5360
other devices as well as the system manager and security manager. 5361

NOTE This description assumes that the joining device has a DL-protocol stack conforming to some edition of this 5362
standard. However, since this procedure is an AL protocol, it is also usable for devices that do not have a DL stack 5363
simply by omitting the DL steps. 5364

 Prerequisites 7.4.25365

The join process follows the provisioning step, during which cryptographic information and 5366
non-cryptographic configuration parameters may be provided to the new device. A new device 5367
shall obtain such necessary provisioning information from the provisioning device. This is 5368
described in Clause 13. The Join_Command attribute in the DMO of a device shall be used to 5369
command the device to join the network. 5370

A joining device shall join the target network using one of the following security approaches: 5371

• symmetric keys; 5372

• asymmetric keys; 5373

• no-security. 5374

The no-security approach does not use a secret key for transfer of join keys. Instead, it uses 5375
one of the predefined, well-known keys K_global or K_open, as specified in 7.2.2.2. In this 5376

 – 224 – 62734/2CDV © IEC(E)

case the MIC functions as a strong CRC, which offers no security assurances but has a very 5377
high probability of detection of errors not due to deliberate attack. In this case end-to-end 5378
secure sessions (T-associations) are not permitted. 5379

A device implementing the symmetric-key join approach shall have both a symmetric join key 5380
and the EUI64Address of a security manager that shares that join key. 5381

A device implementing the asymmetric-key join approach shall have a certificate signed by a 5382
certificate authority trusted by the target network. 5383

A device implementing the no-security join approach shall have the well-known, published, 5384
non-secret symmetric key common to all standard-compliant networks, K_global or K_open, 5385
as specified in 7.2.2.2. 5386

 Desired device end state and properties 7.4.35387

At the conclusion of the join process, the system shall have the following state: 5388

• the new device and the security manager securely share a symmetric long-term master 5389
key; 5390

• if a WISN DLE is present in the device, the new device has the required cryptographic 5391
material for that DLE to exchange DPDUs with its direct neighbors; 5392

• if a WISN DLE is present in the device, the new device has the required non-cryptographic 5393
material and resources for that DLE to exchange DPDUs with at least one of its direct 5394
neighbors; and 5395

• the new device shall have a contract with the system manager. 5396

NOTE 1 A contract with the system manager includes a T-key shared between the system manager and a TLE of 5397
the new device. 5398

When using either the symmetric-key or asymmetric-key approach, the join process provides 5399
the following security assurances: 5400

• protection against replay attacks on join APDUs: 5401
– cryptographic assurance to the new device that the security manager is alive; 5402
– cryptographic assurance to the security manager that the new device is alive; 5403

• authenticity: 5404
– cryptographic assurance that the join request comes from a device that has valid trust 5405

material; 5406
– cryptographic assurance that the join APDUs have not been altered; 5407

• confidentiality: 5408
– cryptographic protection for the keys in the join reply, such that an eavesdropper 5409

cannot recover the transported keys. 5410

NOTE 2 A challenge / response protocol is used for the secure join process to eliminate any need to rely, at the 5411
time of the join process, on a mutually trusted source of TAI time. 5412

 Join process steps common for symmetric-key and asymmetric-key approaches 7.4.45413

7.4.4.1 General 5414

When using the secure symmetric-key or asymmetric-key approach for the join process, the 5415
device goes through the following general steps to complete the join process. 5416

The system manager controls the process of a new device joining the network. A non-joined 5417
device that implements a DLE conforming to this standard listens for advertisement DPDUs 5418
from local routers, whose advertisement functions are configured by the system manager. 5419

62734/2CDV © IEC(E) – 225 –

Advertisements can be found by using active scanning, passive scanning, or a combination of 5420
both. Active scanning involves solicitation DPDUs sent by the joining device to request the 5421
transmission of advertisement DPDUs. Detailed information for active/passive scanning is 5422
found in 9.1.13. 5423

Such an advertising router shall assist during the join process by acting as a proxy for a 5424
system manager, relative to the new device. As a proxy, this advertising router forwards the 5425
join request from the new device to a system manager and forwards the join response from 5426
that system manager to the new device. Upon receipt of a join request from a new device, a 5427
system manager processes the request, authenticates the acceptability of the request through 5428
communication with a security manager, and generates a join response in reply. 5429

7.4.4.2 Construction of join process PDUs 5430

The join request from a new device consists of concatenated PDUs that separate the security 5431
information, exchanged between the device and a security manager, from the non-security 5432
information, exchanged between the device and a system manager. The join response 5433
consists of similar concatenated PDUs that separate the security information from the non-5434
security information. 5435

The non-security information exchanged during the join process is described in 6.3.9.2. That 5436
exchange uses the method defined in 6.3.9.2.2 for the advertising router’s DMO and methods 5437
defined in 6.3.9.5 for the system manager’s DMSO. 5438

The security information exchanged during the join process is dependent on the join approach 5439
used, as described in 7.4.5 for the symmetric-key approach and in 7.4.6 for the asymmetric-5440
key approach. 5441

In order for the new device to construct its join process PDUs and send them to the 5442
advertising router, it needs to know the EUI64Address of the advertising router. The process 5443
followed by the new device to obtain this EUI64Address is described in 9.1.14. The join 5444
process request PDUs, from the new device to the advertising router, and the join process 5445
response PDUs, from the advertising router to the new device, shall be constructed as 5446
follows, using this EUI64Address of the advertising router and the EUI64Address of the new 5447
device: 5448

• If there is a WISN DLE present in the joining device, the DL header for these join process 5449
PDUs is constructed as described in 9.3. 5450

• The NL header for these join process PDUs is constructed as described in 10.5.3. 5451

• The TL header for these join process PDUs is constructed as described in 11.5. For 5452
calculation of the UDP checksum, the UDP pseudo-header for IPv6 uses the 5453
EUI64Address of the new device and the EUI64Address of the advertising router, 5454
represented as link-local IPv6Addresses of the respective devices, as the IPv6Addresses 5455
of the PDUs’ source and destination. 5456

• The DMAPs of the joining device and of the advertising router use these link-local 5457
IPv6Addresses when conveying join-request-related PDUs to their TLEs. 5458

• At the TL, the Sec.TpduOutCheck.Response shall return with a value of 3 for the security 5459
header size and 0 for the TMIC size, indicating a TL security header with security level = 0 5460
(NONE). Due to a (usual) lack of shared secret keys, TL security protection is not 5461
generally available for the TPDU exchange of the join request PDUs from the new device 5462
and the the join response PDUs from the advertising router. 5463

• If there is a DLE present, the DPDU security header has a security level = 1 (MIC-32), 5464
thus using a 32-bit DMIC for join DPDUs, which shall be constructed as described in 5465
7.3.2.5 using the D-key K_global (Crypto Key Identifier = 0). Because this key is well-5466
known, it provides no protection against deliberate attack. Thus this 32-bit DMIC is used 5467
only to detect uninentional errors in join request and response DPDUs. The advertising 5468
D-router shall use its existing contract with the system manager to forward the join 5469
process PDUs on behalf of the device that is making the join request. 5470

 – 226 – 62734/2CDV © IEC(E)

NOTE A new device that is trying to join the network does not have any contracts assigned by the system 5471
manager. Thus the communication between the new device and the advertising router is not based on any contract. 5472

The PSMO.Security_Sym_Confirm() request and response messages should be protected by 5473
the D-key and T-key information that is distributed in the PSMO.Proxy_Security_Sym_Join() 5474
response message. 5475

7.4.4.3 Protection of join process messages 5476

7.4.4.3.1 General 5477

As the new device does not have the necessary D-subnet key and a TL level T-key with the 5478
advertising router, all join process messages, other than confirm messages, between the new 5479
device and the advertising router shall use the K_global at the DL level to construct a 32-bit 5480
DMIC. At the TL level, the UDP checksum shall be used for these messages. 5481

The security information in the join request, as well as all the information coming back from 5482
the system manager and the security manager in the join response messages, is protected 5483
using the join key. This is described in 7.4.5 for the symmetric-key approach and in 7.4.6 for 5484
the asymmetric-key approach. 5485

7.4.4.3.2 Protection against join PDU replay attacks 5486

To protect against a join PDU replay attack, it is recommended that the security manager 5487
check for duplicate challenges with a valid MIC from the new device. If no challenge 5488
duplicates are detected, the security manager stores the challenge value for further 5489
duplication checking. In the event of a duplicate detection, the security manager discards the 5490
PDU before processing the join PDU. 5491

7.4.4.3.3 Protecting non-security message in the join process 5492

7.4.4.3.3.1 General 5493

This section describes the configuration of the security settings during the join process. The 5494
non-security related network information is configured with the 5495
DMSO.System_Manager_Join() and DMSO.System_Manager_Contract() methods. The 5496
details of the methods are specified in 6.3.9.2. Such non-security messages are protected 5497
with cryptographic operations at the AL. The non-security messages are generated in the 5498
system manager and passed to the security manager which then adds the MIC using the join 5499
key. The protected messages are transmitted to the joining device via the DMSO in the 5500
system manager. At the joining device, the MIC in the received response is validated with the 5501
same operation. 5502

At the joining device, the MIC in the received response is validated with same operation. 5503

7.4.4.3.3.2 MIC generation for System_Manager_Join response 5504

The DMSO.System_Manager_Join() method is defined in 6.3.9.5. The MIC field is the most 5505
significant 4 octets in MACTag generated with the following operation. 5506

MACTag = HMAC-MMOK_join[Output Argument number1 .. number6 in Table 23 || 5507
EUI64Addressjoin_device || Challengejoin_device]. 5508

7.4.4.3.3.3 MIC generation for System_Manager_Contract response 5509

The DMSO.System_Manager_Contract method is defined in 6.3.9.5. The MIC field is the most 5510
significant 4 octets in MACTag generated with the following operation. 5511

MACTag = HMAC-MMOK_join[Output Argument number1 in Table 24 || 5512
EUI64Addressjoin_device || Challengejoin_device] 5513

62734/2CDV © IEC(E) – 227 –

7.4.4.3.3.1 Confirmation 5514

After the DMO.Proxy_System_Manager_Join().Response and 5515
DMO.Proxy_System_Manager_Contract().Response are received, the join device sends a 5516
message to inform that the correct network information has been received by the system 5517
manager. 5518

In the symmetric-key join process, the confirmation process is integrated in the 5519
PSMO.Security_Confirm() method specified in Table 61. 5520

In the asymmetric-key join process, the confirmation process is accomplished with the 5521
PSMO.Network_Information_Confirmation() method specified in Table 74. 5522

7.4.4.4 Join timers 5523

In the join process, two timers are defined. Upon expiration of either of those timers, any 5524
information (e.g., state and received parameter) cached for particular join process shall be 5525
removed or re-initialized. 5526

JT1: Time duration managed in the joining device, from the time of transmission of the 5527
security join request, to the time of correct validation of the confirmation response 5528
generated by the security manager. If the joining device is not a backbone device, the 5529
actual value for JT1 shall be set at the DauxJoinTimeout value that is distributed within the 5530
DL advertisement (see Table 127). Otherwise, the actual value for JT1 shall be set to 60 s 5531
for the backbone device. 5532

JT2: Time duration managed in the security manager, from the time of reception of the 5533
security join request to the time of correct validation of the security confirmation message 5534
generated by the joining device. The actual value of JT2 is not specified in this standard. 5535

NOTE JT2 can be less than JT1. 5536

7.4.4.5 Join process of backbone device 5537

A backbone device joins a target network by executing the join method in the system 5538
manager’s DMO instead of the advertisement router’s. Therefore, the backbone device does 5539
not need to discover an advertisement router; the DPO.Target_System_Manager_Address 5540
shall be set in the provisioning phase. The overview of the backbone device join process is 5541
illustrated in Figure 45 for the symmetric-key join process and in Figure 48 for the 5542
asymmetric-key join process. 5543

7.4.4.6 TMIC size constraints for session between join node and system manager 5544

At the end of the join process, the security manager assigns an initial security level for the 5545
session between the joining device and the system manager. That security level shall be 0, 1, 5546
2, 5 or 6; it shall not be 3 (MIC-128) or 7 (ENC-MIC-128), and 4 (ENC-only) is always invalid. 5547

 Symmetric-key join process 7.4.55548

7.4.5.1 General 5549

Figure 44 illustrates the messaging involved in the symmetric-key join process by which a new 5550
device shall join an operating network in which it has not recently been a participant. The flow 5551
shows the normal case in which no errors or timeouts occur. The timeouts are specified in 5552
Table 92. 5553

On the joining device, the symmetric-key join process shall be initiated with a 5554
DMO.Proxy_Security_Sym_Join().Request and finalized with a valid 5555
PSMO.Security_Confirm().Response. On the security manager, the symmetric-key join 5556
process shall be initiated with a valid message derived from 5557

 – 228 – 62734/2CDV © IEC(E)

PSMO.Security_Sym_Join().Request and finalized with a valid message derived with 5558
PSMO.Security_Confirm().Request. 5559

 5560

Figure 44 – Example: Overview of the symmetric-key join process 5561

62734/2CDV © IEC(E) – 229 –

 5562

Figure 45 – Example: Overview of the symmetric-key 5563
join process of a backbone device 5564

As shown in Figure 44, a new device shall use the methods defined for the advertising 5565
router’s DMO to send and receive the join request and join response messages. The methods 5566
related to the non-security information are described in 6.3.9.2. The DMO methods related to 5567
the security information are described in 7.4.5.2. After transmission of the 5568
DMO.Proxy_Security_Sym_Join ().Request, the new device shall start to count join timer JT1. 5569

The advertising router shall use the methods defined for the system manager’s DMSO to send 5570
and receive the non-security related join request and response messages. These DMSO 5571
methods are described in 6.3.9.5. Methods defined for the system manager’s proxy security 5572
management object (PSMO) shall be used by the advertising router to send and receive the 5573
security related join request and response messages. The PSMO methods related to the 5574
security information are described in 7.4.5.2. As shown in Figure 44, the PSMO receives the 5575
security-related join request and forwards it to the security manager. The security manager 5576
may check a white or black list for the device and ask for human verification before deciding 5577
to admit or reject the joining device. If the result is positive, the security manager verifies the 5578
cryptographic information of the join request. If the checks fail, the system manager is 5579
instructed to revoke the resources allocated to the new device. If the test succeeds, the 5580
security manager does the following: 5581

NOTE 1 The methodology of filtering the joining device in security manager is beyond the scope of this standard. 5582
a) starts join timer JT2; 5583
b) generates a new master key for the new device; 5584
c) creates a new secure session for the contract between the system manager and the new 5585

device; 5586
d) retrieves the current D-key and Crypto Key Identifier for the new device’s D-subnet; 5587
e) generates a fresh, unique challenge for the new device; 5588
f) cryptographically protects the aforementioned keys and forms a message integrity check 5589

code on the entire response; and 5590

 – 230 – 62734/2CDV © IEC(E)

g) sends the security-related response, including the message integrity check code, back to 5591
the PSMO. 5592

The PSMO sends this security-related response back to the advertising router which in turn 5593
forwards it to the new device. 5594

The new device checks the cryptographic integrity of this security-related response APDU. If 5595
the test fails, the received APDU is discarded. If the test succeeds, then the security-related 5596
response is processed by the device, which cancels join timer JT1. 5597

The non-security related join response APDU that is generated by the system manager’s 5598
DMSO is forwarded to the security manager in order to cryptographically protect the 5599
information in the APDU. Once the DMSO receives this protected APDU, it sends the 5600
protected APDU back to the advertising router which in turn forwards it to the new device. The 5601
new device checks the cryptographic integrity of this protected APDU before using the 5602
information in the APDU to complete the join process. The APDU includes information about 5603
the initial contract that the system manager established between the new device and the 5604
system manager. This contract is described in 6.3.11.2.6.7. 5605

As part of the last step of the join process, the new device shall send back a security 5606
confirmation APDU to the security manager that contains the challenge from the security 5607
manager, authenticated by the new, shared master symmetric key. This security confirmation 5608
is sent to the PSMO which forwards it to the security manager. The PSMO method used for 5609
this is described in 7.4.5.2. 5610

The security manager checks the confirmation message. If the test fails, the received 5611
confirmation response, the join state and the cached information for the new device shall be 5612
dropped. If the test succeeds, the security manager cancels its JT2 timer and sends a 5613
confirmation response back to the new device. 5614

If the new device receives a positive response to its confirmation request, it cancels its JT1 5615
timer. 5616

The contract that was established between the new device and the system manager during 5617
the join process is used to support these messages. 5618

NOTE 2 By sending the response of the challenge authenticated under the master key, the new device proves to 5619
the security manager that it was able to extract the master key, and therefore that it had the join key. 5620

The ASL may concatenate ASDUs resulting from multiple method calls into a single TSDU, 5621
thus guaranteeing that if one is received, all are received. For example, to reduce the traffic 5622
overhead or the join time, the Proxy_Security_Sym_Join().Request and the 5623
Proxy_System_Manager_Contract().Request may be concatenated in the same TSDU sent to 5624
the advertising router’s DMO. 5625

7.4.5.2 Device management object and proxy service management object methods 5626
related to the symmetric-key join process 5627

7.4.5.2.1 General 5628

The new device shall use the Proxy_Security_Sym_Join method defined for the advertising 5629
router’s DMO in the advertising router to send its security information that is part of the join 5630
request and to get its security information that is part of the join response. 5631

NOTE 1 To mitigate flooding by join messages, the system manager limits wireless resources (e.g., timeslots) 5632
assigned in advertising routers for receiving joining messages. The resources are described in 9.3.5.2.4.2. 5633

Table 59 describes the Proxy_Security_Sym_Join method. The source object for invoking the 5634
DMO.Proxy_Security_Sym_Join().Request shall be the DMO in the Joining device’s DMAP. 5635

62734/2CDV © IEC(E) – 231 –

Table 59 – Proxy_Security_Sym_Join method 5636

Standard object type name: device management object (DMO)

Standard object type identifier: 127

Method name Method ID Method description

Proxy_Security_Sym_Join 5 Method to use advertising router as proxy to send security join
request and get security join response

Input arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

1 Join_
Request

Security_Sym_Join_Request;
see 7.4.5.2.2

Security join
request based on
symmetric keys
from new device
that needs to be
forwarded to
security manager

Output arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

1 Join_
Response

Security_Sym_Join_Respons
e; see 7.4.5.2.3

Security join
response based on
symmetric keys
from security
manager that
needs to be
forwarded to new
device; this is
protected using the
join key

 5637
The advertising router shall use the Security_Sym_Join method defined for the system 5638
manager’s PSMO for sending the security information that is part of the join request on behalf 5639
of the new device and to get the security information that is part of the join response. 5640

Table 60 describes the Security_Sym_Join method. 5641

 – 232 – 62734/2CDV © IEC(E)

Table 60 – Security_Sym_Join method 5642

Standard object type name: PSMO (proxy security management object)

Standard object type identifier: 105

Method name Method
ID

Method description

Security_Sym_Join 1 Method to use the PSMO in the system manager to send security join
request and get a security join response

Input arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

1 Join_Request Security_Sym_Join_Request;
see 7.4.5.2.2

Security join
request from new
device to security
manager

Output arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

1 Join_Response Security_Sym_Join_Response;
see 7.4.5.2.3

Security join
response from
security manager
to new device that
is protected using
the join key

 5643
As part of the last step of the join process, the new device shall use the Security_Confirm 5644
method defined for the system manager’s PSMO for sending a security confirmation to the 5645
security manager. 5646

Table 61 describes the Security_Confirm method. 5647

Table 61 – Security_Confirm method 5648

Standard object type name: PSMO (Proxy security management object)

Standard object type identifier: 105

Method name Method ID Method description

Security_Confirm 2 Method used by new device to send security confirmation to the
security manager through the PSMO

Input arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

1 Security_Sym_Confirm Security_Sym_Confirm;
see 7.4.5.2.4

Security
confirmation
from new device
to security
manager

Output arguments

Argument
number Argument name Argument type

(data type and size)
Argument

description

— — — —

 5649
NOTE 2 Although the Security_Confirm method does not have any output arguments, the Execution response 5650
message in the Application Sublayer is returned as a result of this method. 5651

62734/2CDV © IEC(E) – 233 –

7.4.5.2.2 Symmetric-key join request 5652

The Security_Sym_Join_Request data structure that is used to form the symmetric-key join 5653
request is defined in Table 62. 5654

Table 62 – Security_Sym_Join_Request data structure 5655

Standard data type name: Security_Sym_Join_Request

Standard data type code: 410

Element name Element identifier Element type

New_Device_EUI64 1 Type: EUI64Address

Classification: Constant

Accessibility: Read only

128_Bit_Challenge_From_New_Device 2 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

Algorithm_Identifier 3 Type: Unsigned8

Classification: Static

Accessibility: Read only

Default value : 1

MIC 4 Type: Unsigned32

Classification: Static

Accessibility: Read only

 5656
Fields include: 5657

• New_Device_EUI64 is the EUI64Address of the joining device. This EUI64Address is used 5658
by the advertising router when forwarding the message to the system manager to identify 5659
this device uniquely, as there could be multiple new devices joining at the same time. 5660

• 128_Bit_Challenge_from_new_device is a fresh unique challenge generated by the new 5661
device to verify that the security manager is alive. 5662

• The algorithm identifier shall be used to specify the symmetric-key algorithm used in the 5663
target network. The value of 0x0 shall be reserved. A symmetric-key algorithm of 0x01 5664
corresponding to AES_CCM* shall be the only symmetric algorithm and mode supported 5665
for the join process. 5666

NOTE Currently, only AES_CCM* is defined as a symmetric-key algorithm. However, this field is prepared for 5667
algorithms for future use or national regulation. 5668

• The MIC-32 is computed over the elements 1 through 4, using the join key and the 13 5669
most significant octets of the challenge as nonce. 5670

7.4.5.2.3 Symmetric-key join response 5671

The Security_Sym_Join_Response data structure that is used to form the symmetric-key join 5672
response is defined in Table 63. 5673

 – 234 – 62734/2CDV © IEC(E)

Table 63 – Security_Sym_Join_Response data structure 5674

Standard data type name: Security_Sym_Join_Response

Standard data type code: 411

Element name Element identifier Element type

128_Bit_Challenge_From_SecurityManager 1 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

128_Bit_Response_To_New_Device_Hash_B 2 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

Combined_Security_Level 3 Type: Unsigned8 (see Table 64)

Classification: Static

Accessibility: Read/write

Master_Key_HardLifeSpan 4 Type: Unsigned16

Classification: Static

Accessibility: Read/write

DL_Key_HardLifeSpan 5 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Sys_Mgr_Session_Key_HardLifeSpan 6 Type: Unsigned16

Classification: Static

Accessibility: Read/write

DL_Key_ID 7 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Encrypted_DL_Key 8 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

Encrypted_Sys_Mgr_Session_Key 9 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

 5675
This data structure consists of a plaintext section and an encrypted section. The plaintext 5676
section shall be composed of the header, the original challenge from the new device, and a 5677
new challenge from the security manager which is different from the challenge generated by 5678
the new device, and the key policies. The encrypted section shall be composed of the D-key 5679
and the T-key with the system manager. 5680

• 128_Bit_Challenge_From_Security_Manager is a fresh unique challenge generated by the 5681
Security Manager to verify that the new device is alive. 5682

• 128_Bit_Response_To_New_Device_Hash_B shall be calculated as: 5683
– Hash_B= HMAC-MMOK_join[challenge_from_security_manager || 5684

challenge_from_new_device || EUI64Address of new_device || EUI64Address of 5685
security_manager || Message_Key_Transport] 5686

– Message_Key_Transport = Combined_Security_Level || Master_Key_HardLifeSpan || 5687
DL_Key_HardLifeSpan || Sys_Mgr_Session_Key_HardLifetime || DL_Key_ID || 5688
Encrypted D-key || Encrypted SysMan T-key 5689

62734/2CDV © IEC(E) – 235 –

• The Master_Key_HardLifeSpan, DL_Key_HardLifeSpan and 5690
Sys_Mgr_Session_Key_HardLifeSpan shall be the HardLifeSpan, in units of hours. The 5691
Key Type=’001’ and Key Usage can be inferred implicitly from Table 89 and Table 90 by 5692
the element Identifier. A default granularity of 0x2=’hours’ shall be used for the policies in 5693
the join response message. 5694

• The DL_Key_ID shall be the Crypto Key Identifier associated with the D-key sent in the 5695
join response. The Crypto Key Identifier of the master key and T-key shall be set implicitly 5696
(not transmitted but inferred) as 0x00. 5697

• The 13 most significant octets of the challenge sent from security manager shall be used 5698
as the nonce to encrypt D-key and T-key. The D-key and T-key are encrypted in the same 5699
time (single operation of AES-CCM* encryption with MIC size = 0). 5700

• Response to new device shall be the keyed hash defined as follows: 5701

• The new master key shall be derived as: 5702
– K_master = HMAC-MMOK_join[EUI64Addressnew_device || EUI64Address of 5703

security_manager || challenge_from_new_device || challenge_from_security_manager] 5704

• The D-key and the T-key to support the contract with the system manager shall be 5705
encrypted using the new master key. 5706

NOTE 1 By including the challenge from the new device and calculating a MIC over it, the security manager 5707
proves that it is a live device with knowledge of the join key. 5708

NOTE 2 16 bits of validity period, with units of hours, give a range of over 7 years, which is adequate to express 5709
the current maximum key lifetime. 5710

Table 64 – Structure of compressed security level field 5711

Octet Bits

7 6 5 4 3 2 1 0

1 DL Security Level Sys Mgr Ses Security Level Master key Sec level

 5712
Fields include: 5713

• DL_Security_Level: The security level applied to the D-key conveyed in the 5714
Security_Sym_Join response message. The format of this field shall be as specified in 5715
Table 35. Security level 0, None, and security level 4, ENC, shall not be used. 5716

• Sys_Mgr_Ses_Security_Level: The security level applied to the T-key with the system 5717
manager conveyed in the Security_Sym_Join response message. The format of this field 5718
shall be as specified in Table 35. Security level 4, ENC shall not be used. 5719

• Master_Key_Sec_Level: The MIC size applied to the master key generated in the join 5720
process. The format of this field is defined in Table 65. Since the encryption factor is 5721
different in each message protected by the master key, only the MIC size is specified in 5722
this field. The actual security level shall be selected from Table 65 with a combination of 5723
encryption conditions in each message. 5724

NOTE 3 For example, since the Security_New_Session_Request and the Security_New_Session_Response 5725
data structure don’t have any elements to be encrypted, the Security_Level in the Security_Control field is set 5726
to MIC-n with the MIC size specified in this structure. While the Security_Key_and_Policies data structure has 5727
elements to be encrypted, the Security_Level in the Security_Control field is set to ENC-MIC-n with MIC size 5728
specified in this structure. 5729

 – 236 – 62734/2CDV © IEC(E)

Table 65 – Master key security level 5730

Security level identifier Master_Key_Sec_Level Security attributes

0 0 Reserved

1 1 MIC-32

2 2 MIC-64

3 3 MIC-128

 5731
NOTE 4 Since a MIC is always used to protect the join process PDUs with the master key, the security level 5732
identifier 0 is Reserved. 5733

• ValidNotBefore = TAI time of APDU reception; 5734

NOTE 5 ValidNotBefore can be inferred as the reconstructed time used in the authentication of the PDU, and 5735
is not included due to space restrictions in the response PDU. 5736
The time that the APDU is received shall not be more than DSMO.pduMaxAge seconds 5737
after it was created. That gives an acceptable start time. 5738

• HardLifeSpan: The key validity duration in hours. A value of 0x0000 shall prohibit the key 5739
from expiring. 5740
If HardLifeSpan is zero (i.e., effectively infinite), the inferred key lifetime shall be: 5741
– ValidNotAfter = 0xFFFF FFFF, which is interpreted by key expiration logic as a key that 5742

never expires; 5743
– SoftExpirationTime = ValidNotAfter . 5744
If HardLifeSpan is non-zero (i.e., finite), the inferred key lifetime shall be: 5745
– ValidNotAfter = ValidNotBefore + (HardLifeSpan x 3600); 5746
– SoftExpirationTime = ValidNotBefore + (SoftLifeSpanRatio x HardLifeSpan x 3600). 5747

A SoftLifeSpanRatio of 50 % shall be used as a default for keys sent with a 5748
Key_HardLifeSpan field. 5749

7.4.5.2.4 Symmetric-key security confirmation 5750

The Security_Sym_Confirm data structure that is used to form the symmetric-key security 5751
confirmation is defined in Table 66. The source object for invoking 5752
PSMO.Security_Sym_Confirm().Request shall be DMO in joining device’s DMAP. 5753

Table 66 – Security_Sym_Confirm data structure 5754

Standard data type name: Security_Sym_Confirm

Standard data type code: 412

Element name Element identifier Element type

128_Bit_Response_To_Security_Manager 1 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

 5755
128_Bit_Response_To_Security_Manager shall be calculated as: 5756

HMAC-MMOK_join[challenge_from_new_device || challenge_from_security_manager || 5757
EUI64Address of new_device || EUI64Address of security_manager || MIC1 || MIC2] 5758

where 5759

MIC1 is the 32-bit MIC value in System_Manager_Join response and MIC2 is the 32-bit MIC 5760
value in System_Manager_Contract response. 5761

62734/2CDV © IEC(E) – 237 –

NOTE 1 The join confirmation tells the security manager that the device was able to recover the master key using 5762
the join key, thus providing proof that the device, which knows the join key, is alive. 5763

NOTE 2 The construction of the hash for the challenge-response protocol was modeled after the protocol outlined 5764
in The Handbook of Applied Cryptography, 10.17 (see Bibliography). 5765

 Asymmetric-key join process 7.4.65766

7.4.6.1 Overview 5767

The asymmetric-key join process, like the symmetric-key join process specifies the sequence 5768
of steps by which, and the conditions under which, a device may become part of the network 5769
and gain access to information required to communicate within the network, both with 5770
immediate neighboring devices and with particular infrastructure devices, such as devices 5771
assuming the role of system manager or security manager of the network. As such, this 5772
entails the sub-processes described below. Note that distribution of the keying material and 5773
resource allocation steps are identical for asymmetric-key-based and symmetric-key-based 5774
join processes. The table of roles and their respective bitmap assignment are defined in 5775
Annex B. 5776

The enrollment process includes: 5777

• Network membership enrollment. A device and a security manager engage in a mutual 5778
entity authentication protocol based on asymmetric-key techniques. This protocol provides 5779
evidence regarding the true device identity of both the joining device and the security 5780
manager, based on authentic asymmetric keys. In addition, admission may be based on 5781
non-cryptographic acceptability criteria (e.g., via a membership test of the device via an 5782
access control list). If the device has been positively authenticated and is authorized to 5783
join the network, it may be admitted to the network. The entity authentication protocol also 5784
results in the establishment of a shared key between the joining device and the security 5785
manager, thereby facilitating ongoing secure and authentic communications between 5786
these devices. 5787

• Distribution of keying material. A security manager allocates keying material to a newly 5788
admitted device, so as to facilitate subsequent communications and continuous 5789
authentication of the device to other members of the network as a legitimate network 5790
device. The keying material may include D-keys, which are used to evidence network 5791
membership amongst devices in the network, and T-keys, which are used to secure and 5792
authenticate ongoing communications between a newly admitted device and a system 5793
manager. 5794

The join process assumes that devices have been endowed with sufficient information to 5795
allow proper device authentication. A joining device may have been endowed with non-5796
security related information as well. 5797

The asymmetric-key key agreement scheme is specified in 7.4.6.2, the key distribution 5798
scheme is specified in detail in 7.4.6.3, the resource allocation scheme is specified in detail in 5799
6.3.9, and the asymmetric-key based join protocol is specified in 7.4.6.3.5. The integers, 5800
octets and entities used in the asymmetric-key-based join protocol are defined in Annex F. 5801
The asymmetric-key cryptographic building blocks are defined in Annex H. 5802

7.4.6.2 Asymmetric-key key agreement scheme 5803

7.4.6.2.1 Overview 5804

7.4.6.2.1.1 General 5805

Network membership enrollment is based on the execution of the asymmetric-key key 5806
agreement scheme specified in H.4.2 and involves device authentication based on implicit 5807
certificates, as specified in H.5.1. Both schemes involve asymmetric-key techniques using 5808
elliptic curves. 5809

 – 238 – 62734/2CDV © IEC(E)

7.4.6.2.1.2 Format of implicit certificate 5810

The implicit certificate is a proof of identity and is used in the asymmetric-key join process. It 5811
can convey an arbitrary data structure; however, to support interworkability among devices, 5812
the format of the implicit certificate used in this standard is defined in Table 67. 5813

Table 67 – Implicit certificate format 5814

Element name Element identifier Element type

PublicKey_reconstruction_data 1 Type: OctetString37

Subject 2 Type: EUI64Address

Issuer 3 Type: EUI64Address

Usage_serial_number 4 Type: Usage_Serial structure (see Table 68)

ValidNotBefore 5 Type: TAITimeRounded

ValidNotAfter 6 Type: TAITimeRounded

 5815
• PublicKey_reconstruction_data: Parameter for generating a public key using the CA’s 5816

public key. 5817

• Subject: EUI64Address of a device whose public/private key is associated with 5818
PublicKey_Reconstruction_Data 5819

• Issuer: EUI64Address of a device that has generated this certificate. 5820

• Usage_Serial: Indicating a certification usage and serial number. 5821

• ValidNotBefore: Absolute TAI time (in second) when this certificate becomes valid. 5822

• ValidNotAfter: Absolute TAI time (in second) when this certificate becomes invalid. 5823

Table 68 – Usage_serial_number structure 5824

Octet Bits

7 6 5 4 3 2 1 0

1 Reserved Issuable Serial_number

 5825
• Reserved: Reserved field should be 0. 5826

• Issuable: If this field is 0, the key pair corresponding to this certificate shall not be used to 5827
sign another certificate. Otherwise, the key pair may be used to sign another certificate. 5828

• Serial: Serial number of this certificate managed by the issuer. 5829

7.4.6.2.2 Description of the scheme 5830

Figure 46 illustrates the messaging involved in the asymmetric-key key agreement scheme 5831
used with this standard. 5832

62734/2CDV © IEC(E) – 239 –

Device A Device B

ECC point X, Certificate A

ECC point Y, Certificate B

MAC over messages

MAC over messages

 5833

Figure 46 – Asymmetric-key-authenticated key agreement scheme 5834

In the context of the join protocol, the key agreement scheme involves messaging between a 5835
joining device and a security manager, whereby the joining device initiates the protocol and 5836
whereby the security manager acts as the so-called responder. Thus, in terms of Figure 46, 5837
the joining device assumes the role of device A and the security manager assumes the role of 5838
device B. 5839

The protocol includes the following sequential components: 5840

a) Key contributions. Each party randomly generates a short-term (ephemeral) public key 5841
pair and communicates the ephemeral public key (but not the private key) to the other 5842
party. In addition, each party communicates the certificate of its long-term (static) public 5843
key to the other party. 5844

b) Key establishment. Each party computes the shared key based on the static and 5845
ephemeral elliptic curve points it received from the other party, and also based on the 5846
static and ephemeral private keys it generated itself. Due to the properties of elliptic 5847
curves, either party arrives at the same shared key. 5848

c) Key authentication. Each party verifies the authenticity of the long-term static key of the 5849
other party, to obtain evidence that the only party that may be capable of computing the 5850
shared key is indeed the perceived communicating party. 5851

d) Key confirmation. Each party computes and communicates a message authentication 5852
check value over the strings communicated by the other party, to evidence possession of 5853
the shared key to the other party. This confirms to each party the true identity of the other 5854
party and proves that the other party successfully computed the shared key. This key 5855
confirmation message may authenticate an additional string communicated by the party 5856
itself as well. The strings and string operations are defined in Annex F. 5857

The protocol assumes that each party has access to the root key of the certificate authority 5858
(CA) that signed the certificate received from the other party. 5859

7.4.6.2.3 Security properties of the scheme 5860

Successful execution of the complete scheme results in security properties, including the 5861
following: 5862

• Mutual entity authentication. Each party has assurances as to the true identity of the other 5863
party and that that party was alive during the execution of the protocol. 5864

• Mutual implicit key authentication. Each party has assurances that the only party that may 5865
have been capable of computing the shared key is indeed the intended communicating 5866
party. 5867

 – 240 – 62734/2CDV © IEC(E)

• Mutual key confirmation. Each party has evidence that its intended communicating party 5868
successfully computed the shared key. 5869

• Perfect forward secrecy. Compromise of the static key does not compromise past shared 5870
keys. 5871

• No unilateral key control. Each party has assurance that neither party was able to control 5872
or predict the value of the shared key. 5873

• Additional security properties, such as unknown key-share resilience and known-key 5874
security. For details, See ANSI X9.63:2011, Table H.2. 5875

The security services provided by each scheme are assured after successful completion of 5876
the complete scheme in question (and if the prerequisites of the scheme are satisfied). From 5877
the schemes themselves, it is not clear a priori what properties are provided during execution 5878
of the protocol steps of the scheme. The security services provided include: 5879

– Processing of random key contributions does not offer any security services, since these 5880
messages are independent. 5881

– From the perspective of the joining device A, the protocol is finished after completion of 5882
the processing steps resulting from receipt of the key confirmation message MACB, 5883
whereas from the perspective of the security manager B, the protocol is only finished after 5884
completion of the processing steps resulting from receipt of the key confirmation message 5885
MACA. In particular, security manager B does not have any assurances prior to receipt 5886
and processing of the key confirmation message MACA. Thus, any actions by B triggered 5887
prior to completion of the entire protocol with A are premature, in the sense that these 5888
cannot logically be based on any security assurances (as there are none). In contrast, any 5889
actions by B triggered after successful completion of the entire protocol with A may be 5890
well-founded, in the sense that these may be based on the security services resulting from 5891
the completion of the protocol. 5892

NOTE This re-emphasizes the importance of considering the effect of cryptographic schemes in their entirety. 5893

7.4.6.3 Key distribution scheme 5894

7.4.6.3.1 Overview 5895

Key distribution is based on the shared key resulting from the asymmetric-key key agreement 5896
scheme executed between the joining device and the security manager, as described in 5897
7.4.6.2. 5898

7.4.6.3.2 Description of the scheme 5899

The mechanism for distribution of keying material from the security manager to the newly 5900
joined device and the system manager is the same as that described in the symmetric-key 5901
join process. For details, see 7.4.4. 5902

7.4.6.3.3 Security properties of the scheme 5903

Successful execution of the key distribution scheme results in security properties including 5904
the following: 5905

• Secure and authentic transfer of the D-key and associated keying information from the 5906
security manager to the newly joined device. 5907

• Secure and authentic transfer of the T-key and associated keying information from the 5908
security manager to the newly joined device and to the system manager selected by the 5909
security manager. 5910

• In either case, the distributed keying material is generated by the security manager, 5911
thereby offering unilateral key control. 5912

62734/2CDV © IEC(E) – 241 –

7.4.6.3.4 Formats of protocol messaging 5913

The mechanism for distribution of keying material from the security manager to the newly 5914
joined device and the system manager is the same as that described in the symmetric-key 5915
join process. For details, see 7.4.4. 5916

7.4.6.3.5 Asymmetric-key-based join protocol 5917

The asymmetric-key-based join protocol can be viewed as a protocol that combines the 5918
asymmetric-key key agreement scheme discussed in 7.4.6.2 and the key distribution scheme 5919
discussed in 7.4.6.3, the main difference being in the actual organization of messaging in 5920
TPDUs. 5921

The asymmetric-key-based join protocol and the symmetric-key-based join protocol only differ 5922
in the use of an asymmetric-key key agreement scheme, rather than a symmetric-key key 5923
agreement scheme. Thus, all other aspects of the specification of the symmetric-key-based 5924
join protocol (see 7.4.4) apply to the asymmetric-key-based join protocol as well. 5925

7.4.6.4 Asymmetric-key join process messages 5926

7.4.6.4.1 General 5927

Figure 47 and Figure 48 illustrate the messaging involved in the asymmetric-key join process 5928
by which a new device shall join an operating network in which it has not recently been a 5929
participant. The flow shows the normal case in which no errors or timeouts occur. The 5930
timeouts are specified in 7.4.7.3. 5931

 5932

62734/2C

D
V

 ©
 IE

C
(E

)
– 242 –

Advertising Router
DMO

Join Device
DMO

Advertisement
solicitation

Advertisement

DMO.Proxy_Security_Pub_Join.Request()

DMO.Proxy_Security_Pub_Join.Response()

DMO.Proxy_Security_Pub_Confirm.Request()

System manager

Security
manager

DMSO PSMO

Security join request
PSMO.Security_Pub_Join.Request()

Security join reply
PSMO.Security_Pub_Join.Response()

PSMO.Security_Pub_Confirm.Request() Security join confirm request

PSMO.Security_Pub_Confirm.Response()
DMO.Proxy_Security_Pub_Confirm.Response()

T1

T2

Security join confirm response

DMSO.System_Manager_Join.Response()

DMSO.System_Manager_Contract.Response()

DMO.Proxy_System_Manager_Join.Response()

DMO.Proxy_System_Manager_Contract.Response()

System_Manager_Join.Response + MIC

Check_Confirmation response

DMO.Proxy_System_Manager_Join.Request()

DMSO.System_Manager_Join.Request()
Add_MIC(System_Manager_Join.Res)

DMO.Proxy_System_Manager_Contract.Request()
DMSO.System_Manager_Contract.Request()

Check_Confirmation request

System_Manager_Contract.Response + MIC
Add_MIC(System_Manager_Contract.Res)

PSMO.Network_Information_Confirmation.Request()

PSMO.Network_Information_Confirmation.Response()

 5933

Figure 47 – Example: Overview of the asymmetric-key join process for a device with a DL 5934

62734/2C

D
V

 ©
 IE

C
(E

)
– 243 –

System manager

DMO

Join Device
DMO

DMO.Proxy_Security_Pub_Join.Request()

DMO.Proxy_Security_Pub_Join.Response()

DMO.Proxy_Security_Pub_Confirm.Request()

Security
manager

DMSO PSMO

Security join request
PSMO.Security_Pub_Join.Request()

Security join reply
PSMO.Security_Pub_Join.Response()

PSMO.Security_Pub_Confirm.Request() Security join confirm request

PSMO.Security_Pub_Confirm.Response()
DMO.Proxy_Security_Pub_Confirm.Response()

T1

T2

Security join confirm response

DMSO.System_Manager_Join.Response()

DMSO.System_Manager_Contract.Response()

DMO.Proxy_System_Manager_Join.Response(
)

DMO.Proxy_System_Manager_Contract.Response()

System_Manager_Join.Response + MIC

Check_Confirmation response

DMO.Proxy_System_Manager_Join.Request()
DMSO.System_Manager_Join.Request()

Add_MIC(System_Manager_Join.Res)

DMO.Proxy_System_Manager_Contract.Request()
DMSO.System_Manager_Contract.Request()

Check_Confirmation request

System_Manager_Contract.Response + MIC
Add_MIC(System_Manager_Contract.Res)

PSMO.Network_Information_Confirmation.Request()

PSMO.Network_Information_Confirmation.Response()

 5935

Figure 48 – Example: Overview of the asymmetric-key join process of a backbone device 5936

 – 244 – 62734/2CDV © IEC(E)

On the joining device, the asymmetric-key join process shall be initiated by transmitting 5937
DMO.Proxy_Security_Pub_Join().Request and finalized by receiving a valid 5938
PSMO.Network_Information_Confirmation().Response. On the security manager, the 5939
asymmetric-key join process shall be initiated by receiving valid message derived from 5940
PSMO.Security_Pub_Join().Request and finalized by a transmitting message derived to be 5941
PSMO.Network_Information_Confirmation().Response. 5942

As shown in Figure 48, a new device shall use the methods defined for the advertising 5943
router’s DMO to send and receive the join request and join response messages. The methods 5944
related to the non-security information are described in 6.3.9.2. The DMO methods related to 5945
the security information for the asymmetric join method are described in 7.4.6.4.2. 5946

The advertising router shall use the methods defined for the system manager’s DMSO to send 5947
and receive the non-security related join request and response messages. These DMSO 5948
methods are described in 6.3.9.5. Methods defined for the system manager’s proxy security 5949
management object (PSMO) shall be used by the advertising router to send and receive the 5950
security related join request and response messages. The PSMO methods related to the 5951
security information are described in 7.4.5.2. 5952

7.4.6.4.2 Device management object and proxy security management object methods 5953
related to the asymmetric-key join process 5954

The new device shall use the Proxy_Security_Pub_Join method defined for the advertising 5955
router’s DMO in the advertising router to send its security information that is part of the join 5956
request and to get its security information that is part of the join response. After transmitting 5957
the DMO.Proxy_Security_Pub_Join().Request, the new device shall start the join timer JT1. 5958
After receiving the DMO.Proxy_Security_Pub_Join().Request, the security manager shall start 5959
the join timer T2. 5960

Table 69 describes the Proxy_Security_Pub_Join method. 5961

62734/2CDV © IEC(E) – 245 –

Table 69 – Proxy_Security_Pub_Join method 5962

Standard object type name: DMO (Device management object)

Standard object type identifier: 127

Method name Method ID Method description

Proxy_Security_Pub_Jo
in

6 Method to use advertising router as proxy to send security join request
and get security join response

Input arguments

Argument
number Argument name

Argument type
(data type and

size)
Argument

description

1 Join_Request Security_Pub_Join
_Request; see
7.4.6.4.3

Security join request
based on public keys
from new device that
needs to be
forwarded to security
manager

Output arguments

Argument
number Argument name

Argument type
(data type and

size)
Argument

description

1 Join_Response Security_Pub_Join
_Response; see
7.4.6.4.3

Security join
response based on
public keys from
security manager that
needs to be
forwarded to new
device; this is
protected using the
join key

 5963
The advertising router shall use the Security_Pub_Join method defined for the system 5964
manager’s PSMO for sending the security information that is part of the join request on behalf 5965
of the new device and to get the security information that is part of the join response. 5966

The source object of the DMO.Proxy_Security_Pub_Join().Request shall be the DMO in the 5967
joining device’s DMAP. 5968

Table 70 describes the Security_Pub_Join method. 5969

 – 246 – 62734/2CDV © IEC(E)

Table 70 – Security_Pub_Join method 5970

Standard object type name: PSMO (Proxy security management object)

Standard object type identifier: 105

Method name Method ID Method description

Security_Pub_Join 3 Method to use the PSMO in the system manager to send security join
request and get a security join response

Input arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 Join_Request Security_Pub_Join
_Request; see
7.4.6.4.3

Security join request
from new device to
security manager

Output arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 Join_Response Security_Pub_Join
_Response; see
7.4.6.4.3

Security join
response from
security manager to
new device that is
protected using the
join key

 5971
After receiving the Proxy_Security_Pub_Join().Response message, the new device shall use 5972
the Proxy_Security_Pub_Confirm() method defined for the advertising router’s DMO for 5973
sending a security confirmation to the advertising router. Table 71 describes this method. The 5974
source object of the DMO.Security_Pub_Join().Request shall be the DMO in the joining 5975
device’s DMAP. 5976

The advertising router shall use the Security_Pub_Confirm method defined for the system 5977
manager’s PSMO for sending this security confirmation to the security manager. Table 72 5978
describes this method. 5979

The security manager is responsible for checking the confirmation message. If the test fails, 5980
the join state and cached information for the new device shall be initialized or dropped. If the 5981
test succeeds, then the security manager stops the join timer T2, and sends a confirmation 5982
response and the non-security information responses to the new device. 5983

If the new device receives a valid response against its confirmation request, then the new 5984
device stops the timer JT1. 5985

62734/2CDV © IEC(E) – 247 –

Table 71 – Proxy_Security_Pub_Confirm method 5986

Standard object type name: DMO (Device management object)

Standard object type identifier: 127

Method name Method ID Method description

Proxy_Security_Pub_C
onfirm

7 Method to use advertising router as proxy by new device for sending
security confirmation

Input arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 Security_Pub_Confirm
_Request

Security_Pub_Confir
m_Request; see
7.4.6.4.3

Security
confirmation from
new device to
security manager
through advertising
router

Output arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 Security_Pub_Confirm
_Response

Security_Pub_Confir
m_Response; see
7.4.6.4.3

Security
confirmation from
security manager to
new device through
advertising router

 5987

Table 72 – Security_Pub_Confirm method 5988

Standard object type name: PSMO (Proxy security management object)

Standard object type identifier: 105

Method name Method ID Method description

Security_Pub_Confirm 4 Method to send security confirmation of the new device to the security
manager through the PSMO

Input arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 Security_Pub_Confirm
_Request

Security_Pub_Confir
m_Request; see
7.4.6.4.3

Security
confirmation from
new device to
security manager
through advertising
router

Output arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 Security_Pub_Confirm
_Response

Security_Pub_Confir
m_Response; see
7.4.6.4.3

Security
confirmation from
security manager to
new device through
advertising router.

 5989
After receiving the DMO.Proxy_System_Manager_Join() and 5990
DMO.Proxy_System_Manager_Contract() response, the join device invokes 5991
PSMO.Network_Information_Confirmation() method. Table 73 describes the method. 5992

 – 248 – 62734/2CDV © IEC(E)

The Confirm field in PSMO.Network_Information_Confirmation().Request is the MACTag 5993
generated with following operation: 5994

MACTag = HMAC-MMOK_join[MIC1 || MIC2 || Challengejoining_device] 5995

where: 5996

MIC1: MIC field in DMO.Proxy_System_Manager_Join().Response (see Table 19); 5997
MIC2: MIC field in DMO.Proxy_System_Manager_Contract().Response (see Table 20). 5998

Table 73 – Network_Information_Confirmation method 5999

Standard object type name: PSMO (Proxy Security Manager Object)

Standard object type identifier: 105

Method name Method ID Method description

Network_Information_C
onfirmation

5 Method to make sure that correct network information was received by
Join Device.

Input arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 Confirm OctetString16 Confirmation
message to make
sure the join device
received correct
network information
from the system
manager

Output arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

— — — —

 6000
7.4.6.4.3 Formats of protocol messaging 6001

7.4.6.4.3.1 Format of the join request internal structure (PK-join-1) 6002

The Security_Pub_Join_Request data type used in the Security_Pub_Join method and 6003
Proxy_Security_Pub_Join method has the following structure and represents the first 6004
message flow of the asymmetric-key key agreement scheme (7.4.6.2). This data type is used 6005
by the new device and its proxy router in the corresponding methods of the DMO of the proxy 6006
router and the PSMO of the system manager respectively. The PK-join-1 data shall be 6007
formatted as illustrated in Table 74. 6008

62734/2CDV © IEC(E) – 249 –

Table 74 – Format of asymmetric join request internal structure 6009

Standard data type name: Security_Pub_Join_Request (PK-Join-1)

Standard data type code: 415

Element name Element identifier Element type

New_Device_EUI64 1 Type: EUI64Address

Classification: Constant

Accessibility: Read only

Protocol control field 2 Type: Unsigned8

Classification: Constant

Accessibility: Read only

Default value : 1000 0000

Ephemeral elliptic curve point X 3 Type: OctetString37

Classification: Static

Accessibility: Read only

Implicit certificate of new device 4 Type: OctetString SIZE(37..66)

Classification: Static

Accessibility: Read/write

NOTE 1 The format of the implicit certificate used in this standard is defined in 7.4.6.2.1.2.

NOTE 2 The total size of the asymmetric-key join request ranges from 83..112 octets. If the user employs this
approach, the request sometimes will require more than one conveying DPDU.

 6010
The protocol control field is 1 octet in size and specifies which algorithm is used for the 6011
asymmetric-key join protocol and which stage of the protocol is currently being executed. This 6012
subfield shall be formatted as specified in Table 75. 6013

Table 75 – Format of the protocol control field 6014

7 6 5 4 3 2 1 0

Algorithm ID = “10” reserved Join subprotocol phase

 6015
The Algorithm ID is 2 bits in size and indicates the asymmetric-key join algorithm in use. The 6016
algorithm defined in this standard has ID 0b‘10’. 6017

The join subprotocol phase is 2 bits in size and indicates the current phase of the protocol: 6018

0: Asymmetric-key Join Request; 6019
1: Asymmetric-key Join Response; 6020
2: Asymmetric-key Join Confirm Request; 6021
3: Asymmetric-key Join Confirm Response. 6022

7.4.6.4.3.2 Format of the asymmetric join response internal structure (PK-join-2) 6023

The Security_Pub_Join_Response data type used in the Security_Pub_Join method and 6024
Proxy_Security_Pub_Join method has the following structure and represents the first 6025
message flow of the asymmetric-key key agreement scheme (7.4.6.2). The PK-join-2 data 6026
shall be formatted as illustrated in Table 76. 6027

 – 250 – 62734/2CDV © IEC(E)

Table 76 – Format of asymmetric join response internal structure 6028

Standard data type name: Security_Pub_Join_Response (PK-Join-2)

Standard data type code: 416

Element name Element identifier Element type

New_Device_EUI64 1 Type: EUI64Address

Classification: Constant

Accessibility: Read only

Protocol control field 2 Type: Unsigned8

Classification: Constant

Accessibility: Read only

Default value : 1000 0001

Ephemeral elliptic curve point Y 3 Type: OctetString37

Classification: Static

Accessibility: Read only

Implicit certificate of security manager 4 Type: OctetString SIZE(37..66)

Classification: Static

Accessibility: Read/write

NOTE 1 The format of the implicit certificate used in this standard is defined in 7.4.6.2.1.2.

NOTE 2 The total size of the asymmetric-key join request ranges from 83..112 octets. If the user employs this
approach, the request sometimes will require more than one conveying DPDU.

 6029
7.4.6.4.3.3 Format of the first join confirmation internal structure (PK-join-3) 6030

The Security_Pub_Confirm_Request data type used in the Security_Pub_Confirm method and 6031
Proxy_Security_Pub_Confirm method has the following structure and represents the third 6032
message flow of the asymmetric-key key agreement scheme (7.4.6.2). The PK-join-3 data 6033
shall be formatted as illustrated in Table 77. 6034

62734/2CDV © IEC(E) – 251 –

Table 77 – Format of first join confirmation internal structure 6035

Standard data type name: Security_Pub_Confirm_Request (PK-Join-3)

Standard data type code: 417

Element name Element identifier Element type

New_Device_EUI64 1 Type: EUI64Address

Classification: Constant

Accessibility: Read only

Protocol control field 2 Type: Unsigned8

Classification: Constant

Accessibility: Read only

Default value : 1000 0010

Message_authentication_tag_MAC 3 Type: OctetString16

Classification: Static

Accessibility: Read only

Size of text 4 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Default value : 0

Valid range: 0..31

Text 5 Type: OctetStringN
(SIZE : see element 4)

Classification: Static

Accessibility: Read/write

 6036
The Message_authentication_tag_MAC is generated with the following formula: 6037

Message_authentication_tag_MAC = MACmackey(0216 || U || V || QEU || QEV) 6038

where: 6039

U is the EUI64Address of new device; 6040
V is the 8-octet ID of the security manager; 6041
QEU is the octet string of the ephemeral public key of the new device; 6042
QUV is the octet string of the ephemeral public key of the security manager. 6043

This is part of the ECMQV key agreement scheme. The MACmackey is defined in ANSI 6044
X9.63:2011, 5.7. In this specification, the keyed hash function HMAC-MMO with the master 6045
key shall be used for the MACmackey function. 6046

The text field is used to store any additional information that needs to be authenticated. Users 6047
may use this field for any information that requires protection during the asymmetric-key join 6048
process. 6049

7.4.6.4.3.4 Format of the second join confirmation internal structure 6050

The Security_Pub_Confirm_Response data type used in the Security_Pub_Confirm method 6051
and Proxy_Security_Pub_Confirm method has the following data structure and represents the 6052
fourth message flow of the asymmetric-key key agreement scheme (7.4.6.2). The PK-join-4 6053
data shall be formatted as illustrated in Table 78. 6054

 – 252 – 62734/2CDV © IEC(E)

Table 78 – Format of join confirmation response internal structure 6055

Standard data type name: Security_Pub_Confirm_Response (PK-Join-4)

Standard data type code: 418

Element name Element identifier Element type

Protocol control field 1 Type: Unsigned8

Classification: Constant

Accessibility: Read only

Default value : 1000 0011

Message_authentication_tag_MAC 2 Type: OctetString16

Classification: Static

Accessibility: Read only

Size of Text 3 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Default value : 0

Text 4 Type: OctetString (SIZE : see element 3)

Classification: Static

Accessibility: Read/write

Master_Key_HardLifeSpan 5 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Encrypted D-key 6 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

DL Crypto Key Identifier 7 Type: Unsigned8

Classification: Static

Accessibility: Read/write

DL_Key_HardLifeSpan 8 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Encrypted system manager T-key 9 Type: SymmetricKey

Classification: Static

Accessibility: Read/write

System_Manager_Session_Key_HardLifeSpan 10 Type: Unsigned16

Classification: Static

Accessibility: Read/write

 6056
The Message_authentication_tag_MAC is generated with the following formula: 6057

Message_authentication_tag_MAC = MACmackey(0316 || U || V || QEU || QEV) 6058

where: 6059

U is the EUI64Address of new device; 6060
V is the 8-octet ID of the security manager; 6061
QEU is the octet string of the ephemeral public key of the new device; 6062
QUV is the octet string of the ephemeral public key of the security manager. 6063

62734/2CDV © IEC(E) – 253 –

This is part of ECMQV key agreement scheme. The MACmackey is defined in ANSI 6064
X9.63:2011, 5.7. In this specification the HMAC-MMO with the master key shall be used for 6065
the MACmackey function. 6066

The text field is used to store user-determined information that needs to be authenticated. 6067
Users may use this field for any information to be protected during the asymmetric-key join 6068
process. 6069

The key material and policy fields are the same as for the symmetric-key join process. 6070
Specifically, the following shall be the same as in 7.4.5: 6071

• Master key compressed policy 6072

• Encrypted D-key 6073

• DL Crypto Key Identifier 6074

• D-key compressed policy 6075

• Encrypted system manager T-key 6076

• System manager T-key compressed policy 6077

 Join process and device lifetime failure recovery 7.4.76078

7.4.7.1 General 6079

At any point during the join process, there is a possibility that a PDU will be dropped. In this 6080
case, the system should be able to recover and proceed. The following state definition and 6081
transition outline the recovery mechanism, along with triggered side effects. 6082

7.4.7.2 Device states during the join process and device lifetime 6083

The device states during the join process are: 6084

• Provisioned: No master key, not in the process of getting the master key. 6085

• Joining: No master key, in the process of getting the master key. 6086

• Joined: Having the current master key, not in the process of getting the next master key. 6087

• Updating: Having the current master key, in the process of getting the next master key. 6088

• Overlapped: Having both the current master key and the next master key. 6089

7.4.7.3 State transitions 6090

The state transitions for a device joining the network shall be as outlined in Table 79 and 6091
Figure 49. The timeout values for the join process join_timeout (ID 4) in Table 92, shall be 6092
configurable using DL advertisements. Erasing of keys should be at least equivalent to 6093
clearing of confidential data, as defined in NIST SP800-88:2012, rev 1, Table 2-1. 6094

 – 254 – 62734/2CDV © IEC(E)

Table 79 – Join process and device lifetime state machine 6095

Transition Current
state

Event(s) Action(s) Next state

T1 Provisioned DMO initiates the join process Advertising router

DMO.Proxy_Security_Sym_
Join().Request or
DMO.Proxy_Security_Pub_
Join().Request

Joining

T2 Joining DMO.Proxy_Security_Sym_Join
().Response or
DMO.Proxy_Security_Pub_Join
().Response received & crypto
check ok

Populate appropriate entries in
DSMO and KeyDescriptor

Call PSMO.Security_Confirm().
Request (may be delayed), or

Call
PSMO.Network_Information_
confirmation().Request

Joined

T3 Joined SoftExpirationTime of master
key expired

Call
PSMO.Security_New_Session()
.Request with the security
manager

Updating

T4 Updating DSMO.New_Key().Request(
master_key) from security
manager via the PSMO
and crypto check ok

Save master key material and
policy. Set Key_ID of session to
the value assigned by the
security manager. Return a
DSMO.New_Key().Response

Overlapped
keys

T5 Joined DSMO.New_Key().Request(ma
ster_key) from security
manager via the PSMO
and crypto check ok

Save master key material and
policy. Set Key_ID of session to
the value assigned by the
security manager. Return a
DSMO.New_Key().Response

Overlapped
keys

T6 Overlapped
keys

ValidNotAfter of old master key
expired.

Remove expired master key Joined

T7 Updating Timeout or
PSMO.Security_New_Session()
.Response&& crypto check ok
&& SESSION_DENIED

Set the next retry time Joined

T8 Updating ValidNotAfter of master key
expired

Remove expired master key Provisioned

T9 Joined ValidNotAfter of master key
expired

Remove expired master key Provisioned

T10 Joining Timeout Reset state machine Provisioned

 6096

62734/2CDV © IEC(E) – 255 –

Provisioned

Overlapped keys

Updating

Joined

Joining

T1
T10

T4

T8

T3T7

T6

T2

T9

T5

 6097

Figure 49 – Device state transitions for 6098
join process and device lifetime 6099

 Session establishment 7.56100

 General 7.5.16101

The session establishment occurs in support of an end-to-end secure communication between 6102
two UAPs. The end point of a session is defined as the concatenation of the IPv6Address and 6103
the transport port. The security manager is responsible for granting or denying the 6104
cryptographic material used to establish the end-to-end secure channel between the two 6105
devices. 6106

 Description 7.5.26107

Figure 50 provides a high-level example of session establishment. 6108

 – 256 – 62734/2CDV © IEC(E)

Device A
DSMO

Device B
DSMO

System manager
PSMO Security manager

PSMO.Security_New_Session.Request()

Sharing ACL

Checking ACL(AB)
Ses-AB

ACL reply
Ses-AB

DSMO.New_Key.Request()

DSMO.New_Key.Request()

DSMO.New_Key.Response()

DSMO.New_Key.Response()

PSMO.Security_New_Session.Response()

Session A-B data

 6109

Figure 50 – High-level example of session establishment 6110

In the high-level example shown in Figure 50, a UAP on device A establishes a session with a 6111
UAP on device B. The DSMO of device A sends the request to the security manager via the 6112
PSMO object of the system manager. The system manager then forwards the request to the 6113
security manager, which authenticates the request and may perform a check to verify if the 6114
session is allowed. If the session is granted, the security manager generates a single T-key 6115
for both end points, encrypts a copy for device A and another copy for device B, and forwards 6116
the messages to the system manager’s PSMO. The system manager’s PSMO can then send 6117
the response to the session request. The system manager’s PSMO then calls the DSMO 6118
method to add a new T-key on device A and device B. 6119

The session establishment may be initiated by a field device or by the security/system 6120
manager. 6121

• The field device initiates a session establishment using the 6122
PSMO.Security_New_Session() method in Table 80. 6123

• The system/Security manager initiates a session establishment using the 6124
DSMO.New_Key() method in Table 83. 6125

The security manager shall assign the same key and Crypto Key Identifier among devices 6126
which participate in the secure session. In the case of overlapped keys, the security header 6127
needs to convey the Crypto Key Identifier of the key selected to protect the PDU. At the 6128
receiver, the device looks for the KeyDescriptor with the Crypto Key Identifier specified in the 6129
incoming PDU security header. If the Crypto Key Identifier value does not have a match, the 6130
receiving device will not be able to decrypt and/or authenticate the incoming PDU. 6131

62734/2CDV © IEC(E) – 257 –

 Application protocol data unit protection using the master key 7.5.36132

7.5.3.1 General 6133

The request is made from the device’s DSMO to the system manager’s PSMO acting as a 6134
proxy to the security manager. The APDU shall be protected with using almost the same PDU 6135
security mechanism as the TL. The cryptographic key shall be the master key, and the nonce 6136
shall be constructed in the same manner as the TL in 7.3.3.7, but the TAITimeRounded value 6137
shall be used for the Nominal TAI creation time field. See Table 363 for coding rules applied 6138
to TAITimeRounded values. 6139

NOTE 1 Since the join process is done at the AL, there is no security at the TL during that process, except 6140
confirmation messages. 6141

Since the granularity of the Time_Stamp field is in seconds, two cryptographic operations 6142
using the master key shall not be permitted within the same second. 6143

NOTE 2 If the message rate using the master key exceeds the rate of once per second, there will be a nonce 6144
collision. 6145

7.5.3.2 Replay protection for application protocol data unit protected with the master 6146
key 6147

Upon reception of the APDU protected with the master key, the security procedure shall check 6148
for any nonce duplicates with a valid MIC in the nonce cache with the corresponding 6149
KeyDescriptor. If a duplicate nonce is detected, the procedure shall discard the PDU before 6150
processing the ASDU, otherwise the procedure shall store the nonce into nonce cache in the 6151
KeyDescriptor. 6152

 Proxy security management object methods related to the session establishment 7.5.46153

Table 80 describes the Security_New_Session method. 6154

Table 80 – Security_New_Session method 6155

Standard object type name: PSMO (Proxy security management object)

Standard object type identifier: 105

Method name Method ID Method description

Security_New_Session 6 Method to use the PSMO in the system manager to send security
session request and get a security session response

Input arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 New_Session_Request Security_New_Ses
sion_Request; see
Table 81

Security new
session request
from a device to
security manager

Output arguments

Argument
number

Argument name Argument type
(data type and

size)

Argument
description

1 New_Session_Response Security_New_Ses
sion_Response;
see Table 82

Security new
session response
from security
manager to the
requesting device,
protected using the
master key

 6156

 – 258 – 62734/2CDV © IEC(E)

The Security_New_Session_Request data structure that is used to form the session request is 6157
defined in Table 81. 6158

Table 81 – Security_New_Session_Request data structure 6159

Standard data type name: Security_New_Session_Request

Standard data type code: 420

Element name Element identifier Element type

Originator_IPv6Address 1 Type: IPv6Address

Classification: Static

Accessibility: Read/write

Originator_Port 2 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Destination_IPv6Address 3 Type: IPv6Address

Classification: Static

Accessibility: Read/write

Destination_Port 4 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Algorithm_Identifier 5 Type: Unsigned8

Classification: Static

Accessibility: Read only

Default value : 1 = AES_CCM*

Protocol_Version 6 Type: Unsigned8

Classification: Static

Accessibility: Read only

Default value :
1 = IEC 62734 Ed.1.0
(i.e., this standard)

Security_Control 7 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Crypto_Key_Identifier 8 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Time_Stamp 9 Type: TAITimeRounded

Classification: Static

Accessibility: Read only

MIC 10 Type: OctetString (SIZE = 4, 8, 16)

Classification: Static

Accessibility: Read only

 6160
This data structure consists of a plaintext section only protected using the master key shared 6161
between the requester of the session and the security manager. The EUI64Address of the 6162
requester shall be used in the nonce construction to protect this structure. 6163

• Originator_IPv6Address shall be the IPv6Address of the first end device (usually the 6164
source) in the session. 6165

62734/2CDV © IEC(E) – 259 –

• Originator_Port shall be the T-port of the first end UAP (usually the source) in the session. 6166

• Destination_IPv6Address shall be the IPv6Address of the second end device (usually the 6167
destination) in the session. 6168

• Destination_Port shall be the T-port of the second end UAP (usually the destination) in the 6169
session. 6170

• Algorithm_Identifier defines the algorithm and mode of operation supported in this 6171
session. In the current release this shall be set to 0x1 = AES_CCM*. 6172

• The protocol version identifies the protocol used for this security association. In this 6173
standard, this octet shall be 0x01. 6174

• Security_Control shall be as defined in 7.3.1.2. The security level is chosen from MIC-32, 6175
MIC-64 and MIC-128 with the master key security level assigned in the join process. The 6176
Crypto Key Identifier Mode shall be ‘01’ corresponding to a Crypto_Key_Identifier Field 6177
size of 1 octet. 6178

• Crypto_Key_Identifier shall be the Crypto_Key_Identifier of the master key used in 6179
protecting this structure. 6180

• Time_Stamp shall be the full 32-bit truncated representation of TAI time used in the 6181
T-nonce construction. 6182

• MIC shall be the integrity code generated by the AES_CCM* computation. The size of the 6183
MIC is assigned in Security_Control field. 6184

The nonce used to generate the MIC is formed as outlined in Table 57 with: 6185

– EUI64Address: EUI64Address of the device transmitting the Security_New_Session 6186
Request message. 6187

– Nominal TAI time: The Time_Stamp field in the Security_New_Session Request message. 6188

The Security_New_Session_Response data structure that is used to form the new session 6189
response is defined in Table 82. 6190

Table 82 – Security_New_Session_Response data structure 6191

Standard data type name: Security_New_Session_Response

Standard data type code: 421

Element name Element identifier Element type

Status 1 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Security_Control 2 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Crypto_Key_Identifier 3 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Time_Stamp 4 Type: TAITimeRounded

Classification: Static

Accessibility: Read only

MIC 5 Type: OctetString (SIZE = 4, 8, 16)

Classification: Static

Accessibility: Read only

 6192

 – 260 – 62734/2CDV © IEC(E)

Fields include: 6193

• Status shall be the status of the session where 0x1 = SECURITY_SESSION_GRANTED 6194
and 0x0 = SECURITY_SESSION_DENIED. 6195

• Security_Control shall be as defined in 7.3.1.2. The security level is chosen from MIC-32, 6196
MIC-64 and MIC-128 with the master key security level assigned during the join process. 6197
The Crypto Key Identifier Mode shall be ‘01’ corresponding to a Crypto Key Identifier field 6198
size of 1 octet. 6199

• Crypto_Key_Identifier shall be the Crypto_Key_Identifier of the master key used in 6200
protecting this structure. 6201

• Time_Stamp shall be the 32-bit representation of truncated TAI time used in the nonce 6202
construction. 6203

• MIC shall be the integrity code generated by the AES_CCM* computation. The size of the 6204
MIC is assigned in the Security_Control field. 6205

The nonce to generate the MIC is formed as outlined in Table 57 with: 6206

– EUI64Address: EUI64Address of the device transmitting Security_New_Session Request 6207
message. 6208

– Nominal TAI time: The Time_Stamp field from the Security_New_Session Request 6209
message. 6210

If the session is granted, the security manager via the PSMO of the system manager shall call 6211
the DSMO New_Key method defined in 7.6.3 to write a new T-key in the devices specified in 6212
the session request. 6213

 Key update 7.66214

 General 7.6.16215

T-keys have a limited lifetime and are updated periodically to ensure that the session is kept 6216
alive. The key update process may be initiated by a device, although it should be pushed from 6217
the security manager between the SoftExpirationTime and the HardExpirationTime of a T-key. 6218

 Description 7.6.26219

The key update process is summarized in Figure 51. A TLE may request that the security 6220
manager update a T-key. The security manager will then issue a call to the DSMO of the 6221
endpoint TLEs, via the PSMO of the system manager, to update the T-key for those TLEs. 6222
Each message is protected under the active master key shared between the security manager 6223
and the specific TLE’s DSMO. 6224

62734/2CDV © IEC(E) – 261 –

Device A
DSMO

Device B
DSMO

System manager
PSMO Security manager

PSMO.Security_New_Session.Request()

Key update request

DSMO.New_Key.Request()

DSMO.New_Key.Request()

DSMO.New_Key.Response()

DSMO.New_Key.Response()

PSMO.Security_New_Session.Response()

Session key [A,B] for A and B

EKB[KA-B] EKA[KA-B]

 6225

Figure 51 – Key update protocol overview 6226

A TLE participating in a session may initiate the key update process by making a call to the 6227
PSMO Security_New_Session method. The request is forwarded from the system manager’s 6228
PSMO to the security manager, which authenticates the request using the master key of the 6229
requesting device. If the check is successful, the security manager recognizes that the 6230
session already exists and simply proceeds with the key update protocol exactly as if the 6231
SoftExpirationTime of the T-key has expired. The nonce construction for protecting APDU 6232
using master key is described in 7.5.3. 6233

If the SoftExpirationTime of an active T-key has passed, the security manager shall call the 6234
New_Key method on the DSMO of the end devices to write a new key and accompanying 6235
policies. 6236

Key Update may also be used to update the DL and master key. 6237

 Device security management object methods related to T-key update 7.6.36238

Table 83 describes the New_Key method. 6239

 – 262 – 62734/2CDV © IEC(E)

Table 83 – New_Key method 6240

Standard object type name: DSMO (Device security management object)

Standard object type identifier: 125

Method
name

Method ID Method description

New_Key 1 Method to use the DSMO in the device to send a protected security key and
accompanying policies.

Input arguments

Argument
number

Argument name Argument type
(data type and size)

Argument description

1 Key_And_Policies Security_Key_and_Policies;
see Table 84

Security key and polices
to be authenticated,
decrypted and stored by
a device participating in a
session

Output arguments

Argument
number

Argument name Argument type
(data type and size)

Argument description

1 Key_Update_Status Security_Key_Update_Stat
us; see Table 85

Status of the key update,
authenticated with the
master key

 6241
The Security_Key_and_Policies data structure that is used to form the New T-key request is 6242
defined in Table 84. 6243

62734/2CDV © IEC(E) – 263 –

Table 84 – Security_Key_and_Policies data structure 6244

Standard data type name: Security_Key_and_Policies

Standard data type code: 422

Element name Element identifier Element type

Key_Policy 1 Type: OctetString (see Table 88)

Classification: Static

Accessibility: Read only

End_Port_Source (elided for DL or
master key)

2 Type: Unsigned16

Classification: Static

Accessibility: Read/write

EUI64_remote (elided for DL,
EUI64Address of security manager
for master key)

3 Type: EUI64Address

Classification: Static

Accessibility: Read/write

128_Bit_Address_remote (elided
for DL or kaster key)

4 Type: IPv6Address

Classification: Static

Accessibility: Read/write

End_Port_remote (elided for DL or
master key)

5 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Algorithm_Identifier 6 Type: Unsigned8

Classification: Static

Accessibility: Read only

Default value : 1 = AES_CCM*

Security_Control 7 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Crypto_Key_Identifier 8 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Time_Stamp 9 Type: TAITimeRounded

Classification: Static

Accessibility: Read only

New_Key_ID 10 Type: Unsigned8

Classification: Static

Accessibility: Read only

Key_Material 11 Type: SymmetricKey

Classification: Static

Accessibility: Read only

MIC 12 Type: OctetString (SIZE = 4, 8, 16)

Classification: Static

Accessibility: Read only

 6245
This data structure consists of a plaintext section only protected using the master key shared 6246
between the requester of the session and the security manager. The EUI64Address of the 6247
requester shall be used in the nonce construction to protect this structure. 6248

 – 264 – 62734/2CDV © IEC(E)

Fields include: 6249

• 128_Bit_Address_remote shall be the IPv6Address of the remote endpoint TLE in this 6250
session. In the case of the D-key or master key, this field shall be elided. 6251

• End_Port_remote shall be the T-port of the remote endpoint UAP in this session. In the 6252
case of the D-key or master key, this field shall be elided. 6253

• Algorithm_Identifier defines the algorithm and mode of operation supported in this 6254
session. In the current release this shall be set to 0x1 = AES_CCM*. 6255

• Security_Control shall be as defined in 7.3.1.2. The security level is chosen from ENC-6256
MIC-32, ENC-MIC-64 and ENC-MIC-128 with master key security level assigned in join 6257
process. And the Crypto Key Identifier Mode shall be ‘01’ corresponding to a Key Index 6258
Field size of 1 octet. 6259

• Crypto_Key_Identifier shall be the Crypto_Key_Identifier of the master key used in 6260
protecting this structure. 6261

• Time_Stamp shall be the 32-bit representation of truncated TAI time used in the nonce 6262
construction. 6263

• Key_Policy shall be as described in Table 88 and populated by the security manager 6264
based on its security policies for this session. 6265

• New_Key_ID shall be the 8-bit Crypto_Key_Identifier assigned to this key material by the 6266
security manager. 6267

• Key_Material shall be a symmetric key used for this session. 6268

• MIC shall be the integrity code generated by the AES_CCM* computation. The size of the 6269
MIC is specified in the Security_Control field. 6270

The security level for the master key shall be set to at least the strength of the highest key 6271
used. 6272

The Security_Key_and_Policies data structure is protected by AES-CCM* with the following 6273
parameters: 6274

– Authentication part: element 1..10 6275
– Encryption part: element 11 6276
– Key: master key 6277
– Nonce: formed Table 57 structure with: 6278
– EUI64Address: EUI64Address of Security manager 6279
– nominal TAI Time: Time Stamp element conveyed in Security_Key_and_Policies 6280

Upon receipt of the DSMO.New_Key().Request method call, the DSMO of the end device shall 6281
decrypt and do an integrity check on the PDU using the same incoming PDU processing step 6282
as defined in the TL (see 7.3.3.9) with the nonce constructed with the EUI64Address of the 6283
security manager and the 32 bits of time included in the PDU. The key used shall be the 6284
current master key as identified by the Crypto Key Identifier. 6285

Upon successful completion of the check, the appropriate KeyDescriptor shall be populated 6286
using the fields in the Security_Key_and_Policies data structure. In this release, the issuer is 6287
always the security manager. 6288

The DSMO shall then generate a status message as defined in Table 85 to notify the security 6289
manager of the status of the method call. 6290

The Security_Key_Update_Status data structure that is used to form the response to the key 6291
update request is defined in Table 85. 6292

62734/2CDV © IEC(E) – 265 –

Table 85 – Security_Key_Update_Status data structure 6293

Standard data type name: Security_Key_Update_Status

Standard data type code: 423

Element name Element identifier Element type

Status 1 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Security_Control

2 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Crypto_Key_Identifier 3 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Time_Stamp 4 Type: TAITimeRounded

Classification: Static

Accessibility: Read only

MIC 5 Type: OctetString (SIZE = 4, 8, 16)

Classification: Static

Accessibility: Read only

 6294
Fields include: 6295

• Status shall be the status of the session, where 0x1 = 6296
SECURITY_KEY_UPDATE_FAILURE and 0x0 = SECURITY_KEY_UPDATE_SUCCESS. 6297

• Security_Control shall be as defined in 7.3.1.2. The security level is chosen from MIC-32, 6298
MIC-64 and MIC-128 with the master key security level assigned during the join process. 6299
The Crypto Key Identifier Mode shall be ‘01’ corresponding to a Crypto Key Identifier Field 6300
size of 1 octet. 6301

• Crypto_Key_Identifier shall be the Crypto_Key_Identifier of the master key used in 6302
protecting this structure. 6303

• Time_Stamp shall be the 32-bit representation of truncated TAI time used in the nonce 6304
construction. 6305

• MIC shall be the integrity code generated by the AES_CCM* computation. The size of the 6306
MIC is assigned in the Security_Control field. 6307

The nonce used to generate the MIC is formed as outlined in Table 57 with: 6308

– EUI64Address: EUI64Address of the DLE transmitting the New_Key response message. 6309
– Nominal TAI time: The Time_Stamp element from the Security_Key_Update_Status 6310

message. 6311

 Failure recovery 7.6.46312

7.6.4.1 General 6313

At any point during the session establishment or key update process, there is a possibility that 6314
a PDU will be dropped. In this case, the system should be able to recover and proceed. The 6315
following state definitions and transitions outline the recovery mechanism, along with the 6316
triggered side effects. 6317

 – 266 – 62734/2CDV © IEC(E)

7.6.4.2 T-key and D-key states 6318

T-key and D-key states include: 6319

• Idle: No key, not in the process of getting the current T-key. 6320

• Establishing: No key, in the process of geting the current T-key. 6321

• Established: Having the current key, not in the process of getting the next key. 6322

• Updating: Having the current key, in the process of getting the next key. 6323

• Overlapped: Having the current key and the next key 6324

7.6.4.3 T-key and D-key state transition 6325

The state transitions shown in Table 86 and Figure 52 show the state of the device initiating a 6326
T-key or D-key retrieval, and of its peer accepting the request. Both start in the idle state, and 6327
both end in the established state with a valid session or D-key and relevant cryptographic 6328
elements. 6329

Table 86 – T-key and D-key state transition 6330

Transition Current
state Event(s) Action(s) Next state

T1 Idle DSMO requested new session Call the following method on
the system manager:
PSMO.Security_New_Session.
Request()

Establishing

T2 Establishing PSMO.Security_New_Session()
.Response && crypto check ok

Save key material, policy and
location index, remote addr,
remote port, local addr, local
port as needed

Established

T3 Idle DSMO.New_Key().Request
from security manager via the
PSMO && crypto check ok

Save key material, policy and
location index, remote addr,
remote port, local addr, local
port as needed.

Return a
DSMO.New_Key.Response()

Established

T4 Established Session or D-key
SoftExpirationTime expired

Call the following method on
the system manager:
PSMO.Security_New_Session.
Request()

Updating

T5 Updating DSMO.New_Key().Request
from security manager via the
PSMO && crypto check ok

Save key material, policy and
location index, remote addr,
remote port, local addr, local
port as needed.

Return a
DSMO.New_Key.Response()

Overlapped
keys

T6 Established DSMO.New_Key().Request
from security manager via the
PSMO && crypto check ok

Store new keys in memory Overlapped
keys

T7 Overlapped
keys

ValidNotAfter of current
session or D-key expired.

Remove expired key Established

T8 Updating Timeout OR
PSMO.Security_New_Session.
Response() && crypto check ok
&& SESSION_DENIED

Set time of next retry Established

T9 Updating ValidNotAfter of last session or
D-key expired

Remove expired key Idle

T10 Established ValidNotAfter of last session or
D-key expired

Remove expired key Idle

62734/2CDV © IEC(E) – 267 –

Transition Current
state Event(s) Action(s) Next state

T11 Establishing Timeout Reset state machine and set
next retry time if necessary

Idle

 6331

Idle

Overlapped keys

Updating

Established

Establishing

T1
T11

T5

T9

T4T8

T7

T2

T10

T6

T3

 6332

Figure 52 – Device key establishment 6333
and key update state transition 6334

NOTE 1 If a device receives the DSMO.New_Key() request while it is in the Updating or Overlapped state, the 6335
device will discard the master key, which is not used to encrypt the new master key. 6336

NOTE 2 If the device receives through a DSMO.New_Key() request a new master key which was encrypted using 6337
an unknown master key, the device is able to query the security manager for the needed master key for decryption 6338
with PSMO.New_Session_Request() request, to re-synchronize the master keys. The security manager has the 6339
necessary information to infer, select and use the appropriate master key. 6340

 Functionality of the security manager role 7.76341

 Proxy security management object 7.7.16342

The attributes of the PSMO are given in Table 87. 6343

Table 87 – Attributes of PSMO in the system manager 6344

Standard object type name: Proxy security management object (PSMO)

Standard object type identifier: 105

Attribute name Attribute identifier Attribute
description

Attribute data
information

Description of
behavior of

attribute

Reserved for future
editions of this
standard

1..63 — — —

 6345

 – 268 – 62734/2CDV © IEC(E)

 Authorization of network devices and generation or derivation of initial master 7.7.26346
keys 6347

The security manager maintains a database containing: 6348

• a list of devices whose credentials have been established through a provisioning process 6349
or upon first attempt to join the network, and that have not been revoked; and 6350

• a list of valid join keys and their associated lifetimes that have been issued to provisioning 6351
agent devices, which might be provided by new devices that attempt to join the network. 6352

When a new device attempts to join the network and its request comes to the security 6353
manager via the system manager’s PSMO as described in 7.4.5, the security manager 6354
examines the first two lists for a quick accept/reject decision. Otherwise, the procedure shall 6355
be as described in 7.4.6. 6356

 Interaction with device security management objects 7.7.36357

A security manager interacts with a device’s DSMO via the PSMO: 6358

• during the join process; 6359

• when distributing new keys; 6360

• when receiving new keys that have been established by other devices through use of key 6361
agreement protocols; 6362

• during a join process as described in 7.4.4; and 6363

• during key recovery when a new network security manager replaces a failed one. 6364

 Management of operational keys 7.7.46365

7.7.4.1 General 6366

The security manager maintains the current master key and associated key-generation and 6367
policy attributes for each device it manages. 6368

All symmetric keys are maintained in the security manager’s operational storage, which in 6369
higher-security implementations should be physically protected within the security manager 6370
crypto module. 6371

Where the participating devices do not both implement the set of asymmetric cryptography 6372
primitives specified in 7.4.6, which is a construction option for each device, the security 6373
manager may also generate shared-secret symmetric data keys for their unicast DL and TL 6374
associations. 6375

NOTE Many devices do not have a high-entropy source of random bits. Without such a source, any key 6376
component generated by the device is potentially susceptible to inference. 6377

7.7.4.2 Key archiving 6378

Regulation or policy may require that keys be archived to permit concurrent or subsequent 6379
decryption of encrypted messaging. 6380

7.7.4.3 Key recovery 6381

The security manager should support two forms of key recovery: 6382

• recovery by a field device that has lost keys that were maintained in volatile storage (e.g., 6383
RAM) due to power failure or uncorrected memory error; and 6384

• recovery by a new network security manager of the operational keys currently in use in the 6385
network. 6386

62734/2CDV © IEC(E) – 269 –

Each field device that supports asymmetric-key cryptography shall keep in non-volatile 6387
storage: 6388

– its EUI64Address; and 6389
– its public/private key pair, with the latter as a signed certificate if that is available. 6390

Each field device that supports only symmetric-key cryptography shall keep in non-volatile 6391
storage: 6392

– its EUI64Address; 6393
– its join key; and 6394
– its current join key and related keying information, if it has previously been a member of 6395

the network. 6396

All other operational keying information may be kept in volatile storage, subject to loss upon 6397
device power failure or memory corruption, since this information can be regenerated by a 6398
security manager once that security manager has determined the EUI64Address of the 6399
device. 6400

7.7.4.4 Security policy administration 6401

Primary deployment options affecting network-wide security policy are selected during initial 6402
setup of the security manager for a network. Other policy deployment options may be selected 6403
at a later time. 6404

 Security policies 7.86405

 Definition of security policy 7.8.16406

In this standard, the security policy is defined as a combination of the following parameters: 6407

• Key Type defined in Table 89; 6408

• Key Usage defined in Table 90; 6409

• Key Lifetime defined in 7.2.2.4; and 6410

• Security Level defined in 7.3.1.1. 6411

Keys are distributed with the above parameters specified explicitly or reconstructed implicitly 6412
at the recipient. A corresponding KeyDescriptor is generated with those parameters. 6413

 Policy extent 7.8.26414

Security policies constrain the security choices that individual programs and devices can 6415
make. These policies exist at the following levels: 6416

• subnet-wide, across all devices participating in a given D-subnet, which may encompass 6417
the entire networked system; 6418

• device-wide, across all application programs and supporting communications layers within 6419
the device; 6420

• key-wide, across all PDUs secured with a given key; and 6421

• link-wide, across all PDUs transmitted over a given connection defined by a source and a 6422
destination, which may include UAP ports, thus providing UAP-wide policies, across all 6423
service invocations by a given application. 6424

Some system-wide policies shall be established before system operation begins; others can 6425
be changed dynamically while the system is operating, without interrupting ongoing sessions. 6426

 – 270 – 62734/2CDV © IEC(E)

 Unconstrained security policy choices 7.8.36427

System security policy choices may be made during system operation. The new policy will go 6428
into effect with the next rekeying of the affected devices by a security manager. Thus, 6429
operation with a given symmetric key always has a fixed set of attributes. 6430

 Policy structures 7.8.46431

The format of the policies is outlined in Table 88. 6432

Table 88 – Structure of policy field 6433

Octet Bits

7 6 5 4 3 2 1 0

0 Key_Type Key_Usage Granularity

1..4 Nominal ValidNotBefore

5..6
(7, 8 opt)

HardLifeSpan

9 Security_Level Reserved

 6434
Fields include: 6435

• Key_Type: type of key defined in Table 89. 6436

• Key_Usage: usage of key defined in Table 90. 6437

• Granularity: unit in which Nominal HardLifeSpan is interpreted as defined in Table 91. 6438

• Nominal ValidNotBefore in seconds: absolute TAI time in TAITimeRounded form, when the 6439
key recipient can start to use the key. 6440

• HardLifeSpan: duration of time for which that key is valid. The key valid duration starts 6441
from ValidNotBefore. If the ValidNotAfter field is filled with 0x00 for any granularity, that 6442
key has an infinite lifetime and thus the key will never expire. Unless ValidNotAfter is 6443
infinite, the actual time duration of the KeyHardLifeSpan must not exceed 48,5 days (see 6444
7.3.2.4.10) in any granularity. 6445

• Security_Level: security level for each key, as defined in Table 35. 6446

• Reserved: reserved field should be 0. 6447

The possible values for the key types are outlined in Table 89. 6448

Table 89 – Key_Type 6449

Key_type value Description

0 Reserved

1 Symmetric-key keying material, encrypted

2 ECC manual certificate

3 ECC implicit certificate

4..7 Reserved

 6450
The possible values for the key usage are outlined in Table 90. 6451

62734/2CDV © IEC(E) – 271 –

Table 90 – Key_Usage 6452

Key_Usage value Description

0 Group key for PDU processing (i.e., D-key)

1 Link key for PDU processing (i.e., T-key)

2 Master key for session establishment

3 Join key

4 Public-key for ECMQV scheme

5 Root key CA for ECQV scheme

6 Reserved

7 Fixed global non-secret key

 6453
The granularity of the HardLifeSpan in the key policy is outlined in Table 91. 6454

Table 91 – Granularity 6455

Granularity SI time unit
(Note 1) Common name Scale factor HardLifeSpan

(octets)

0 s second 1 s 4

1 min minute 60 s 3

2 h hour 3 600 s 2

3 d day 86 400 s 2

(Note 1) Although “s” is the only official SI time unit, the other units listed in
the second column are accepted for use with the SI system.

 6456
The following policies shall be available to a network specified by this standard. The variable 6457
k indicates a variable that may be set by the security manager of a given network. 6458

• Alerts and logging: 6459
A device keeps track of the number of failed cryptographic computation over a period of 6460
time. If a configurable threshold is exceeded, an alert is generated. Alerts include Data 6461
DPDU failure rate exceeded, TPDU failure rate exceeded, and key update failure rate 6462
exceeded. See alerts in 7.11.4. 6463

• Device policy: 6464
D-authentication shall always be active with an authentication tag size of 32 bits. The 6465
default key used by a joining device is the well-known K_global used to detect random 6466
errors only. A secret key protects the higher-level APDU during a secure join. See 7.4. 6467

NOTE 1 The DL MIC size is specified in 7.3.1.1 and the constraints for the DMIC are specified in 7.3.2. 6468

• Key policy: 6469
The link, security association and PDU policy are applied through the Key policy. All users 6470
of a given key shall have the same policy; see Table 88. The configurable elements 6471
include: 6472
– types of key; see Table 89; 6473
– granularity of TAI time used in the key lifetime; see Table 91; 6474
– MIC size (32, 64 or 128 bits); see Table 35; 6475
– DMIC size of 32, 64 or 128 bits, set to 32 by default, set in the DMXHR; see 7.3.2.2; 6476
– TMIC size of 0, 32, 64, or 128, set to 0 if security is off, set to 32 by default if security 6477

is on. Soft lifetime; see Table 93; 6478
– payload encryption on/off; 6479

 – 272 – 62734/2CDV © IEC(E)

– DL encryption on/off, set to off by default, set in the DMXHR; see 7.3.2.2; 6480
– TL encryption on/off, set to off if ‘security’ is off, set to on if ‘security’ is on); 6481
– HardLifeSpan (see Table 88), expressed as an absolute value of TAI time, limited by 6482

the maximum duration from the time of key generation that will prevent a rollover of the 6483
nonce; 6484

NOTE 2 This issue is linked to the TAI time granularity in the nonce (see 6.3.10); 48,5 days if used at 6485
1 024 PDU/s. 6486

– key originator: the EUI64Address of the generator of a given key (usually the security 6487
manager) which shall set the policy for a given key; 6488

– allowed sessions in the security manager. 6489

• Access control policy: 6490
The access control function for a session establishment is required only in the security 6491
manager. The security manager decides to grant or deny a session in the session 6492
establishment phase. The result is returned by the PSMO.Security_New_Session() 6493
method. If a security manager has both an Allowed and a Disallowed list, the security 6494
manager may indicate which one has precedence. 6495
– Allowed list: The security manager may have a list of allowed devices identified by 6496

valid information (e.g., EUI64Address and TAG name) listed in Table 372. 6497
– Disallowed list: The security manager may have a list of disallowed devices identified 6498

by valid information (e.g., EUI64Address and TAG name). 6499

 Security functions available to the AL 7.96500

 Parameters on transport service requests that relate to security 7.9.16501

UAPs are permitted to establish application associations dynamically by requesting a session 6502
to be established. See 6.3.11.2.5.2. After a session is established, all communications from 6503
that UAP with those peers is handled securely until a period of non-use or until a need to 6504
reuse storage for security state information causes the TL to terminate the prior transport 6505
security association. If a subsequent transport service request from the UAP to those peers 6506
occurs after the transport security association has been discontinued, that subsequent 6507
request shall be treated as a new request, resulting in a new transport security association. 6508

There is intentionally no ability to carry unsecured TPDUs on the transport security 6509
association once it has been established, since such a mechanism would be trivially easy to 6510
attack simply by altering selected authenticated TPDUs to indicate that they employed no 6511
authentication. 6512

To support stateless AL services, the least-recently-used policy may be applied by underlying 6513
layers for recycling any resource commitments (e.g., security connection state) that they 6514
might make. 6515

It would assist efficient security system operation if each transport service request on an 6516
association had the ability to hint at the expected interval before next use of the association. 6517
Such hinting provides guidance to the management of the implicit transport security 6518
connections needed for secured transport communications, permitting intelligent caching of 6519
established security connections and minimizing the thrashing that occurs when an implicit 6520
security connection is closed and then re-opened after a new key is established at all 6521
association participants. 6522

The permitted security levels (see 7.3.1.1) on a transport service request are: 6523

• encryption of the TPDU upper-layer payload: on/off; 6524

• authentication of the TPDU with a TMIC of size 32, 64 or 128 bits. 6525

62734/2CDV © IEC(E) – 273 –

In an API, these may be conveyed jointly as a single signed integer (e.g., an Integer8), where 6526
the sign was used to designate encryption (–) or not (+), and the magnitude was used to 6527
specify the requested size nn, with the value zero representing a request for no authentication 6528
and no encryption. 6529

 Direct access to cryptographic primitives 7.9.26530

7.9.2.1 General 6531

UAPs may use any of the cryptographic services available to a device. These include: 6532

• unkeyed and keyed hash functions; 6533

• pseudo-random or true-random bit string generation; 6534

• symmetric-key cryptography; 6535

• block cipher encryption; 6536

NOTE 1 Exclusion of block cipher decryption makes it more likely that an implementation is able to use hardware 6537
assistance. 6538

• stream cipher functions for processing data strings that include authentication, encryption, 6539
extended authentication with encryption, decryption, and decryption with extended 6540
authentication. 6541

The available cryptographic primitives also may include a single construction option: 6542

• asymmetric-key cryptography: 6543
– encryption with a public key and decryption with a private key of a private/public key 6544

pair; 6545
– signing with a private key and signature authentication with a public key of a 6546

private/public key pair; 6547
– key pair generation; 6548
– certificate generation, signing, and self-signing; 6549
– two-party Menezes-Qu-Vanstone key agreement; 6550
– Pintsov-Vanstone digital signatures. 6551

NOTE 2 The single asymmetric-key-cryptography construction option provides all of these capabilities. 6552

Abstract service definitions for all of the primitives of 7.9.2 are specified in 6.2.3. 6553

7.9.2.2 Unkeyed hash functions 6554

A secure unkeyed (or fixed-key) one-way hash function shall be provided. 6555

The default unkeyed hash shall be Matyas-Meyer-Oseas (MMO) as specified in 6556
ISO/IEC 10118-2, based on the block cipher of 7.9.3.2. 6557

NOTE Use of the MMO algorithm makes it more likely that an implementation is able to use hardware assistance.. 6558

Other unkeyed hash functions may be used where needed, either due to national requirement 6559
or because a larger output hash size is required for some application or to counter a threat. 6560

An alternate cryptographic algorithm package may be required for US government systems, 6561
because MMO is not authorized for US government use. Other governments may have similar 6562
policies. 6563

 – 274 – 62734/2CDV © IEC(E)

7.9.2.3 Random bits 6564

Each device shall provide a high-quality source of random bits from a deterministic random bit 6565
generator. This may be a properly-seeded generator that is compliant with ANSI X9.82 or 6566
FIPS 186-3. Where available, the high-entropy source should be a non-deterministic random 6567
bit generator. 6568

A high quality source of random bits shall be used in the asymmetric-key join. A properly 6569
seeded deterministic random bit generator may be used in generating challenge values in the 6570
symmetric-key join. 6571

NOTE 1 Non-deterministic random bit generators are not suitable for direct use due to the inability to prove any 6572
statistical properties of such a source other than its non-determinism. Instead, they are used to seed and provide 6573
continuing high-entropy input to deterministic random bit generators, whose statistical properties are quantifiable. 6574
Certification of the entropy source (as the certification of the security implementation), being a highly specialized 6575
function, is best delegated to an accredited entity. NIST SP 800-22 is useful in testing non-deterministic and 6576
deterministic random bit generators. 6577

NOTE 2 In the symmetric-key join process, it is possible to generate a seed by using the block cipher (whose 6578
default is AES) to encrypt the TAI time under the join key (i.e., Seed = Encrypt[K_join, TAI]). Such a join key is 6579
presumed to arise from a high entropy source, having been generated in the security manager and distributed 6580
during the provisioning phase. 6581

 Symmetric-key cryptography 7.9.36582

7.9.3.1 Keyed hash functions 6583

The default keyed hash shall be HMAC, based on the unkeyed hash of 7.9.2.1 (see 6584
FIPS 198). 6585

7.9.3.2 Block cipher encryption and decryption functions 6586

The default block cipher shall be AES-128, which has a 16 B block size and a 16 B key size 6587
(see FIPS 197). 6588

Alternate block ciphers may be used with appropriate algorithm identifier where needed, 6589
either due to national requirements or because a larger key size or block size is required for 6590
some application or to counter some threat. 6591

7.9.3.3 Stream cipher functions for encryption, decryption, authentication, extended 6592
authentication with encryption, and decryption with extended authentication 6593

The security of this system is based in part on the availability of a stream cipher mode of 6594
operation of a block cipher that provides encryption/decryption, authentication, or both. When 6595
both are provided, the authentication can extend to data that is not included in the 6596
encryption/decryption process. 6597

NOTE Encryption/decryption without authentication is avoided within TPDUs and DPDUs because there are a 6598
number of published cryptanalytic attacks that apply to all such schemes. However, the encryption-only and 6599
decryption-only modes of CCM* are available to UAPs for their use, such as for protection of the data in place. 6600

The default stream cipher mode of operation of the block cipher of 7.9.3.2 shall be CCM* (see 6601
ISO/IEC 19772, mechanism 3). CCM* may be used for authentication-only, for extended-6602
authentication-with-encryption, or for decryption-with-extended-authentication. 6603

7.9.3.4 Secret key generation primitive 6604

A secret key generation (SKG) primitive shall be used by the symmetric-key key agreement 6605
schemes specified in this standard. 6606

This primitive derives a shared secret value from a challenge owned by an entity U1 and a 6607
challenge owned by an entity U2 when all the challenges share the same challenge domain 6608

62734/2CDV © IEC(E) – 275 –

parameters. If the two entities both correctly execute this primitive with corresponding 6609
challenges as inputs, the same shared secret value will be produced. 6610

The shared secret value shall be calculated as follows: 6611

• Prerequisites: the prerequisites for the use of the SKG primitive are: 6612
– each entity shall be bound to a unique identifier (e.g., the EUI64Address of the 6613

device). All identifiers shall be bit strings of the same size. Entity U1’s identifier will be 6614
denoted by the bit string U1. Entity U2’s identifier will be denoted by the bit string U2; 6615

– a specialized MAC scheme shall have been chosen, with tagging transformation as 6616
specified in ANSI X9.63:2011, 5.7.1. The size in bits of the keys used by the 6617
specialized MAC scheme is denoted by macKeySize. 6618

• Input: the SKG primitive takes as input: 6619
– a bit string MacKey of size macKeySize bits to be used as the key of the established 6620

specialized MAC scheme; 6621
– a bit string QEU1 provided by U1; 6622
– a bit string QEU2 provided by U2. 6623

• Actions: the following actions are taken: 6624
– form the bit string consisting of U1’s identifier, U2’s identifier, the bit string QEU1 6625

corresponding to U1’s challenge, and the bit string QEU2 corresponding to U2’s 6626
challenge. 6627

• MacData = U1 || U2 || QEU1 || QEU2 6628

– calculate the tag MacTag for MacData under the key MacKey using the tagging 6629
transformation of the established specialized MAC scheme: 6630

• MacTag = MACMacKey(MacData) 6631
– if the tagging transformation outputs invalid, also output invalid and stop; 6632
– otherwise, set Z=MacTag. 6633

• Output: the bit string Z as the shared secret value. 6634

 Security statistics collection, threat detection, and reporting 7.106635

Major security-related events logged by the security manager should include: 6636

• authorizations of new devices; 6637

• first joining of new devices to the network; and 6638

• prolonged disappearance of devices from the network, particularly when they are expected 6639
to have a stationary presence. 6640

NOTE Required logging of other security events is a potential subject for future standardization. 6641

The following security-related events shall both be logged and alerted: 6642

• MIC failure rates on received DPDUs that appear to be properly-formed, specifying the 6643
proper network-ID, that exceed a range specified in attribute 5 of the DSMO; 6644

• MIC failure rates on received TPDUs that exceed a range specified in attribute 6 of the 6645
DSMO; and 6646

• any integrity failure detected when unwrapping a wrapped symmetric key that exceeds a 6647
range specified in attribute 9 of the DSMO. 6648

 – 276 – 62734/2CDV © IEC(E)

 DSMO functionality 7.116649

 General 7.11.16650

The device security management object (DSMO) is part of the DMAP and is the local security 6651
management application in each device. It is responsible for the agreement and exchange of 6652
cryptographic material along with associated policies. It communicates with the DSMO of the 6653
security manager via the proxy security manager object (PSMO) of the system manager. 6654
Therefore, TL security shall be used to protect the DSMO traffic, except during the join 6655
process which requires alternative special measures. 6656

 DSMO attributes 7.11.26657

Table 92 describes the DSMO. 6658

Table 92 – DSMO attributes 6659

Standard object type name: Device security management object (DSMO)

Standard object type identifier: 125

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

DPDU_MIC_Failure_Limit 1 The threshold of
DPDU MIC failures
per time unit
beyond which an
alert will be sent to
the security
manager

Type: Unsigned16 The value is
reset to 0 after
an alert is
generated

Classification: Static

Accessibility: Read/write

Default value: 5

DPDU_MIC_Failure_Time_U
nit

2 The time interval in
seconds used to
determine the
DPDU MIC failure
rate

Type: Unsigned16

Classification: Static

Accessibility: Read/write

Default value: 60 s

TPDU_MIC_Failure_Limit 3 The threshold of
TPDU MIC failures
per time unit
beyond which an
alert will be sent to
the security
manager

Type: Unsigned16 The value is
reset to 0 after
an alert is
generated

Classification: Static

Accessibility: Read/write

Default value: 5

Valid range: > 0

TPDU_MIC_Failure_Time_U
nit

4 The time interval in
seconds used to
determine the
TPDU MIC failure
rate

Type: Unsigned16

Classification: Static

Accessibility: Read/write

Default value: 5

DSMO_KEY_Failure_Limit 5 The threshold
beyond which an
alert will be sent to
the security
manager

Type: Unsigned16 The value is
reset to 0 after
an alert is
generated

Classification: Static

Accessibility: Read/write

Default value: 1

DSMO_KEY_Failure_Time_
Unit

6 The time interval in
hours used to
determine the
DSMO key failure
rate

Type: Unsigned16

Classification: Static

Accessibility: Read/write

Default value: 1

62734/2CDV © IEC(E) – 277 –

Standard object type name: Device security management object (DSMO)

Standard object type identifier: 125

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Security_DPDU_Fail_Rate_
Exceeded_AlertDescriptor

7 Used to change the
priority of
Security_DPDU_Fa
il_Rate_Exceeded
Alert that belongs
to the security
category. This alert
can also be turned
on or off

Type: Alert report
descriptor

See alert
definition

Classification: Static

Accessibility: Read/write

Default value: [FALSE, 6]

Security_TPDU_Fail_Rate_
Exceeded_AlertDescriptor

8 Used to change the
priority of
Security_TPDU_Fa
il_Rate_Exceeded
Alert that belongs
to the security
category. This alert
can also be turned
on or off

Type: Alert report
descriptor

See alert
definition

Classification: Static

Accessibility: Read/write

Default value: [FALSE, 6]

Security_Key_Update_Fail_
Rate_Exceeded_
AlertDescriptor

9 Used to change the
priority of
Security_Key_Upd
ate_Fail_Rate_Exc
eeded Alert that
belongs to the
security category.
This alert can also
be turned on or off

Type: Alert report
descriptor

See alert
definition

Classification: Static

Accessibility: Read/write

Default value: [FALSE, 6]

pduMaxAge 10 The maximum
amount of time in
seconds a PDU is
allowed to stay in
the network. If a
PDU is received in
a time window
exceeding this
period, it shall be
rejected at the
receiver

Type: Unsigned16 Set to 510 s by
default.

Classification: Static

Accessibility: Read/write

Default value: 510

Valid range: 0..600

 6660
 KeyDescriptor 7.11.36661

7.11.3.1 General 6662

The information associated with a key is summarized in Table 93. 6663

 – 278 – 62734/2CDV © IEC(E)

Table 93 – KeyDescriptor 6664

Element name Element identifier Element scalar type

KeyLookupData 1 Type: OctetString36

Classification: Static

Accessibility: Read/write

See Table 94

KeyUsage 2 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Valid range: 0..7

See Table 90

ValidNotBefore 3 Type: TAITimeRounded

Classification: Static

Accessibility: Read/write

SoftExpirationTime 4 Type: TAITimeRounded

Classification: Static

Accessibility: Read/write

ValidNotAfter 5 Type: TAITimeRounded

Classification: Static

Accessibility: Read/write

Issuer 6 Type: IPv6Address or
EUI64Address

Classification: Static

Accessibility: Read/write

CryptoKeyIdentifier 7 Type: Unsigned8 or Unsigned64

Classification: Static

Accessibility: Read/write

KeyMaterial 8 Type: OctetString

Classification: Static

Accessibility: Read/write

Security level 9 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Valid range: 0..7

See Table 35

Counter 10 Type: Unsigned8

Classification: Static

Accessibility: Read/write

NonceCache 11 Type: OctetString

Classification: Dynamic

Accessibility: Read/write

MICFailures 13 Type: Unsigned16

Classification: Static

Accessibility: Read/write

NOTE * indicates an index field.

62734/2CDV © IEC(E) – 279 –

 6665
The T-keyLookupData OctetString fields are listed in Table 94. 6666

Table 94 – T-keyLookupData OctetString fields 6667

Field name Field scalar type

SourceAddress Type: IPv6Address

SourcePort Type: Unsigned16

DestinationAddress Type: IPv6Address

DestinationPort Type: Unsigned16

 6668
NOTE 1 Since the internal representation of the Key Descriptor is not observable, any representation aspects in 6669
the following are purely for exposition. 6670

Key Descriptor fields include: 6671

• KeyLookupData: 6672
– at the TL, used as index to find a key for a given association; 6673
– at the DL, this field is not used and shall be set to all 0x00; 6674

• KeyUsage: identifies whether the key is usable as a D-key or a T-key or both; 6675

NOTE 2 Using a 2-bit bitmap allows a key to be defined to be used as a DL and a T-key at the same time, if 6676
allowed by the key policy. 6677

• ValidNotBefore: time (TAI) at which the key becomes valid; 6678

• ValidNotAfter: time (TAI) at which the key becomes invalid; 6679

• SoftExpirationTime: time (TAI) at which an updated key is needed; 6680

• Issuer: address of the issuer of the key; this can be an IPv6Address or an EUI64Address; 6681

• CryptoKeyIdentifier: Crypto Key Identifier, set by the key issuer, used to distinguish keys 6682
when multiple keys are valid concurrently; 6683

• KeyMaterial: key data for encryption/decryption and/or MIC generation; 6684

• SecurityLevel: as described in Table 88; 6685

• Counter: if KeyUsage bit0 is 0 (this key is not a D-key), this field is not used, so is set to 0; 6686

• NonceCache: if KeyUsage bit1 is 0 (this key is not a T-key), this field is not used, so is 6687
set to NULL; 6688

• MICFailures: number of MIC authentication failures after which an alarm should be 6689
generated. 6690

7.11.3.2 Additional device security management object methods to support key 6691
management 6692

Table 95 describes the delete key method. The result of the method invocation is stored into 6693
ServiceFeedbackCode in the application sublayer header and returned to the requesting 6694
device. The nonce construction for protecting APDU using a master key is described in 7.5.3. 6695

 – 280 – 62734/2CDV © IEC(E)

Table 95 – Delete key method 6696

Standard object type name(s): Device security management object (DSMO)

Standard object type identifier: 125

Method
name

Method
ID

Method description :

Delete_key 2 This method is used to delete a symmetric key on a device. This method is evoked by
the PSMO of the security manager. The method shall be protected by the current
master key shared between the device and the security manager.

Input arguments

Argument
number

Argument name Argument type
(data type and size)

Argument description

1 KeyUsage Unsigned8 KeyUsage defined in Table
90

2 Crypto_Key_Identifier Unsigned8 The Crypto_Key_Identifier
used to uniquely identify
keys overlapping in validity
period

3 Source_Port Unsigned16 Source port; if KeyUsage is
not 0x01 (i.e. T-key), this
field should be elided

4 Destination_Address IPv6Address Destination Address; if
KeyUsage is not 0x01 (i.e.
T-key), this field should be
elided

5 Destination_Port Unsigned16 Destination Port; if
KeyUsage is not 0x01 (i.e.
T-key), this field should be
elided.

6 MasterKeyID Unsigned8 Crypto Key Identifier for the
master key used for
generating MIC

7 Time_Stamp Unsigned32 Time of creating this
message in
TAITimeRounded form. This
argument is time portion of
the nonce used for
generating MIC to protect
this method call

8 MIC OctetString
(SIZE = 4, 8, 16)

The integrity check using
AES_CCM*. The MIC size is
chosen from MIC-32, MIC-64
and MIC-128 with master key
security level assigned in
join process

Output arguments

Argument
number

Argument name Argument type
(data type and size)

Argument description

— — — —

 6697
The MIC is generated by an AES-CCM* operation with the following parameters: 6698

• authentication part: Element 1..7; 6699

• encryption part: none; 6700

• key: master key, which has Crypto Key Identifier = MasterKeyID; 6701

• nonce: formed Table 57 structure with: 6702
– EUI64Address: EUI64Address of Security manager; 6703
– nominal TAI time: Time Stamp field conveyed in Delete_Key() request. 6704

62734/2CDV © IEC(E) – 281 –

The Key_Policy_Update method is described in Table 96. The result of the method invocation 6705
is stored into ServiceFeedbackCode in the application sublayer header and returned to the 6706
requesting device. The nonce construction for protecting APDU using master key is described 6707
in 7.5.3. 6708

Table 96 – Key_Policy_Update method 6709

Standard object type name(s): Device security management object (DSMO)

Standard object type identifier: 125

Method name Method ID Method description

Key_Policy_Update 3 This method is used to update a policy associated with a symmetric key
on a device. This method is evoked by the PSMO of the security
manager. The method shall be protected by the current master key
shared between the device and the security manager.

Input arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument description

1 KeyUsage Unsigned8 KeyUsage defined in Table 90

2 Crypto_Key_I
dentifier

Unsigned8 The Crypto_Key_Identifier
used to uniquely identify keys
overlapping in validity period

3 Source_Port Unsigned16 Source port; if KeyUsage is
not 0x01 (e.g. T-key), this
field should be elided

4 Destination_
Address

IPv6Address Destination Address; if
KeyUsage is not 0x01 (e.g.
T-key), this field should be
elided

5 Destination_
Port

Unsigned16 Destination Port; if KeyUsage
is not 0x01 (e.g. T-key), this
field should be elided

6 SoftLifeSpan
Ratio

Unsigned8 The percentage of the
HardLifeSpan beyond which a
key update will be initiated

7 Security_Lev
el

Unsigned8 Security level specified in
Table 35.

8 MasterKeyID Unsigned8 Crypto Key Identifier for the
master key used for
generating MIC

9 Time_Stamp Unsigned32 Time of creating this message
in TAITimeRounded form.
This argument is time portion
of the nonce used for
generating MIC to encrypt and
protect this method call

 10 MIC OctetString
(SIZE = 4, 8, 16)

The integrity check using
AES_CCM*. The MIC size is
chosen from MIC-32, MIC-64
and MIC-128 with master key
security level assigned in join
process

Output arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument description

— — — —

 6710
The MIC is generated by an AES-CCM* operation with the following parameters: 6711

• authentication part: element 1..7; 6712

 – 282 – 62734/2CDV © IEC(E)

• encryption part: none; 6713

• key: master key, which has Crypto Key Identifier = MasterKeyID; 6714

• nonce: formed Table 57 structure with: 6715
– EUI64Address: EUI64Address of security manager; 6716
– nominal TAI time: Time Stamp field conveyed in Key_Policy_Update() request. 6717

The SoftExpirationTime in the Key Descriptor is updated following a successful MIC check on 6718
the parameters of this method call. All the parameters shall be concatenated from the first 6719
element to the one the before last element (thus excluding the integrity check). The key 6720
SoftLifeSpanRatio is the percentage of the difference between the ValidNotAfter and the 6721
ValidNotBefore time. For example, a SoftLifeSpanRatio of 50% would cause a key update half 6722
way between the ValidNotBefore and the ValidNotAfter. 6723

 DSMO alerts 7.11.46724

Table 97 describes the DSMO alerts. 6725

Table 97 – DSMO Alerts 6726

Standard object type name(s): Device security management object (DSMO)

Standard object type identifier: 125

Description of the alert: Security alerts on the state of the communication

Alert class
(Enumerated:

alarm or
event)

Alert
category

(Enumerated:
device

diagnostic,
comm.

diagnostic,
security, or

process)

Alert type
(Enumerated: based

on alert category)

Alert priority
(Enumerated:
urgent, high,

med, low,
journal)

Value data
type

Description of
value included

with alert

0 = Event 2 = Security 0 =
Security_DPDU_Fail_
Rate_Exceeded

6 = Medium Type:
Unsigned16

Alert generated
after the
preconfigured DPDU
failure rate
threshold is
exceeded. The
value conveys the
number of failures
during the time
period

Default
value: 0

0 = Event 2 = Security 1 = Security_TPDU_
Fail_Rate_Exceeded

6 = Medium Type:
Unsigned16

Alert generated
after the
preconfigured TPDU
failure rate
threshold is
exceeded. The
value conveys the
number of failures
during the time
period

Default
value: 0

0 = Event 2 = Security 2 =
Security_Key_Update_
Fail_Rate_Exceeded

6 = Medium Type:
Unsigned16

Alert generated
after the
preconfigured
updating security
key failure rate
threshold is
exceeded. The
value conveys the
number of failures
during the time
period

Default
value: 0

 6727

62734/2CDV © IEC(E) – 283 –

8 Physical layer 6728

 General 8.16729

The physical layer (PhL) is responsible for converting the digital data information into, and 6730
from, radio frequency energy emitted, and captured, by a device’s antenna. Clause 8 also 6731
specifies the operating frequencies, transmission power levels, and modulation methods 6732
used. As described in 5.2.6.2, this standard uses IEEE 802.15.4:2011 2,4 GHz DSSS as the 6733
default PhL, which it refers to as the Type A field medium. Future versions of this standard 6734
may define alternate physical layers. 6735

The PhL provides two services, the PhL data service and the PhL management service. 6736
These services are collectively accessible via the PhSAP. The PhL data service (PhD) 6737
enables the transmission and reception of actual user data (PhPDUs) across the physical 6738
radio channel. The PhL management service is used to control the operating functions of the 6739
radio such as channel selection, transmit power selection, etc. 6740

The structure of PhPDUs used by this standard is defined in IEEE 802.15.4:2011. Each 6741
PhPDU consists of a PHY synchronization header (PSH), a PHY coding header (PCH), and a 6742
PHY payload that is a single PhSDU. A start frame delimiter (SFD) in the SHR is commonly 6743
used as an observable timing reference. 6744

A device employing a certified IEEE 802.15.4:2011-compliant 2,4 GHz DSSS radio generally 6745
will be allowed to operate without a site license in most countries around the world. Type 6746
licensing of the device that is acceptable to the country(ies) of intended use may be required. 6747

 Default physical layer 8.26748

 General requirements 8.2.16749

The default physical layer shall be the Type A PhL, which shall be based on 6750
IEEE 802.15.4:2011 2,4 GHz DSSS with additional requirements and exceptions as specified 6751
herein. 6752

Devices on mobile platforms such as ships and trains and even trucks may move between 6753
different regulatory jurisdictions. In all cases the regulations for the current locale of the 6754
device apply. One of the device configuration parameters, dlmo.CountryCode (9.1.15.6), 6755
provides the locale and regulatory-constraint guidance needed to drive conformance to the 6756
relevant regulations; thus for mobile platforms the value of this parameter shall be changed 6757
during system operation, in a timely manner, as necessary to comply with relevant 6758
regulations. See Annex V. 6759

The device vendor and the end user are responsible for certifying that these devices are 6760
compliant with this standard and any country- or region-specific regulations. 6761

 Additional requirements of IEEE 802.15.4:2011 8.2.26762

8.2.2.1 Over-the-air data rate 6763

The PhL shall support a raw (over-the-air) data rate of 250 kbit/s. 6764

8.2.2.2 Timing requirements 6765

This standard requires that the PhLE support changing the channel for every PhPDU 6766
transmitted. Timing requirements are specified in Table 98. 6767

 – 284 – 62734/2CDV © IEC(E)

Table 98 – Timing requirements 6768

Event Requirement

Time to change RF channels < 200 µs

Time to switch from receive to transmit (with PA on) < 200 µs

Time to switch from transmit (with PA on) to receive < 200 µs

Inter-reception preparation time < 200 µs

where PA refers to any RF power amplifier in the apparatus

 6769
8.2.2.3 Carrier sense mode selection 6770

IEEE 802.15.4:2011 2,4 GHz DSSS physical layer supports the use of a CSMA/CA scheme to 6771
reduce collisions and increase coexistence. This scheme can delay transmission of a PhPDU 6772
excessively, due to repeated random back-off delays during channel acquisition. 6773

The PhLE shall select the mode of CSMA/CA operation on a D-transaction by D-transaction 6774
basis as requested by the DLE, where that selection depends on system configuration, 6775
including the regulatory regime under which the wireless system is operating, as constrained 6776
by dlmo.CountryCode (9.1.15.6). 6777

8.2.2.4 Number of channels 6778

The PhLE shall support as a minimum IEEE 802.15.4:2011 2,4 GHz DSSS channels 11..25. 6779
Support of IEEE 802.15.4:2011 channel 26 is optional where its use is permitted by regulatory 6780
constraints, and prohibited where regulations prohibit its use. 6781

NOTE Use of channel 26 is optional due to commonly encountered regulatory constraints near the band edge. 6782

8.2.2.5 Transmit power limits 6783

As specified by IEEE 802.15.4:2011, the PhLE shall support a minimum full power level 6784
of -3 dBm, measured in accordance with the regulations to which the device is being certified. 6785

The PhLE shall provide adjustable transmit power from -5 dBm to the maximum power of the 6786
device, in increments as specified by the PhE’s TXPowerTolerance attribute, as specified in 6787
the IEEE 802.15.4:2011 PHY PIB. 6788

As required by IEEE 802.15.4:2011, 8.1.5, the maximum radiated power level shall not 6789
exceed the regulatory requirements that apply where the device is deployed, as constrained 6790
by dlmo.CountryCode (9.1.15.6). 6791

 Exceptions to the IEEE 802.15.4:2011 physical layer 8.2.36792

8.2.3.1 General 6793

The requirements of this standard that are deviations or omissions from the 6794
IEEE 802.15.4:2011 physical layer are listed here. 6795

8.2.3.2 Limitation of frequency bands and modulation classes 6796

Although the IEEE 802.15.4 physical layer supports multiple frequency bands and modulation 6797
classes, a device compliant with this standard shall operate in the license-exempt 6798
2 400..2 483,5 MHz band using DSSS modulation (and coding at 250 kbit/s), which is 6799
specified in IEEE 802.15.4:2011, Table 66, as 2 450 DSSS. This standard does not support 6800
any of the other frequency bands or data rates or modulation and coding techniques specified 6801
in IEEE 802.15.4. 6802

62734/2CDV © IEC(E) – 285 –

9 Data-link layer 6803

 General 9.16804

 Overview 9.1.16805

The data-link layer (DL) in this standard is designed with the general goal of constraining the 6806
range of recognized construction options for a field device, while enabling flexible and 6807
innovative system solutions. 6808

The DL specification provides a set of capabilities that are well defined and verifiable for each 6809
device that participates in a D-subnet. The DLE can be conceptualized as a table-driven state 6810
machine that operates independently on each device. A D-subnet is a group of DLEs provided 6811
with a matched set of table-driven configurations by the system manager. 6812

The DL’s building blocks include timeslots, superframes, links, and graphs. The system 6813
manager may assemble these building blocks to configure a DLE in one of three general 6814
operational alternatives, slotted-channel-hopping, slow-channel-hopping, and hybrid 6815
slotted/slow-channel-hopping. (See 9.1.7.2 for a discussion of channel-hopping.) 6816

A timeslot is a single, non-repeating period of time. The timeslot durations in this standard are 6817
configurable to a fixed value such as 10 ms or 12 ms. Once a timeslot duration is selected, all 6818
timeslots generally have the same duration and they are re-aligned to a 4 Hz cycle at each 6819
250 ms clock interval. (See 9.1.9 for a discussion of DLE timekeeping.) 6820

A superframe is a collection of timeslots repeating on a cyclic schedule. The number of 6821
timeslots in a given superframe determines how frequently each timeslot repeats, thus setting 6822
a communication cycle for DLEs that use the superframe. The superframe also has an 6823
associated reference channel-hopping pattern. (See 9.1.8 for a discussion of superframes.) 6824

Links are connections between DLEs. When the system manager defines paths between 6825
DLEs, the DLEs receive link assignments. A link assignment repeats on a cyclic schedule, 6826
through its connection to an underlying superframe. Each link refers to one timeslot or a 6827
group of timeslots within a superframe, its type (transmit and/or receive), information about 6828
the DLE’s neighbor (the DLE on the other end of the link), a channel offset from the 6829
superframe’s underlying channel-hopping pattern, and transmit/receive alternatives. 6830

This standard supports graph routing as well as source routing. A directed graph is a set of 6831
directed links that is used for routing Data DPDUs within a D-subnet. Each directed graph 6832
within the D-subnet is identified by a graph ID. In source routing, the originating DLE 6833
designates the hop-by-hop route that a Data DPDU takes through a D-subnet. Graph routing 6834
and source routing may be mixed. (See 9.1.6 for a discussion of routing.) 6835

 Coexistence strategies in the DL 9.1.26836

This standard incorporates several strategies that are used simultaneously to optimize 6837
coexistence with other users of the 2,4 GHz radio spectrum, as described in 4.6.10. Most of 6838
these strategies are handled adaptively by the DLE in conjunction with the system manager. 6839

 Allocation of digital bandwidth 9.1.36840

The DLE is a table-driven state machine that provides prioritized access to digital bandwidth 6841
for directional communication among DLEs within a D-subnet. The state machine operates on 6842
one timeslot at a time. 6843

Digital bandwidth is allocated by a system management function. For example, a field device 6844
may need to report every 10 s. A level of service is arranged through the system management 6845
function, to ensure that the digital bandwidth is available when needed. The system 6846

 – 286 – 62734/2CDV © IEC(E)

management function, in turn, arranges the digital bandwidth available to the field device’s 6847
DLE and any required intermediate router DLEs. 6848

A link is the basic unit of service within the DL. A link may be incoming, outgoing, or 6849
bidirectional. It may be unicast or broadcast (see 9.1.9.4.2). 6850

DL digital bandwidth may be allocated to deliver an average level of service, for example, 6851
10 Data DPDUs of available digital bandwidth (multi-hop) per minute. Alternatively, DL digital 6852
bandwidth may be allocated to support a reporting interval and a level of service, for example, 6853
one Data DPDU (including retries) every 15 s, with 2 s maximum latency to a backbone 6854
connection. 6855

DL digital bandwidth may be organized as a pool that can be shared by a collection of DLEs 6856
using the corresponding links. A level of service may be delivered by ensuring that sufficient 6857
shared, contention-based capacity is available. 6858

For more granular channel allocation, links may be tied to particular groups of Data DPDUs. 6859

A service level may be delivered with a combination of specific link allocations and generally 6860
available shared digital bandwidth. For example, for each report, a dedicated link may be 6861
allocated for the first transmission to each of two neighbors, with retries using shared digital 6862
bandwidth. 6863

 Structure of the DPDU 9.1.46864

The general structure of a data-link protocol data unit (DPDU) in this standard is shown in 6865
Figure 53. 6866

 6867

Figure 53 – DL protocol suite and PhPDU/DPDU structure 6868

The DL specified by this standard includes: 6869

• A subset of the IEEE 802.15.4 MAC, as described in 9.1.5. This handles the low-level 6870
mechanics of sending and receiving individual DPDUs (all of which are classified as “data” 6871

62734/2CDV © IEC(E) – 287 –

DPDUs by IEEE 802.15.4:2011). The SHR, PHR, MHR, and frame check sequence (FCS) 6872
of every DPDU are as described and specified in IEEE 802.15.4. 6873

• An extension to the MAC, including aspects of the DL that are not specified by IEEE but 6874
are logically MAC functions. 6875

• An upper-DL protocol that handles link and mesh aspects above the MAC level. 6876

Components of the DPDU header in this standard are described in 9.3.1. 6877

 The DL and the IEEE 802.15.4:2011 MAC 9.1.56878

This standard uses the IEEE 802.15.4:2011 MAC (called IEEE MAC herein). Only IEEE MAC 6879
data frames are used. The formats used are as specified by IEEE 802.15.4:2011, with the two 6880
exceptions explicitly enumerated in 9.1.5. See 9.3.3 for detail. 6881

The IEEE MAC describes various features that are not used by this standard’s DL (called “the 6882
DL” herein). In summary, only IEEE MAC data frames are used by the DL. 6883

A DLE compliant with this standard never associates with a coordinator in the sense defined 6884
by the IEEE MAC. None of the IEEE MAC functions involving FFDs are used by this standard. 6885

Within the limited context of this standard’s DPDUs, there are some features that are not 6886
supported for IEEE MAC data frames. These features are implemented via the MAC extension 6887
of this standard, which enhances the IEEE MAC with features that are logically MAC functions 6888
but that are not included in IEEE 802.15.4:2011. 6889

The DL and the IEEE 802.15.4 MAC each specify an entity called a superframe (see 9.1.8), 6890
but the DL uses no aspects of the IEEE 802.15.4 MAC superframe specification. 6891

ACK/NAK DPDUs are used to convey time information for clock correction, in addition to 6892
providing authenticated acknowledgment. These features are not available when using the 6893
IEEE 802.15.4:2011 MAC immediate acknowledgment MPDU. For this and other reasons, the 6894
MAC-level immediate acknowledgments specified in IEEE 802.15.4:2011 are not used; 6895
instead, MAC-level immediate acknowledgments compliant with this standard are provided 6896
within this standard as short IEEE 802.15.4:2011 data frames, usually using an address field 6897
structure combination not used for such purposes in IEEE 802.15.4:2011. 6898

NOTE ACK/NAK DPDUs are short control signaling (SCS) as specified in ETSI EN 300 328. 6899

The IEEE 802.15.4:2011 MAC includes active and passive scans, which are not used in this 6900
standard. This standard has alternative active and passive scans, using IEEE 802.15.4:2011 6901
data frames. 6902

The IEEE 802.15.4:2011 MAC backoff and retry mechanism is not used by the DL. Instead, 6903
the DL implements its own retries, involving spatial diversity (retries to multiple DLEs), 6904
frequency diversity (retries on multiple radio channels), and time diversity (delaying the Data 6905
DPDU). The manner and degree of these elements of diversity are not fixed, but configured 6906
by the system manager. More generally, this standard’s DL uses CSMA/CA, but the details 6907
are different from CSMA/CA use as defined in IEEE 802.15.4:2011. Various aspects of the 6908
IEEE 802.15.4:2011 MAC’s CSMA/CA behavior are not used, and CSMA/CA functions are 6909
handled in this standard’s DL. 6910

The standard includes two exceptions to the MAC-PDU addressing combinations specified in 6911
IEEE 802.15.4:2011: 6912

• Solicitation Data DPDUs and most ACK/NAK DPDUs, which are technically data frames in 6913
IEEE 802.15.4:2011, use a destination-addressing mode of 00 and a source-addressing 6914
mode of 00. In IEEE 802.15.4:2011, this combination is limited to IEEE 802.15.4:2011 6915
beacons and trivially-spoofed IEEE 802.15.4:2011 immediate acknowledgments. 6916

 – 288 – 62734/2CDV © IEC(E)

• Advertisement Data DPDUs and secondary duocast/N-cast ACK/NAK DPDUs, which are 6917
technically data frames in IEEE 802.15.4:2011, use a destination-addressing mode of 00 6918
and a source-addressing mode of 10 (DL16Address). In IEEE 802.15.4:2011, this 6919
combination implies that the frame is directed to the PAN coordinator, which does not 6920
exist in this standard (so therefore that meaning cannot apply). 6921

 Routes and graphs 9.1.66922

9.1.6.1 General 6923

Routes are configured by the system manager, based on reports from DLEs that indicate 6924
instantaneous and historical quality of wireless connectivity to their immediate neighbors. The 6925
system manager accumulates these reports of signal quality to make routing decisions. The 6926
signal quality reports are standardized, but the routing decision process within the system 6927
manager is not standardized. Once the system manager makes its routing decisions, it uses 6928
standard Data DPDUs to configure routes within each DLE in the D-subnet. (See 9.1.13 and 6929
9.1.14 for a review of neighbor discovery.) 6930

DL routing is adaptive at two levels: 6931

• DLEs make instantaneous adaptive forwarding decisions. DLEs are normally configured 6932
with path diversity, so that if one link fails somewhere along the route, the DLE can 6933
immediately send the Data DPDU along an alternative path. 6934

• If, over time, certain links have consistent connectivity issues, this is reported to the 6935
system manager, which can then reconfigure the DLE to use different links. 6936

Within each Data DPDU, DL routing instructions are placed in the Data DPDU’s DROUT 6937
subheader (see 9.3.3.6). When a Data DPDU is addressed to an immediate neighbor, such as 6938
during the D-subnet join process, the route is simply the address of that neighbor. When the 6939
Data DPDU is being sent to a more distant DLE, a single graph number can indicate how the 6940
Data DPDU’s payload should be conveyed through the D-subnet to reach that address. These 6941
two approaches may be combined. For example, a DROUT subheader may contain two 6942
entries, the first identifying an immediate neighbor for the first hop, and the second indicating 6943
a graph that is used for the rest of the route through the D-subnet. 6944

Routes that identify specific D-addresses, also known as source routing, are not as adaptive 6945
as routes based on graphs. When a route is based on a series of D-addresses, each DLE 6946
along the route becomes a single point of failure. Graphs, on the other hand, should be 6947
configured with multiple branches at each hop, so that if there is a connectivity problem with 6948
one neighbor, the DLE can send the payload of that Data DPDU to a different neighbor. 6949

Source routing is useful for quick, transitory communications between DLEs, such as during 6950
the join process. Source routing may also be used when graph route resources are scarce. 6951

The DROUT subheader is constructed by the DLE that injects the Data DPDU into the DL 6952
from a NLE. Routes are selected by table lookup based on contract ID, destination D-address, 6953
or by default. Once a route is selected the Data DPDU’s conveyed payload follows that route 6954
until it arrives at the D-subnet termination point, which may be its ultimate destination, or 6955
alternatively may be a waypoint along the route, such as a backbone router or the system 6956
manager. At the D-subnet termination point, the received Data DPDU’s payload is passed to 6957
the collocated NLE. 6958

The DROUT subheader includes a forwarding-limit field which is used to limit the number of 6959
times that a Data DPDU can be forwarded within a D-subnet. The forwarding limit is initialized 6960
by the originating DLE when the route is assigned, and decremented with each hop until it 6961
reaches zero, triggering discard of the Data DPDU if a subsequent hop was required. 6962

NOTE This forwarding limit ensures that Data DPDUs cannot circulate forever via an unintended circular route. 6963

62734/2CDV © IEC(E) – 289 –

9.1.6.2 Graph routing 6964

A graph is a set of directed links that is used for routing messages within a D-subnet. Each 6965
graph designated by the system manager for routing within a D-subnet is identified by a graph 6966
ID. 6967

The links associated with each graph are configured by the system manager. A D-subnet may 6968
have multiple graphs, some of which may overlap. Each DLE may have multiple graphs going 6969
through it, even to the same neighbors. 6970

Figure 54 illustrates an example of graph routing. 6971

 6972

Figure 54 – Graph routing example 6973

In Figure 54, ND20 communicates with ND25 using graph 1. To send a Data DPDU’s payload 6974
on that graph, ND20 may forward it to ND21 or ND22. From those DLEs, the Data DPDU’s 6975
payload may take several alternate routes, but either way, following graph 1, the Data 6976
DPDU’s payload will arrive at ND25. Similarly, to communicate with ND24, ND20 may send 6977
Data DPDUs on graph 2 through ND21 or ND22, either of which in turn will forward the Data 6978
DPDU’s payload to ND24. 6979

Figure 54 shows all graphs originating from ND20, but the same graphs may be used by any 6980
node. For example, the system manager may configure ND21 to use graph 1 for its 6981
communication with ND25. 6982

NOTE 1 The DL routing information in the Data DPDU’s payload often is updated as that payload moves through 6983
the D-subnet. 6984

Table 99 and Table 100 reflect the contents of graph tables on ND20 and ND21. These graph 6985
tables roughly correspond to data structures within each DLE for the topology shown in Figure 6986
31. For example, a Data DPDU following graph 2 will look up graph ID 2 in each router along 6987
the route to find out which neighbors it can use for the next hop. 6988

 – 290 – 62734/2CDV © IEC(E)

Table 99 – Graph table on ND20 6989

Graph ID Neighbor address

1 21, 22

2 21, 22

 6990
Table 100 – Graph table on ND21 6991

Graph ID Neighbor address

1 23, 24

2 24

 6992
Each graph within a D-subnet is identified by a graph ID. A Data DPDU usually originates 6993
within the D-subnet, at a field device or at a gateway or system manager or backbone router. 6994
To send a message on a graph, the originating DLE includes a graph ID in the Data DPDUs 6995
DROUT subheader. The Data DPDU travels along the paths corresponding to the graph ID 6996
until it reaches its destination or is discarded. 6997

In order to route Data DPDUs over a graph, each DLE along the path needs to maintain a 6998
graph table containing entries that include the graph ID and next-neighbor(s)’ D-address(es). 6999
A DLE routing a Data DPDU performs a lookup based on graph ID and sends the Data DPDU 7000
to any one of the applicable neighbors. Once a neighbor acknowledges receipt of the Data 7001
DPDU, the DLE releases it from a Data DPDU forwarding buffer. 7002

Diverse graph paths (branches) may be established by configuring more than one neighbor 7003
associated with the same graph index. A branch may be configured with a preferred neighbor, 7004
indicating that the DLE should attempt to transmit the Data DPDU to the preferred neighbor 7005
first, even if there is an earlier-occurring opportunity to transmit to other neighbors. If no 7006
preferred neighbor is designated, the DLE should treat all branches equally, transmitting the 7007
Data DPDU at the first opportunity that presents itself. If the first transmission does not result 7008
in an ACK DPDU, the DLE normally is configured to use alternative branches for retries. 7009

Figure 55 provides examples of routing graphs that are inbound (toward the backbone) and 7010
outbound (away from the backbone). The basic organization of inbound and outbound routing 7011
graphs may be very similar to each other, but pointing in opposite directions, as shown in 7012
Figure 55. The system manager configures routing relationships among DLEs in a D-subnet. 7013

The top half of Figure 55 shows an inbound graph in an example of DL routing configuration. 7014
An inbound graph enables a set of DLEs to send Data DPDUs toward the backbone or system 7015
manager. A single graph may be used for inbound routing in a small D-subnet, as shown in 7016
the top half of Figure 55. It is possible and often desirable for the system manager to define 7017
multiple inbound graphs, particularly as the number of DLEs in the D-subnet increases. As 7018
shown in the top half of Figure 55, if DLEs have multiple neighboring routers, then diversity is 7019
often inherent in the inbound graph. 7020

62734/2CDV © IEC(E) – 291 –

 7021

Figure 55 – Inbound and outbound graphs 7022

The illustrative inbound graph in Figure 55 can be problematic for fragmented NPDUs, 7023
because fragments arriving at different backbone routers may pose a reassembly challenge. 7024
The following considerations apply: 7025

a) Each contract specifies a maximum NPDU size. Most contracts covering communication 7026
toward the backbone, including those used for generally higher priority traffic such as 7027
publish/subscribe communication of process variables and source/sink communication of 7028
alerts (i.e., process alarms and device events), specify maximum APDU sizes that will not 7029

 – 292 – 62734/2CDV © IEC(E)

trigger NPDU fragmentation, which thus does not occur. Most communications fit in a 7030
single Data DPDU, which is determinable for a particular flow in terms of the maximum 7031
supported payload size that is agreed when the contract is established. 7032

b) Those contracts that permit NPDUs of a size that can require fragmentation toward the 7033
backbone are typically low-priority background transfers of large blocks of information, 7034
such as captured waveform upload. A problem occurs when the fragments of a fragmented 7035
NPDU are delivered to different BBRs. 7036
That problem (of uncoordinated fragment delivery) can be avoided in three different ways: 7037
1) The contract may specify or be tied to a route that terminates in a single BBR, thus 7038

avoiding delivery of different fragments of a single NPDU to differing devices. 7039
2) The contract may specify or be tied to a route that terminates in multiple BBRs from 7040

the same vendor, that are known by the system manager to have an inter-BBR 7041
fragment reassembly protocol to manage such reassembly via their shared backbone 7042
network. 7043

NOTE 2 It is common practice for plant owner-operators to purchase identical-function infrastructure 7044
equipment from only one vendor, so that problems with that class of equipment will be referable directly to 7045
the responsible vendor, thus reducing the need of plant personnel to determine which specific vendor’s 7046
equipment is at fault. Such elimination of inter-vendor “finger pointing” typically leads to faster problem 7047
resolution and a quicker return to normal plant productivity. It also makes more usable any vendor-7048
proprietary features or diagnostics that the infrastructure equipment may provide. 7049

For DLE contracts supporting payload sizes that do not fit in a single DSDU, the selected 7050
graphs that are directed toward the backbone often use reduced path diversity to ensure 7051
that a set of fragmented NPDUs are all delivered to the same BBR (alternative a) or to a 7052
subset of BBRs that are known to jointly provide a shared fragment-reassembly capability 7053
(alternative b). 7054

The bottom half of Figure 55 shows a set of outbound graphs in an example of routing 7055
configuration. An outbound graph is usually used to send Data DPDUs from backbone DLEs 7056
to field DLEs. As shown in the bottom half of Figure 55, multiple graphs may be used for 7057
outbound routing, with each outbound graph corresponding to a group of DLEs within radio 7058
range of the graph. 7059

In this example, the inbound DL graph routing ends at the backbone, at which point the NL 7060
takes over routing responsibilities. The relationship between a WISN D-subnet and a 7061
backbone N-subnet is described in 5.5. 7062

Although all of the examples above show inbound and outbound graphs, these are not 7063
actually different types of graphs; they are just graphs that happen to point in opposite 7064
directions. Peer-to-peer routing is also supported by this standard. The system manager may 7065
arrange a graph to follow any route where connectivity exists. 7066

A DSDU is forwarded along a graph until the graph is terminated. If the Data DPDU’s 7067
destination address matches the DLE’s address, then the DSDU has reached its destination 7068
and the graph is terminated. Alternatively, if the graph number in the Data DPDU does not 7069
have a corresponding entry in the lookup table dlmo.Graph (see 9.4.3.6), the graph has 7070
reached its termination point. 7071

9.1.6.3 Graph extensions 7072

The bottom half of Figure 55 shows that outbound graphs do not necessarily extend to all 7073
DLEs on the periphery of a D-subnet. Nonetheless, such DLEs are covered by the outbound 7074
graphs implicitly, through a graph extension mechanism. A DLE automatically extends graphs 7075
by checking the Data DPDU’s destination address for a neighbor table entry, thus indicating 7076
that the Data DPDU’s destination is one hop away. If it is, the router treats the neighbor as if 7077
it were listed in the graph, thereby extending the graph for that Data DPDU. More formally, 7078
when the Data DPDU’s destination address is in a DLE’s neighbor table, and the Data DPDU 7079
is being routed with a graph, the DLE shall treat that graph as including that neighbor for the 7080
purpose of routing that Data DPDU even if the graph does not explicitly refer to the neighbor. 7081
All routers shall support this basic form of implicit graph extensions. 7082

62734/2CDV © IEC(E) – 293 –

An explicit graph extension field in the neighbor table provides an additional degree of 7083
control. If a graph is specifically designated in a neighbor table, as described in 9.4.3.4.2, the 7084
neighbor is not only treated as being covered by the graph; the neighbor is also given 7085
preferential treatment. If the neighbor is designated as the graph’s last hop, a Data DPDU 7086
following that graph shall be forwarded exclusively to that neighbor. If the neighbor is 7087
designated as a preferred branch, the DLE should attempt to forward an applicable Data 7088
DPDU to that neighbor before other neighbors. 7089

Support for the explicit graph extension field in the neighbor table is a device construction 7090
option; its support status is reported to the system manager through dlmo.DeviceCapability 7091
when the DLE joins the D-subnet. All routers support the basic implicit graph extension 7092
capability, but it is expected that only some routers will fully support the explicit-last-hop and 7093
preferred-branch indicators in the neighbor table. 7094

9.1.6.4 Source routing 7095

Source routing is a general method of routing supported by this standard. In source routing, 7096
the originating DLE may be configured to designate a hop-by-hop route for a Data DPDU to 7097
follow through a D-subnet. A simple use of source routing is a Data DPDU directed one hop 7098
away to a specific neighbor, such as for joining. When a source-routed Data DPDU arrives at 7099
an intermediary DLE, the intermediary DLE examines the path information in the Data DPDU 7100
to determine the neighbor to which it should forward the Data DPDU. 7101

A source route is a list of entries specifying the route that a Data DPDU shall follow through 7102
the D-subnet. The first entry in the list specifies the next hop, and the list is shortened as the 7103
Data DPDU moves through the D-subnet. Source routing entries can specify graphs or 7104
D-addresses, thus allowing graphs to be chained. 12-bit graph numbers within a source route 7105
are encoded in binary as 0x1010 gggg gggg gggg. 7106

The Data DPDU header compresses a source route to a single octet in the common case 7107
where a single graph route is specified and the graph number is ≤ 255 (encoded in binary as 7108
0x1010 0000 gggg gggg). This is commonly referred to as graph routing, but formally it is a 7109
source route containing a single graph. 7110

In the provisioning or joining process, an EUI64Address is used to address a DLE that has not 7111
yet received an IPv6Address. This case is encoded as a route with a graph of zero and a 7112
DADDR D-address of zero (see 9.3.3.6 and 9.3.3.7), indicating that the EUI64Address can be 7113
found in the Data DPDU’s MAC header (MHR). 7114

When a Data DPDU is received by the DLE through its wireless link, the following processing 7115
steps shall be followed, in order to determine whether the DL route has terminated and to 7116
update the source route in the Data DPDU header: 7117

• The DADDR subheaders destination D-address is checked to see if it matches the 7118
D-address of the receiving DLE. If there is a match, the DSDU has reached its final 7119
destination and the DSDU shall be passed to the collocated NLE as described in 9.2.4. 7120
(The DADDR destination D-address is encoded as zero, in the case where the destination 7121
D-address is duplicated in the MHR. See 9.3.3.7. In that case, the match is indirect, based 7122
on the MHR destination D-address.) 7123

• The first entry in the source route is deleted if appropriate, thus shortening the source 7124
route by shifting the second and subsequent entries (if any) into the prior positions (shift 7125
left). The first entry shall be deleted unless it is a graph number of a graph that has not 7126
reached its termination point. 7127

• If the route has no remaining entries, the route has terminated and the DSDU shall be 7128
passed to the collocated NLE as described in 9.2.4. 7129

If the DSDU is not passed to the collocated NLE, the Data DPDU shall be discarded if the 7130
forwarding limit (in the DROUT subheader) is zero. If the forwarding limit is positive, it is 7131
decremented and the Data DPDU placed on the DLE’s forwarding message queue. 7132

 – 294 – 62734/2CDV © IEC(E)

When a DSDU is intended to be routed through the backbone, the DL route should terminate 7133
at the backbone router. If a route does not terminate in a collocated backbone router, it is 7134
forwarded by the DLE and never processed by the collocated backbone router’s NLE, thus 7135
allowing peer-to-peer messaging to occur within the D-subnet through the auspices of a 7136
backbone router. 7137

These routing methods are examples of different ways to configure the DL routing capability 7138
that is resident in all field routers compliant with this standard. The system manager shall 7139
configure all graphs within a D-subnet. The ability to configure routing in any of several ways 7140
such as graph routing and/or source routing enables device interconnectability. 7141

9.1.6.5 Route selection 7142

The route through the D-subnet for a Data DPDU is selected when the message enters the DL 7143
(see 9.2.2). The route is stored in the DROUT subheader for use by other DLEs that will route 7144
the Data DPDU. The initial selection of a route is based on decision rules in the initiating DLE. 7145
The following list shows the route selection criteria in order, whereby the route shall be 7146
selected based on the first condition that applies: 7147

• The Data DPDU has a destination EUI64Address. A destination EUI64Address is used 7148
only during the join process, when a router is sending a response to an immediate 7149
neighbor that has not yet received a DL16Address from the system manager. In that case, 7150
the EUI64Address from the IEEE MAC is used, with a Graph ID of 0 in the D-route. 7151

• The ContractID is associated with a particular D-route. This may be used when a 7152
particular graph or source D-route is intended to provide a defined level of service. 7153

• The destination DL16Address within the D-subnet is associated with a particular route. 7154

• The destination DL16Address within the D-subnet is an immediate neighbor, such as 7155
during the join process. 7156

• Otherwise, use the default route. Normally, the default will direct the message to the 7157
nearest backbone router, or to the system manager if there is no backbone router. 7158

A single route may be designated as the default by the system manager, by designating a 7159
particular D-route as a default. The default D-route is usually configured to route messages to 7160
the system manager, or to a backbone router if there is no system manager on the D-subnet. 7161
A default D-route may sensibly be configured in conjunction with the establishment of a DLE’s 7162
contract with the system manager. Additional routes may be configured as needed, such as to 7163
provide enhanced quality of service or to route messages to a peer DLE on the D-subnet. 7164

 Slotted-channel-hopping, slow-channel-hopping, and timeslots 9.1.77165

9.1.7.1 General 7166

Three general operational alternatives are supported by the DL: 7167

– slotted-channel-hopping; 7168
– slow-channel-hopping; and 7169
– hybrid combinations of slotted-channel-hopping and slow-channel-hopping. 7170

These three operational alternatives are different ways for a system manager to configure a 7171
slotted-channel-hopping capability that is supported by every DLE in a D-subnet. Channel-7172
hopping schedules are configured by the system manager through advertisement Data 7173
DPDUs and the dlmo.Superframe attribute. 7174

Slotted-channel-hopping and slow-channel-hopping provide different ways to configure a 7175
series of timeslots. The system manager determines the mode of operation and assigns the 7176
use of superframes, which are cyclic collections of timeslots. (See 9.1.8 for further discussion 7177
of superframes.) This provides flexibility and interoperability of the relevant communication 7178
functions (i.e., interconnectability) without requiring excessive complexity within the devices. 7179

62734/2CDV © IEC(E) – 295 –

From the perspective of a field device, the DLE can be visualized as a player piano with 7180
several keys. Each key corresponds to a D-transaction, which specifies a specific channel 7181
and timeslot. One key is used to send a pending Data DPDU from the outbound queue, 7182
another key is used to listen for an incoming Data DPDU, and so forth. The system manager 7183
provides a piano roll for the DLE to play over and over again. The playing style may be slow-7184
channel-hopping, slotted-channel-hopping, or a hybrid of the two. The DLE does not 7185
differentiate; it simply mechanically plays each key at a specified time on a specified channel, 7186
based on the instructions on the piano roll. 7187

The note details within a timeslot are configurable, using timeslot templates provided by the 7188
system manager. There is a constrained series of operations that can be performed within a 7189
timeslot – transmit, listen, wait, timeout, and acknowledge – but those simple building blocks 7190
may be assembled with different timings. These definitions are flexible, under the control of 7191
the system manager. 7192

The duration of timeslots in a D-subnet is set to a specific value by the system manager when 7193
a DLE joins the D-subnet. A timeslot duration of 10 ms to 12 ms is expected to be typical. 7194
Timeslot duration is configurable to enable: 7195

• optimized coexistence with other systems, such as other D-subnets conforming to this 7196
standard, to IEC 62591, and to IEC 62601; 7197

• longer timeslots to accommodate extended message wait times; 7198

• shorter timeslots to take full advantage of optimized implementations; 7199

• longer timeslots to accommodate serial ACK/NAK DPDUs from multiple devices (e.g., 7200
duocast, N-cast); 7201

• longer timeslots to accommodate long-duration CSMA/CA at the start of a timeslot (e.g., 7202
for prioritized access to shared timeslots); 7203

• longer timeslots to accommodate slow-hopping periods of extended duration; 7204

• imeslots to be synchronized with other non-standard-compliant D-subnets to facilitate 7205
inter-routing. 7206

Figure 56 illustrates a slotted-channel-hopping operation. 7207

time

...

Slotted hopping

C
ha

nn
el

s

 7208

Figure 56 – Slotted-channel-hopping 7209

In slotted-channel-hopping, channel-hopping timeslots of equal duration are used. Each 7210
timeslot uses a different radio channel in a channel-hopping pattern. In slotted-channel-7211
hopping, each timeslot is intended to accommodate a single D-transaction consisting of one 7212
Data DPDU and its ACK/NAK DPDU acknowledgment(s). 7213

Figure 57 illustrates a slow-channel-hopping operation. 7214

 – 296 – 62734/2CDV © IEC(E)

time

...

Slow hopping

C
ha

nn
el

s

 7215

Figure 57 – Slow-channel-hopping 7216

In slow-channel-hopping, a collection of contiguous timeslots is grouped on a single real radio 7217
channel. Each collection of timeslots is treated as a single slow-channel-hopping period; 7218
however, as shown in Figure 57, timeslots still underlie slow-channel-hopping. Slow-channel-7219
hopping periods are configurable, usually on a scale of about 100 ms to 400 ms per hop. 7220
Longer slow-channel-hopping periods, potentially multiple seconds in duration, may be used 7221
to support DLEs with imprecise timekeeping and/or DLEs that have temporarily lost contact 7222
with the D-subnet. To enable DLE interworkability, all DLEs compliant with this standard shall 7223
support configuration of timeslot duration, as designated by the system manager. 7224

In some regulatory domains, slow-channel-hopping of an IEEE 802.15.4:2011 2,4 GHz radio 7225
is not permitted to exceed 400 ms per hop. However, in other regulatory domains there is no 7226
such constraint. The slow-channel-hopping period is set by the system manager, not by this 7227
standard, but its use is constrained in each DLE by dlmo.CountryCode (9.1.15.6). Thus this 7228
regulatory constraint is explicitly enforced where it exists, similar to other regulatory 7229
constraints. 7230

The structure, duration, and assignment of timeslots in slow-channel-hopping periods are 7231
configured by the system manager, which determines the mode of operation and assigns the 7232
use of timeslots. This provides flexibility without requiring excessive complexity within the 7233
DLEs, facilitating DLE interworkability. 7234

Figure 58 illustrates a hybrid mode of operation. 7235

C
ha

nn
el

s

time

...

Slotted hopping Slow hopping

 7236

Figure 58 – Hybrid operation 7237

Hybrid operation uses slotted-channel-hopping and slow-channel-hopping periods in a 7238
configured combination. For example, in Figure 58, a number of timeslots using slotted-7239
channel-hopping is followed by a period of slow-channel-hopping. 7240

9.1.7.2 Channel-hopping 7241

9.1.7.2.1 General 7242

DL communications are intended to be distributed across multiple radio channels. The system 7243
uses defined channel-hopping patterns which provide a specific sequence of channels for 7244
communication among collections of devices. Channel-hopping begins at a designated offset 7245
in the channel-hopping pattern, continuing through the pattern sequentially until the end, then 7246
repeating the pattern indefinitely. 7247

62734/2CDV © IEC(E) – 297 –

IEEE 802.15.4:2011 DSSS channels 11..26 are mapped to nominal channel numbers 0..15 in 7248
this standard. This overview refers to them by their IEEE 802.15.4 nomenclature, as channels 7249
11..26. 7250

This standard is based on devices that use one channel at a time. Multiple radios that are co-7251
packaged are able to operate multiple instances of the PhLE and DLE simultaneously on 7252
different channels. The details of such multi-channel operation are not specified by this 7253
standard, but such operation is intentionally supported in the D-nonce. 7254

9.1.7.2.2 Radio spectrum considerations 7255

For radio communication, this standard uses IEEE 802.15.4:2011 DSSS channels in the 7256
2,4 GHz band. The IEEE 802.15.4:2011 physical layer (2,4 GHz, DSSS) includes sixteen 7257
channels, numbered 11 through 26. 7258

Figure 59 illustrates the sixteen IEEE 802.15.4:2011 DSSS channels along with three 7259
overlapping, commonly used IEEE 802.11 channels. 7260

802.11

802.15.4
(channel)

Channel 1 Channel 6 Channel 11

~22 MHz

25 MHz 5 MHz

2475 MHz2450 MHz2425 MHz2400 MHz

11 20 25242322211918171615141312 26

 7261

NOTE Channel numbers shown are those of IEEE 802.11 and IEEE 802.15.4:2011, rather than those of this 7262
standard. 7263

Figure 59 – Radio spectrum usage 7264

In Figure 59, the narrow channels 11..26 are IEEE 802.15.4:2011 2,4 GHz DSSS channels; 7265
these channels are substantially non-overlapping. Also shown are the wider IEEE 802.11 7266
channels 1, 6, and 11; these three channels are common choices for IEEE 802.11 7267
communication and each overlaps a number of IEEE 802.15.4:2011 2,4 GHz DSSS channels. 7268

As Figure 59 shows, IEEE 802.15.4:2011 2,4 GHz DSSS channels 15, 20, and 25 do not 7269
substantially overlap any of the three common IEEE 802.11 channels. Therefore, 7270
IEEE 802.15.4:2011 2,4 GHz DSS channels 15, 20, and 25 may reasonably be designated as 7271
slow-channel-hopping channels. These slow-channel-hopping channels may be configured for 7272
purposes such as neighbor discovery. For example, information about the D-subnet may be 7273
advertised by field routers on pre-designated slow-channel-hopping channels, so that any 7274
DLE seeking to join the D-subnet can limit its active and passive scans to these channels 7275
when discovering nearby field routers. 7276

This illustration demonstrates how spectrum management techniques supported by this 7277
standard may be used to account for a commonly encountered scenario. Alternative 7278
configurations of WiFi, other users of the radio spectrum, and local regulatory restrictions may 7279
justify alternative configurations in actual installations. 7280

 – 298 – 62734/2CDV © IEC(E)

Most DL communications are intended to be distributed across all available 7281
IEEE 802.15.4:2011 DSSS channels (11..26). This standard defines a number of predefined 7282
channel-hopping patterns, each providing a specific sequence of channels to use. Other 7283
channel-hopping patterns are configurable by the system manager. The channel-hopping 7284
patterns that are predefined in this standard are selected to have certain properties intended 7285
to minimize the occurrence of unmanaged and repeated collisions with co-located wireless 7286
devices, particularly IEEE 802.11 devices. 7287

9.1.7.2.3 Channel 26 and other blocked channels 7288

Support for IEEE 802.15.4:2011 2,4 GHz DSSS channel 26 is optional in this standard, 7289
because some implementations may encounter regulatory restrictions at the upper band edge. 7290
In addition, a DLE may be blocked from using other channels due to regulatory restrictions, 7291
but not for other reasons. After restriction or forced-enabling for the regulatory domain 7292
specified by dlmo.CountryCode (9.1.15.6), a list of channels that the DLE supports is 7293
reported to the system manager during the process of the DLE joining the D-subnet. This is 7294
done through the attribute dlmo.DeviceCapability.ChannelMap. A DLE may be configured with 7295
links that use such unsupported channels; in that case the DLE shall treat those links as 7296
unselectable. 7297

Since support for IEEE 802.15.4:2011 2,4 GHz DSSS channel 26 is optional in the standard, a 7298
system manager may sensibly limit D-subnet operation to IEEE 802.15.4:2011 2,4 GHz DSSS 7299
channels 11..25. The channel-hopping patterns predefined by this standard include 7300
IEEE 802.15.4:2011 2,4 GHz DSSS channel 26, but these predefined channel-hopping 7301
sequences are designed so that they can be shortened by excluding IEEE 802.15.4:2011 7302
2,4 GHz DSSS channel 26 from the channel map in each superframe. 7303

9.1.7.2.4 Spectrum management and selective channel utilization 7304

Multiple methods are available for limiting use of busy or undesirable radio channels, 7305
including clear channel assessment (CCA), spectrum management, and selective channel 7306
utilization. 7307

Timeslots are normally configured to check for a clear channel before transmitting, using the 7308
different modes of the CCA mechanism defined in IEEE 802.15.4:2011. CCA causes a DLE 7309
that is about to initiate transmission to relinquish a timeslot if use of the channel by another 7310
DLE is detected prior to transmission. See 4.6.11, 9.1.9.4.3 and 9.1.9.4.8. 7311

Spectrum management is a form of selective channel utilization. Spectrum management limits 7312
the DL configuration to a subset of channels. Limiting slow-channel-hopping to 7313
IEEE 802.15.4:2011 2,4 GHz DSSS channels 15, 20 and 25 is an example of spectrum 7314
management. Another example is when a system manager blocks (blacklists) certain radio 7315
channels that are not working well or are prohibited by regulation or local policy, or whitelists 7316
channels that are mandated by regulation or local policy. Spectrum management is handled 7317
by the system manager, through the way that it configures a DLE and the associated PhLE. 7318
See 9.1.8.4.7. 7319

Additionally, a DLE may autonomously treat transmit links on problematic channels as idle, 7320
thus reducing unnecessary interference and wasted energy on channels with a history of poor 7321
connectivity. A DLE skipping links in this manner should periodically test the links to verify 7322
that they remain problematic. Such selective channel utilization can be disabled by the system 7323
manager on a link-by-link basis, through the attribute dlmo.Link[].Type.SelectiveAllowed. See 7324
9.4.3.7.2, Table 182. 7325

9.1.7.2.5 Repeating channel-hopping-patterns 7326

This standard supports five predefined IEEE 802.15.4:2011 2,4 GHz DSSS repeating channel-7327
hopping patterns, which shall be supported in every DLE: 7328

• pattern1: 19, 12, 20, 24, 16, 23, 18, 25, 14, 21, 11, 15, 22, 17, 13 (, 26); 7329

62734/2CDV © IEC(E) – 299 –

• pattern2: pattern1 in reverse order; 7330

• pattern3: 15, 20, 25 (intended for slow-channel-hopping channels); 7331

• pattern4: 25, 20, 15 (pattern3 in reverse order); 7332

• pattern5: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. 22, 23, 24, 25 (, 26). 7333

NOTE 1 IEEE 802.15.4:2011 2,4 GHz DSSS channel 26 is shown in parentheses, as it is supported by this 7334
standard but is not necessarily used due to commonly encountered regulatory constraints at the band edge. Figure 7335
60, through Figure 66 and Figure 70 through Figure 74 mostly include channel 26, even though its use is commonly 7336
masked out by the superframe that uses the hop sequence. 7337

NOTE 2 In this standard channels are numbered 0..15, as described in 9.4.3.2. However, for tutorial purposes 7338
and to ease comparison with IEEE 802.11 (WiFi) and other uses of the same frequency band, channel-hopping 7339
patterns are expressed as their IEEE 802.15.4:2011 DSSS channel numbers. 7340

NOTE 3 Pattern5, which is based on IEC 62591, is intended to facilitate coexistence with that IEC standard. 7341

The system manager can configure a DLE to use any of these channel-hopping patterns for 7342
slotted-channel-hopping, slow-channel-hopping, or hybrid channel-hopping. 7343

Any channel or set of channels in a channel-hopping pattern may be disabled (masked out) by 7344
configuration of the superframe that uses the channel-hopping pattern, with the effect of 7345
shortening the channel-hopping pattern for spectrum management. 7346

The predefined channel-hopping patterns of this standard are designed to have certain 7347
properties, whether channel 26 is included in the pattern or not. Specifically, successive 7348
channels in most of the predefined channel-hopping-patterns are separated by at least 7349
15 MHz, the same bandwidth as three IEEE 802.15.4:2011, 2.4 GHz DSSS channels. This 7350
property mitigates the effects of interference and multipath fading in industrial environments. 7351

As shown in the example in Figure 60, predefined channel-hopping-pattern1 is arranged so 7352
that consecutive hops do not overlap the same IEEE 802.11 channel. 7353

IE
EE

 8
02

.1
5.

4
ch

an
ne

ls

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

250 ms

IEEE 802.11
 IEEE 802.11

IEEE 802.11
channel 1

 channel 6
 channel 11

Time 7354

Figure 60 – Predefined channel-hopping-pattern1 7355

At least three channels separate each consecutive hop in pattern1, resulting in frequency 7356
shifts of at least 20 MHz. When retries occur in consecutive hops, they will not encounter or 7357
cause interference in the same IEEE 802.11 channel. 7358

For different groups of DLEs, it is desirable for DLEs to hop on non-interfering patterns. 7359

 – 300 – 62734/2CDV © IEC(E)

Each channel-hopping pattern is combined with a hopping pattern offset. If the hopping 7360
pattern offset is zero, then the specified baseline channel-hopping pattern is used. If the 7361
hopping-pattern offset is 5, then an offset of 5 is used when indexing the baseline channel-7362
hopping pattern. Figure 61 shows how two groups of DLEs with different hopping-pattern 7363
offsets into channel-hopping pattern1 may be used together without competing for the same 7364
radio channel at the same time. 7365

C
ha

nn
el

s

Time

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

5

5

5

5

5

5

5

5

0

0

0

0

0

0

0

0

0

5

5

5 0

0

0

0

0

0

0

0

5

5
0

5
0

5

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

5

5

5

5

5

5

5

5

250 ms
 7366

NOTE Channel numbers shown are those of IEEE 802.15.4:2011, rather than those of this standard. 7367

Figure 61 – Two groups of DLEs with different channel-hopping-pattern-offsets 7368

A superframe’s channel-hopping-offset is determined indirectly from the 7369
dlmo.Superframe[].ChBirth attribute, called simply ChBirth, which gives the starting 7370
reference of the channel-hopping pattern at TAI time zero. This provides a baseline channel-7371
hopping sequence. Offsets from a baseline channel-hopping sequence, given in the 7372
dlmo.Link[].ChOffset attribute, called simply ChOffset, are as described here and shown in 7373
Figure 61. While the same result is achievable by using ChBirth or ChOffset, it should be 7374
noted that the two attributes are essentially reversed. Details of channel-hopping-pattern-7375
offset calculations are found in 9.4.3.5.3. 7376

In Figure 61, boxes numbered 0 represent a group of DLEs using predefined channel-7377
hopping-pattern1; its repeating channel-hopping-pattern (using the nomenclature of 7378
IEEE 802.15.4:2011) is: 7379

19, 12, 20, 24, 16, 23, 18, 25, 14, 21, 11, 15, 22, 17, 13, 26 7380

Boxes numbered 5 in Figure 61 represent another group of DLEs using channel-hopping-7381
pattern1 with a hopping-pattern offset of 5. A channel-hopping-pattern-offset of 5 has the 7382
effect of essentially rotating the channel-hopping sequence to the left by 5, resulting in a 7383
repeating channel-hopping sequence (using the nomenclature of IEEE 802.15.4:2011) of: 7384

23, 18, 25, 14, 21, 11, 15, 22, 17, 13, 26, 19, 12, 20, 24, 16 7385

Figure 62 extends this principle, illustrating how different channel-hopping-pattern-offsets may 7386
be used for a larger number of DLEs. 7387

62734/2CDV © IEC(E) – 301 –
C

ha
nn

el
s

Time

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7
8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

13

13

13

13

13

13

13

13

14

14

14

14

14

14

15

15

15

15

15

0

0

0

0

0

0

0

0

0

1

1

1

2

2

3
10

10

11

11

12

12

12

13

13

13

13

14

14

14

14

14

14

15

15

15

15

15

15

15
0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1
2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

11121314
 23

15012
9101112

12131415
 678

141501
78910
123
3 6

10111213
1314150
6789

 67
891011
0123

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9
10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

13

13

13

13

13

13

13

14

14

14

14

14

14

15

15

15

15

15

0

0

0

0

0

0

0

0

0

1

1

1

2

2

3

12

13

13

14

14

14

15

15

15

15

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

2
3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

250 ms
 7388

NOTE Channel numbers shown are those of IEEE 802.15.4:2011, rather than those of this standard. 7389

Figure 62 – Interleaved channel-hopping-pattern1 7390
with sixteen different channel-hopping-pattern-offsets 7391

In Figure 62, sixteen channels are available. Therefore, up to sixteen DLEs may use channel-7392
hopping-pattern1, each with a different channel-hopping-pattern-offset of 0..15. 7393

As illustrated in Figure 62, a given channel-hopping-pattern may be used concurrently by 7394
assigning different channel-hopping-pattern-offsets to various DLEs, superframes (see 9.1.8), 7395
or groups of DLEs. As a simple example, each of two DLE clusters may use the same 7396
channel-hopping-pattern with different channel-hopping-pattern-offsets, so that the two 7397
clusters can share the same radio spectrum without mutual interference. The clusters may be 7398
in the same D-subnet or in different D-subnets; as long as they accurately share a consistent 7399
timeslot duration and synchronized sense of time, their channel-hopping patterns can be 7400
interleaved as shown in Figure 62. 7401

The five predefined channel-hopping-patterns shall exist in every DLE compliant with this 7402
standard. This enables routers to advertise concisely the channel-hopping-pattern that is 7403
being used and the current channel-hopping-pattern-offset, when it is one of these patterns. 7404
This standard also supports customized channel-hopping-patterns in every DLE, in addition to 7405
the five predefined patterns, so that the system manager can configure additional channel-7406
hopping-patterns for use by already-joined DLEs. 7407

Each predefined channel-hopping-pattern is the same size as the number of channels being 7408
used. Thus, for example, channel-hopping-pattern1 uses 16 channels and is 16 hops long. 7409
This property allows the channel-hopping-pattern to be interleaved at different offsets as 7410
shown in Figure 62. 7411

NOTE 4 Since some DLEs might not support channel 26, which is optional, systems often limit operation to 15 7412
channels (11..25) with essentially the same result. 7413

9.1.7.2.6 Timeslot and channel use 7414

A system shall use slotted-channel-hopping, slow-channel-hopping, or a hybrid combination of 7415
the two. 7416

Figure 63 illustrates the use of slotted-channel-hopping. Each timeslot is used with the next 7417
successive channel in the channel-hopping pattern. 7418

 – 302 – 62734/2CDV © IEC(E)

 7419

NOTE Channel numbers shown are those of IEEE 802.11 and IEEE 802.15.4:2011, 7420
rather than those of this standard. 7421

Figure 63 – Example timeslot allocation for slotted-channel-hopping 7422

The bottom portion of Figure 63 illustrates that the channel-hopping-pattern can be used 7423
repeatedly as time progresses. Superframe size and timeslot usage by the DLE is not 7424
necessarily tied to lower cyclical DL constructs such as channel-hopping-patterns or 250 ms 7425
timeslot alignment intervals. (See 9.1.9.1.3 for a discussion of alignment intervals.) 7426

Figure 64 illustrates the use of slow-channel-hopping. Each channel is used over multiple 7427
timeslots. 7428

62734/2CDV © IEC(E) – 303 –
C

ha
nn

el
s

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Slow hopping period,
250 ms

0 ¼ s ½ s ¾ s 1 s 1,5 s 2 s 2,5 s 3 s 3,5 s 4 s
Elapsed time

Elapsed time
0 ¼ s ½ s ¾ s 1 s 1,5 s 2 s 2,5 s 3 s 3,5 s 4 s

 7429

NOTE Channel numbers shown are those of IEEE 802.15.4:2011, rather than those of this standard. 7430

Figure 64 – Example timeslot allocation for slow-channel-hopping 7431

Slow-channel-hopping periods can span a 250 ms timeslot alignment interval. (See 9.1.9.1.3 7432
for a discussion of timeslot alignment intervals.) In such cases, slow-channel-hopping-periods 7433
are not interrupted by idle periods, that is, if a slow-channel-hopping-period traverses the 7434
edge of a timeslot alignment interval, the radio does not turn off during the otherwise-required 7435
idle period. 7436

Figure 65 illustrates a hybrid system that combines slotted-channel-hopping and slow-7437
channel-hopping. In this example, within each 250 ms alignment interval, a number of 7438
timeslots, each assigned to a different channel, are followed by a slow-channel-hopping-7439
period on a single channel. 7440

 – 304 – 62734/2CDV © IEC(E)

C
ha

nn
el

s
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
0 ¼ s ½ s ¾ s 1 s 1,5 s 2 s 2,5 s 3 s 3,5 s 4 s

Elapsed time

Unused slot

Used slot

Slow hopping period

802.11
802.11

802.11
C

hannel 1
C

hannel 6
C

hannel 11
Sl

ow
 h

op
pi

ng
 c

ha
nn

el
s

Elapsed time
0 ¼ s ½ s ¾ s 1 s 1,5 s 2 s 2,5 s 3 s 3,5 s 4 s

 7441

NOTE Channel numbers shown are those of IEEE 802.11 and IEEE 802.15.4:2011, 7442
rather than those of this standard. 7443

Figure 65 – Hybrid mode with slotted-channel-hopping and slow-channel-hopping 7444

The order in which slotted-channel-hopping and slow-channel-hopping can be combined is 7445
flexible; slow-channel-hopping periods need not follow slotted-channel-hopping timeslots. 7446
Rather, the two may be used in any sensible combination. For example, Figure 66 shows an 7447
example configuration, where a DLE switches between slow-channel-hopping and slotted-7448
channel-hopping. 7449

C
ha

nn
el

s

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Duocast slot

Shared slot

Time

Discovery Discovery Discovery Discovery

IEEE 802.11
 IEEE 802.11

 IEEE 802.11
channel 1

 channel 6
 channel 11

 7450

NOTE Channel numbers shown are those of IEEE 802.11 and IEEE 802.15.4:2011, 7451
rather than those of this standard. 7452

Figure 66 – Combining slow-channel-hopping and slotted-channel-hopping 7453

62734/2CDV © IEC(E) – 305 –

In the example of Figure 66, slotted-channel-hopping is used when broadcast/multicast, 7454
duocast/n -cast, or contention-based communication timeslots are allocated explicitly. When a 7455
DLE does not have a timeslot allocation, it listens on channel 20, which facilitates neighbor 7456
discovery. (See 9.1.9.4.7 for a discussion of duocast/N-cast.) 7457

 Superframes 9.1.87458

9.1.8.1 General 7459

A superframe is a repeating sequence of timeslots. The number of timeslots in each 7460
superframe cycle (its size) and the duration of each of those timeslots determines the period 7461
of the superframe cycle. This establishes the structure of the communication schedule for 7462
DLEs that use the superframe. For example, a superframe that cycles every 500 ms will allow 7463
each DLE that uses a single timeslot within the superframe to communicate every 500 ms. 7464

When a superframe is created, it is given a superframe ID. Figure 67 shows how DLEs may 7465
communicate in an example of a three-timeslot superframe. 7466

AàB BàC AàB BàC AàB BàC AàB BàC

 7467

Figure 67 – Example of a three-timeslot superframe and how it repeats 7468

In Figure 67, DLE A may communicate with DLE B during the first timeslot of each superframe 7469
cycle. DLE B may communicate with DLE C during the second timeslot of each cycle. The 7470
third timeslot of each cycle is unassigned (idle). The cycle repeats every three timeslots. 7471

Figure 67 shows timing cycles and communication links within the same structure, which is a 7472
conceptual view. Superframe cycles and communication links are represented as separate but 7473
related configurable objects within the DLE. Figure 68 illustrates this data structure, clarifying 7474
the distinction between superframes and links, for the same three-timeslot superframe as in 7475
Figure 67. 7476

AàB BàC

Superframe
schedule

Individual
links

Timeslot 0 Timeslot 1 Timeslot 2

 7477

Figure 68 – Superframes and links 7478

As shown in Figure 68, superframes refer to a collection of timeslots. Links refer to the use of 7479
superframe timeslots for communication between a specific pair of DLEs. A timeslot is a 7480
period of time. A superframe is a cyclic schedule of timeslots and associated channels. A link 7481
describes a specific activity that repeats within a superframe cyclic schedule. 7482

 – 306 – 62734/2CDV © IEC(E)

The system manager configures matching sets of links among a collection of DLEs that 7483
communicate with each other. For example, a link on DLE A may be configured to transmit 7484
Data DPDUs to DLE B on a particular superframe cycle. On the same cycle, DLE B should 7485
have a link that is configured to listen for an incoming Data DPDU. These two links are 7486
matched in the sense that the system manager has configured these two related operations to 7487
occur concurrently on the same channel. 7488

Several performance parameters are determined by superframe period and how links are 7489
assigned to superframes. In general, shorter-period superframes result in lower Data DPDU 7490
latency and increased digital bandwidth, at the expense of increased energy consumption and 7491
more concentrated allocation of digital bandwidth. Longer-period superframes generally result 7492
in higher latency and lower digital bandwidth, but with reduced energy consumption and less 7493
concentrated allocation of digital bandwidth. These tradeoffs should be carefully considered 7494
when determining superframe period and link density within a superframe. 7495

A given DLE may be configured to use concurrently several superframes of different sizes. A 7496
link with one timeslot within a superframe of length L slots repeats twice as frequently as a 7497
similar one-timeslot link within a superframe of length 2×L slots, thus allowing for twice the 7498
throughput per second. 7499

A DLE may use more than one superframe simultaneously. Also, not all DLEs in a D-subnet 7500
need to participate in each superframe. By configuring a DLE to participate in multiple 7501
concurrent superframes of different lengths, it is possible to establish multiple communication 7502
schedules with incommensurate periods that all operate simultaneously. 7503

Superframes are numbered for identification, but these superframe numbers are limited in 7504
scope to the DLE where the superframe is used. Since the scope of a superframe number is a 7505
single DLE, a neighboring DLE can use the same superframe number for a completely 7506
different purpose. Superframes can be added, removed, activated, and deactivated while the 7507
D-subnet is running. 7508

Figure 69 shows how timeslots in different superframes are aligned, even though the 7509
superframes may cycle at independent rates. 7510

TS0 TS1 TS2 TS3 TS4 TS0 TS1 TS2 TS3 TS4 TS0 TS1

TS2 TS0 TS1 TS2 TS0 TS1 TS2 TS0 TS1 TS2 TS0 TS1

Superframe 0
5 slots

Superframe 1
3 slots

 7511

Figure 69 – Multiple superframes with aligned timeslots 7512

NOTE Timeslot alignment is a result of defining all slots to have identical durations and of realigning timeslots to 7513
TAI time every 250 ms (see 9.1.9.1.3). Superframes with timeslots of different durations are usable simultaneously 7514
within a D-subnet. However, the designers of this standard considered only configurations wherein a single timeslot 7515
duration is used during operation of a given D-subnet (changeable at D-subnet reinitialization). 7516

A DLE with multiple links in a timeslot may encounter link collisions when two or more links 7517
coincide. To address such situations, each link is assigned a priority. A higher-numbered link 7518
priority means the link takes precedence over a link with a lower-numbered priority. In the 7519
event of a link collision, the link with the higher-numbered priority is used. If two links have 7520
the same priority, a superframe priority is used. See 9.1.8.5. 7521

In addition to link priority, each Data DPDU is assigned a priority by its originating DLE. Once 7522
a link is selected based on link priority, the priority of the Data DPDU is used to weight the 7523
relative importance of all queued Data DPDUs that can use the link. 7524

62734/2CDV © IEC(E) – 307 –

9.1.8.2 Exponential backoff 7525

Links may be shared or dedicated. On the receiver side, there is no structural difference 7526
between shared versus dedicated links. On the transaction initiator side, an exponential-7527
backoff bit in the link configuration specification indicates whether the link is shared or 7528
dedicated. If a link is shared, as indicated by the link’s exponential-backoff bit being set (to 1), 7529
the transaction initiator shall use exponential backoff for retries using that link. If a link is 7530
dedicated, as indicated by the link’s exponential-backoff bit being reset (to 0), the transaction 7531
initiator shall not use exponential backoff in that link. 7532

It is possible, and sometimes reasonable, for a system manager to configure multiple DLEs to 7533
transmit at the same time and on the same radio channel, without setting an exponential-7534
backoff bit in the applicable links. The term “dedicated link” is used merely to indicate that 7535
exponential backoff is not applied to such links. 7536

Exponential backoff shall be applied when, and only when, a DLE transmits a unicast Data 7537
DPDU on a shared link and does not receive an error-free ACK/NAK DPDU, which implies a 7538
possible collision. A unicast transmission that is aborted due to CCA sensing shall be treated 7539
as equivalent to an unsuccessful transmission in the context of exponential backoff. 7540
Exponential backoff is intended to resolve such collisions. Exponential backoff shall operate 7541
on a per-neighbor basis, and applied to all Data DPDUs in the message queue addressed to 7542
that neighbor, regardless of Data DPDU priority. 7543

For each neighbor, the DLE maintains a backoff exponent and a backoff counter, called 7544
BackoffExponent[Neighbor] and BackoffCounter[Neighbor] herein. BackoffExponent[] and 7545
BackoffCounter[] are inaccessible implementation internals, and therefore are not included in 7546
the DL object model. 7547

BackoffExponent[Neighbor] and BackoffCounter[Neighbor] are set to zero every time an 7548
ACK/NAK DPDU is received for a unicast Data DPDU that was sent to a particular neighbor in 7549
a shared link. 7550

A BackoffCounter[Neighbor] value of zero allows the DLE to send a Data DPDU at the next 7551
shared-link transmission opportunity. Following an unsuccessful transmission to the neighbor 7552
in a shared link, if the current value of BackoffExponent[Neighbor] is less than 7553
dlmo.MaxBackoffExp, the DLE increments BackoffExponent[Neighbor] and then sets 7554
BackoffCounter[Neighbor] by selecting a value uniformly from the interval 7555
0..2(BackoffExponent[Neighbor])-1. For each transmit opportunity in a shared link, 7556
BackoffCounter[Neighbor] is decremented until it reaches zero. If a transmit opportunity is in a 7557
dedicated link (no exponential backoff indicator), the DLE may use the link regardless of the 7558
value of BackoffCounter[Neighbor]. The attribute dlmo.MaxBackoffExp limits the maximum 7559
value of BackoffExponent[Neighbor]. 7560

Retry behavior can be configured by the system manager. DLMO attributes that relate to 7561
retries include: 7562

• dlmo.MaxBackoffExp. The maximum value for BackoffExponent[Neighbor]. 7563

• dlmo.MaxLifetime and dlmo.Graph.MaxLifetime: maximum lifetime of a Data DPDU. A 7564
Data DPDU that is being forwarded shall be deleted if held in a DLE’s message queue for 7565
longer than MaxLifetime. dlmo.MaxLifetime provides a default value for the DLE. A non-7566
null value for dlmo.Graph[].MaxLifetime indicates that dlmo.MaxLifetime shall be 7567
overridden and set to the specified value for Data DPDUs following that particular graph. 7568

• Operation of exponential backoff is illustrated in the following pseudocode: 7569

 – 308 – 62734/2CDV © IEC(E)

// For each neighbor, independently 7570
BExp[Nei] = 0; // BackoffExponent[Neighbor] in text 7571
BCnt[Nei] = 0; // BackoffCounter[Neighbor] in text 7572
For each timeslot (7573
If (transmit link and Data DPDU match)(// See 9.1.8.5 7574
 If (not exponential backoff link) (7575
 // Dedicated link 7576
 Attempt to transmit Data DPDU using link; 7577
 If (transmit was successful) remove Data DPDU from queue; 7578
) 7579
 Else (7580
 // Shared link 7581
 If (BCnt[Nei] > 0) BCnt[Nei]-- 7582
 Else (7583
 Attempt to transmit Data DPDU in link; 7584
 If (transmit was successful) (7585
 Remove Data DPDU from message queue; 7586
 BExp[Nei]=0; 7587
 BCnt[Nei]=0; 7588
) 7589
 Else (7590
 // Transmit failed; exponential backoff 7591
 If (BExp[Nei] < MaxBackoffExp) BExp[Nei]++; 7592
 BCnt[Nei] = Random (0, 2^(BExp[Nei]-1)); 7593
) 7594
) 7595
) 7596
) 7597
Delete all messages beyond MaxLifetime; 7598
If (no queued Data DPDU for neighbor) (BCnt[Nei]=0; BExp[Nei]=0;) 7599
NOTE As described in 9.1.8.5, it is possible for a link to be configured as a Transmit/Receive (T/R) link, which is 7600
a compressed representation of a paired transmit link and receive link. Logically, T/R links are processed as two 7601
independent links. 7602

9.1.8.3 Superframe channel use 7603

Timeslots within a superframe are associated with a slow or slotted-channel-hopping pattern, 7604
as well as an offset into that pattern. 7605

From the perspective of each DLE using a superframe, there is a baseline channel-hopping 7606
pattern offset, which may vary from DLE to DLE and which may be overridden with an 7607
alternative offset applied to a link or collection of links within a superframe. 7608

A given unicast D-transaction occurs on a single channel, with the Data DPDU and ACK/NAK 7609
DPDU(s) all transmitted on the same channel. 7610

A superframe is not limited to one channel at a time; rather, a superframe is a two-7611
dimensional structure indicating time and channel, as was previously illustrated in Figure 62 7612
(see 9.1.7.2.5). 7613

Figure 62 shows a superframe, with time on the horizontal axis and channel on the vertical 7614
axis. The superframe spans all of the channels over the length (duration) of that superframe. 7615
As shown in Figure 62, sixteen DLEs may use sixteen different offsets from channel-hopping 7616
pattern A; the superframe encompasses all of the channel assignments for all of the 7617
superframe timeslots. 7618

The default channel offset may be different for transmitting versus receiving and may vary by 7619
link. 7620

The period of the channel-hopping pattern is not necessarily related to the length of the 7621
superframe. Referring to Figure 62, a superframe might be configured as 25 timeslots long, 7622
even though channel-hopping pattern A is only 16 hops long. 7623

For frequency diversity, superframe length and channel-hopping pattern size may be 7624
configured to be relatively prime, that is, with no common factors. As a counter-example, 7625
consider a configuration wherein superframe length is 25 timeslots, with a channel-hopping 7626

62734/2CDV © IEC(E) – 309 –

pattern repeating on a 15-channel cycle, resulting in a superframe schedule where only 3 of 7627
the 15 available channels are ever used. Such an arrangement can cause regulatory issues in 7628
situations where use of all channels is required by each device. 7629

9.1.8.4 Organizing superframes 7630

9.1.8.4.1 General 7631

Two general superframe types are supported: 7632

• Slotted-channel-hopping, which makes optimal use of available digital bandwidth and 7633
supports battery-powered routers. 7634

• Slow-channel-hopping, intended for routers with available energy to run their receivers 7635
continuously during a given period. Slow-channel-hopping allows neighboring DLEs to 7636
operate with less exacting time synchronization requirements, particularly during the 7637
neighbor discovery process. 7638

Hybrid configurations may be arranged by combining superframes, for example, one slotted 7639
and one slow. Slotted- and slow-channel-hopping will be discussed separately, followed by 7640
some examples of hybrid configurations. 7641

NOTE In the marketplace, slow-channel-hopping is sometimes referred to as CSMA, and slotted-channel-hopping 7642
as TDMA. These terms are not used in this standard, except to the extent that CSMA/CA is supported by the 7643
standard in a literal sense. (See 9.1.9.4.8.) Slow-channel-hopping is built on a TDMA base, slotted-channel-7644
hopping includes CSMA aspects. The solution designer is free to mix the approaches. 7645

9.1.8.4.2 Superframe scope 7646

Superframes are commonly discussed as abstractions that span several DLEs. Nonetheless, 7647
while the superframe may be conceptualized at the D-subnet level, the scope of the 7648
superframe data structure is limited to each DLE. A superframe is instantiated as a data 7649
structure on a single DLE that independently drives its DLE state machine. A DLE’s 7650
superframe definitions need to relate to those of its neighbors so that DLEs communicate at 7651
the same time. Superframe definitions within each DLE are numbered, but that numbering is 7652
only needed by the DMAP for table read/write operations and by other objects and attributes 7653
within the DLE that refer to the superframe. 7654

A superframe may be contrasted with a routing graph’s scope. A graph ID, unlike a 7655
superframe ID, is carried in a Data DPDU’s DROUT header, and a graph ID shall be 7656
consistent and unique in all DLEs that use the graph. No such constraints apply to a 7657
superframe. 7658

9.1.8.4.3 Blocks of contention-based capacity 7659

Mains powered routers may sensibly operate their receivers continuously. As its lowest 7660
priority superframe, such a router may support a superframe comprised partially or entirely of 7661
receive links. The router’s neighbors may maintain corresponding shared transmit links to the 7662
router. Such a configuration results in blocks of contention-based digital bandwidth available 7663
to the routers neighbors. Slow-channel-hopping or slotted-channel-hopping may be used in a 7664
superframe of that type. Channel-hopping-offset may be selected to avoid collisions between 7665
dedicated links versus a general inventory of shared links. 7666

9.1.8.4.4 Slotted-channel-hopping 7667

Slotted-channel-hopping uses channel-hopping superframe timeslots of equal duration. Each 7668
superframe timeslot uses a different radio channel in a hopping pattern. In slotted-channel-7669
hopping, each superframe timeslot is intended to accommodate one D-transaction, including a 7670
Data DPDU and its ACK/NAK DPDU(s). 7671

Figure 70 illustrates a slotted-channel-hopping superframe from the perspective of one DLE, 7672
which may be a router. 7673

 – 310 – 62734/2CDV © IEC(E)

 7674

NOTE Channel numbers shown are those of IEEE 802.11 and IEEE 802.15.4:2011, 7675
rather than those of this standard. 7676

Figure 70 – Example superframe for slotted-channel-hopping 7677

In this example, the superframe is 1,5 s long. Timeslots with link assignments are depicted 7678
with circles (dedicated links) and diamonds (shared links). As Figure 70 shows, from the 7679
perspective of a single DLE, many superframe timeslots might be left idle. Timeslots with link 7680
assignments repeat at a fixed interval defined by the superframe length. 7681

9.1.8.4.5 Slow-channel-hopping 7682

In slow-channel-hopping, a collection of contiguous superframe timeslots is grouped on a 7683
single radio channel. Each such collection of superframe timeslots is treated as a single slow-7684
channel-hopping period. 7685

Figure 71 illustrates slow-channel-hopping. 7686

62734/2CDV © IEC(E) – 311 –

 7687

NOTE Channel numbers shown are those of IEEE 802.15.4:2011, rather than those of this standard. 7688

Figure 71 – Example superframe for slow-channel-hopping 7689

Timeslots in a slow-channel-hopping superframe are generally shared, providing immediate, 7690
contention-based channel bandwidth on demand to a router’s immediate neighbors. 7691

Figure 72 shows the main components of a slow-channel-hopping superframe. 7692

time

IdleIdle Active

 7693

Figure 72 – Components of a slow-channel-hopping superframe 7694

A baseline slow-channel-hopping period has a fixed duration, with a fixed number of idle 7695
timeslots (which may be zero) at the beginning and end of the hop. The example of a slow-7696
channel-hopping period shown in Figure 72 is comprised of 25 timeslots, including four idle 7697
timeslots at the beginning, nineteen active timeslots in the middle, and two idle timeslots at 7698
the end. The idle timeslots are intended to support hybrid configurations where slow-channel-7699
hopping superframes are paired with slotted-channel-hopping superframes, with the slotted-7700
channel-hopping timeslots scheduled for use during the idle periods of the slow-channel-7701
hopping superframe. 7702

NOTE 1 Idle periods as described here are configurable by matching superframe and channel-hopping phases, 7703
and defining links that match the desired active range. 7704

 – 312 – 62734/2CDV © IEC(E)

It is not necessary for all routers in a common area to hop together. Figure 73 shows how 7705
many routers can be assigned slow-hopping patterns that are disjoint from each other, thus 7706
avoiding collisions. It does not imply that all routers in a system use disjoint communication 7707
channels. illustrates. 7708

19 17

26

13

22
15

11

21
14

25
18

23
16

24
20

12

17

26

13

22
15

11

21
14

25
18

23
16

24
20

12
19

17

26

13

22
15

11

21
14

25
18

23
19 16

24
20

12

11
17

26

13

22
15

21
14

25
19 18

23
16

24
20

12

17

26

13

22
15

11

21
14

25
18 19

23
16

24
20

12

17

26

13

22
15

11

21
14

25
18

23
16 19

24
20

12

17

26

13

22
15

11

21
14

25
18

23
16

24
19 20

12

11
17

26

13

22
15

21
14

25
18

23
16

24
20 19

12

0 ¼ s ½ s ¾ s 1 s 1,5 s 2 s 2,5 s 3 s 3,5 s 4 s

Router a

Router b

Router c

Router d

Router e

Router f

Router g

Router h

 7709

NOTE Channel numbers shown are those of IEEE 802.15.4:2011, rather than those of this standard. 7710

Figure 73 – Example configuration for avoiding collisions among routers 7711

Each router may use a different offset into the channel-hopping pattern. With a 16-channel 7712
hopping pattern, each of up to 16 routers may be configured with a different offset into the 7713
pattern, so that no two routers use the same channel at the same time. 7714

NOTE 2 Although the above example purports to show how collisions can be avoided through disjoint 7715
assignments of channel hopping patterns, a realistic system would require at least one shared channel-hopping 7716
pattern via which the routers could communicate with each other. 7717

See 9.4.3.5.5 for more detail on slow-channel-hopping. 7718

9.1.8.4.6 Hybrid channel-hopping configurations 7719

Hybrid configurations may use combinations of the slotted-channel-hopping and slow-7720
channel-hopping superframes. 7721

Hybrid configurations are usually arranged so that slotted-channel-hopping links are allocated 7722
for scheduled, periodic messaging. This may leave blocks of lightly-used slow-channel-7723
hopping capacity, available on a contention basis, for less predictable uses such as alarms 7724
and retries. 7725

The example in Figure 74 illustrates how slotted-channel-hopping and slow-channel-hopping 7726
superframes may be combined. 7727

62734/2CDV © IEC(E) – 313 –
C

ha
nn

el
s

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

slow hopping

slow hopping

slow hopping

Time

re
try

retry
 7728

NOTE Channel numbers shown are those of IEEE 802.15.4, rather than those of this standard. 7729

Figure 74 – Hybrid configuration 7730

In Figure 74, slotted-channel-hopping has been overlaid on a slow-channel-hopping 7731
background. The slow-hopping periods fill in the time between periodic collections of 7732
dedicated superframe timeslots. 7733

In this configuration, if an attempted transmission in a dedicated timeslot fails, the succeeding 7734
slow-channel-hopping period can be used to retry the transmission. In Figure 74, two of the 7735
superframe timeslots are shown with retries on different channels during the subsequent 7736
slow-channel-hopping period. 7737

9.1.8.4.7 Superframes and spectrum management 7738

The term spectrum management refers to the ability of the system manager to configure a 7739
D-subnet to block unwanted channels from operation in a D-subnet. 7740

Each superframe includes a channel map, called Superframe[].ChMap, that is a bit mask of 7741
channels that shall be included and excluded in the hop sequence that is referenced by the 7742
superframe. Excluded channels have the effect of shortening the hop sequence. 7743

For example, a superframe channel map that includes channels 11..25 and excludes channel 7744
26 has the effect of shortening the hop sequence by removing channel 26 from the hop 7745
sequence. More generally, the system manager may eliminate any collection of channels from 7746
the hop sequences that are referenced by superframes in a D-subnet, with the result of 7747
removing those channels from operation. 7748

There is also a channel map in the DeviceCapability attribute that is reported to the system 7749
manager when the DLE joins the D-subnet. The DeviceCapability channel map does not 7750
shorten any channel-hopping sequence used by the DLE, but rather is a signal to the system 7751
manager that, for regulatory reasons, any link using one of the excluded channels will be 7752
treated as idle. 7753

The system manager may also block use of certain channels through the attribute 7754
dlmo.IdleChannels. Unlike the channel map in the superframes, dlmo.IdleChannels does not 7755
cause hop sequences to be shortened; rather, it causes links on designated channels to be 7756
treated as idle. dlmo.IdleChannels is intended to provide a quick way for the system manager 7757
to disable certain channels in a way that does not require D-subnet-wide coordination of 7758
revised hop sequences. 7759

Channel-specific diagnostics, as described in 9.4.2.27, provide the system manager with 7760
information to support spectrum management. 7761

 – 314 – 62734/2CDV © IEC(E)

9.1.8.5 DLE message queue operation 7762

DL routers compliant with this standard shall support a DLE message queue. This message 7763
queue has some attributes that can be configured by the system manager, affecting how the 7764
queue operates. 7765

The standard does not generally specify internal DLE mechanisms. However, to a limited 7766
degree, the DLE message queue is specified by the standard. The system manager can 7767
configure the DLE message queue to achieve particular quality of service objectives, and a 7768
limited model of message queue behavior is implicit in the configuration alternatives provided 7769
to the system manager. 7770

When a DLE receives a unicast Data DPDU from its neighbor, it first assesses whether the 7771
DSDU should be passed to the NL or forwarded to another DLE through the DL, as described 7772
in 9.3.3.6. 7773

If the Data DPDU needs to be forwarded, the DLE then evaluates whether the Data DPDU 7774
should be accepted or NAKed, in part based on the available capacity of the DLE message 7775
queue. Data DPDUs shall be NAKed if the DLE message queue has run out of capacity for 7776
Data DPDUs of that type. 7777

The DL reports its forwarding queue capacity to the system manager when the DLE joins the 7778
D-subnet, through the attribute dlmo.DeviceCapability, field QueueCapacity. This externally 7779
reported queue capacity does not include portions of the queue that are reserved for the 7780
DLE’s internal use. For example, the DLE message queue in a particular DLE might report 7781
that it has a queue capacity for five Data DPDUs. The system manager is then able to 7782
configure those five positions in the queue. This nominal capacity refers only to a portion of 7783
the message queue that is exclusively used to route Data DPDUs through the DLE. In 7784
practice, the actual DLE has additional message queue capacity space that it does not report 7785
to the system manager, because the DLE also needs to handle Data DPDUs on its own 7786
behalf. Unreported message buffer capacity, for the DLE’s own use, is considered an internal 7787
DLE matter and is not allocated by the system manager. The system manager assumes that 7788
the DLE has sufficient message queue capacity for its own use when contracts are granted. 7789

Consider the example of a field router with a reported DLE message buffer capacity of eight 7790
Data DPDUs. The actual buffer capacity may be twelve Data DPDUs, in which case the 7791
difference between reported and actual capacity (four Data DPDUs) is for the DLE’s own use. 7792
In this example, the system manager might reasonably configure the DLE’s nominal buffer 7793
capacity as follows: 7794

• No more than three of the eight buffers will be used to forward Data DPDUs with priority 7795
≤2. 7796

• No more than five of the eight buffers may be used to forward Data DPDUs with priority 7797
≤5. 7798

See 9.4.2.26 for further discussion of queue buffer capacity and priority levels. 7799

In addition, for a finer grained degree of control, the system manager can designate a certain 7800
number of buffers exclusively to forward Data DPDUs that are being routed along a specific 7801
graph, as described in 9.4.3.7. 7802

Figure 75 provides an overview of how links interact with an implicit DLE message queue 7803
within a DLE. 7804

62734/2CDV © IEC(E) – 315 –

 7805

Figure 75 – Timeslot allocation and message queue 7806

As shown in Figure 75, Data DPDUs are held in a message queue until transmit links become 7807
available. Data DPDUs are placed in the queue in the order they are received. Generally, 7808
retrieval of Data DPDUs from the queue is first in, first out (FIFO). 7809

NOTE This simplified example shows only a single destination address for each Data DPDU. In practice, each 7810
Data DPDU on the message queue is actually a candidate for links to multiple neighbors. 7811

Consider the example of Data DPDU 3. Data DPDU 3 originates in an application and enters 7812
the DL through the DDSAP (Figure 53). When the Data DPDU is processed by the DLE, it is 7813
placed in the DLE’s message queue. Based on the Data DPDU's ultimate destination, the DLE 7814
determines that the Data DPDU needs a link to DLE B for its next hop. Data DPDUs 1 and 2 7815
are already on the queue, so Data DPDU 3 is queued behind them. When a link to DLE B 7816
becomes available, Data DPDU 2 will be sent before Data DPDU 3. 7817

Each Data DPDU on the queue is assigned a priority by the originating DLE. This simplified 7818
tutorial assumes that all Data DPDUs have equal priority. In actual practice, link priority takes 7819
precedence over Data DPDU priority, in the sense that Data DPDUs are not considered for 7820
transmission until after a transmit link is selected. Once a transmit link has been selected, the 7821
Data DPDU on the queue is selected based first on priority, and then on a FIFO basis if 7822
multiple candidate Data DPDUs have the same priority. 7823

Data DPDU 4 shows an example where a Data DPDU is received in one timeslot and is 7824
available to be forwarded in the next timeslot. In general, a Data DPDU received in one 7825
timeslot (timeslot N) shall be available on the queue for forwarding in next timeslot (timeslot 7826
N+1). An exception is allowed when default timeslot template 3 is used (see Figure 157). In 7827
that case, the D-transaction might be incomplete at the start of the next timeslot. A Data 7828
DPDU received starting in one timeslot (timeslot N), using default timeslot template 3, shall be 7829
available on the queue for forwarding in the timeslot following the next timeslot (timeslot N+2). 7830

 – 316 – 62734/2CDV © IEC(E)

In Figure 75, two superframes are shown, and each superframe is associated with a series of 7831
links. For example, timeslot 3 in superframe 1 is associated with a receive link (R), while 7832
timeslot 3 in superframe 2 is associated with a transmit link to DLE B (TB). Idle slots do not 7833
have defined links. 7834

Each link has a priority. The attributes dlmo.LinkPriorityXmit and dlmo.LinkPriorityRcv provide 7835
default link priorities, which may be overridden for any particular link. The example in Figure 7836
75 mostly shows the default priorities of 0 for receive links and 8 for transmit links. 7837

In most cases the system manager should assign lower priority to receive links (R) than to 7838
transmit links (T), thus giving precedence to servicing outgoing Data DPDUs on its queue. 7839
However, this is not a strict requirement. For example, if a latency-critical incoming flow is 7840
scheduled for a particular timeslot, the system manager may configure receive links with 7841
higher priority in that case. As an illustration in Figure 75, the third link in superframe 1 is 7842
assigned a priority of 9, giving this particular receive link a higher priority than a transmit link 7843
at the same time. 7844

Transmit/receive (T/R) timeslots use a compressed format to combine a transmit link and a 7845
receive link. Logically, a T/R link is two links, with the receive part of the link having a priority 7846
of dlmo.LinkPriorityRcv which defaults to zero. For example, if a timeslot has a high priority 7847
TA/R link and lower priority TB link, the TB link has higher priority than the R part of the TA/R 7848
link. Baseline operation is that a Data DPDU queued for transmission and a link are matched 7849
at the start of a timeslot, and the timeslot is assigned to a D-transaction that will be run to 7850
completion according to the link configuration. In the event that a D-transaction is aborted due 7851
to CCA detection of competing channel activity, an optimized implementation may complete 7852
the timeslot using a receive link that is valid for the same time interval. 7853

Once a queued Data DPDU has been transmitted and acknowledged, the D-transaction is 7854
deemed successful and the Data DPDU is deleted from the queue. The following example 7855
assumes that all transactions are successful. 7856

The box at the bottom right of Figure 75 illustrates how links are used in the following 7857
example. 7858

• Timeslot 1: The first link in both superframes 1 and 2 are idle; therefore, the first timeslot 7859
is idle. 7860

• Timeslot 2: The second link in superframe 1 is idle, but there is a transmit link for DLE A 7861
(TA) in superframe 2. There is also a Data DPDU to DLE A in the queue; therefore, the 7862
second timeslot is assigned for transmission to DLE A, and Data DPDU 1 is sent. 7863

• Timeslot 3: Superframe 1 has a receive link, and superframe 2 has a transmit link. The 7864
link in superframe 1 takes precedence due to its priority, so timeslot 3 is used to listen for 7865
incoming Data DPDUs. (As described above, receive links are usually assigned lower 7866
priority than transmit links. This example illustrates how a system manager can give 7867
priority to a receive link, for example, to service an incoming flow.) 7868

• Timeslot 4: Superframe 1 has a TB/R link, indicating that it should transmit if there is a 7869
Data DPDU for DLE B in the queue. Data DPDU 2 is sent. 7870

• Timeslot 5: Both superframes are idle in timeslot 5, so the timeslot is idle. 7871

• Timeslot 6: Superframe 1 designates a transmission link to DLE A, but there is no longer a 7872
Data DPDU for DLE A in the queue. Since there is nothing useful for the transmit link to do 7873
in this slot, the link in superframe 2 is used. The DLE receives an inbound Data DPDU, 7874
determines that its next hop is to DLE A, and places the Data DPDU on the queue. 7875

• Timeslot 7: Now that there is a Data DPDU for DLE A on the queue, the transmit link in 7876
superframe 1 gets priority and Data DPDU 4 is sent. Note that Data DPDU 3 was skipped 7877
over because no TB link has become available yet. 7878

• Timeslot 8: Now that a TB link is available, Data DPDU 3 is sent. 7879

62734/2CDV © IEC(E) – 317 –

• Timeslot 9: The TB/R link results in a receive slot, because there is no Data DPDU to DLE 7880
B on the queue. 7881

This example was simplified in some essential respects. 7882

– As noted above, Data DPDU priorities were assumed to be equal. In practice, if two Data 7883
DPDUs on a message queue both match a given link, the Data DPDU with the higher 7884
priority is transmitted. The FIFO queue position is relevant only for Data DPDUs of equal 7885
priority. 7886

– If a unicast Data DPDU does not receive an acknowledgment, it stays on the queue and 7887
the DL retry strategy is applied. See 9.1.8.2. 7888

– A link may be configured for use by a particular graph. In that case, Data DPDUs with that 7889
graph ID shall be granted prioritized or exclusive access to the link. See 9.4.3.7. 7890

– A DLE may be designed to skip links on radio channels with a history of subpar 7891
connectivity. A DLE may also skip links in order to retry on an alternative link. See 7892
9.1.7.2.4. 7893

Operation of queue processing is illustrated in the following pseudocode: 7894

For each timeslot (7895
 Order Data DPDUs on queue by priority; 7896
 // FIFO within priority 7897
 7898
 Order links by priority; 7899
 // Treat T/R link as two links, with receive side 7900
 // of link assigned link priority dlmo.LinkPriorityRcv; 7901
 // Within link priority, order by superframe priority, 7902
 // then superframe number (highest first); 7903
 7904
 For each link, in priority order 7905
 If it is a receive link (7906
 Use the receive link; 7907
 Done with timeslot; 7908
) 7909
 Else // it is a transmit link 7910
 For each Data DPDU, in priority order 7911
 If link matches Data DPDU (7912
 Use the link; 7913
 Done with timeslot; 7914
) 7915
) 7916

 DL time keeping 9.1.97917

9.1.9.1 Timing 7918

9.1.9.1.1 General 7919

The DL propagates and uses international atomic time (TAI) for its internal operation, and 7920
also provides TAI time as a service (through the DMAP) to wireless devices compliant with 7921
this standard. 7922

DLEs within a D-subnet may be configured to track a shared sense of time to within a few 7923
milliseconds of each other, to support sequence of event reporting and other application-layer 7924
coordinated operations within the scope of a D-subnet. Synchronized time among immediate 7925
neighbors is also essential for operation of the wireless protocol. 7926

Slotted-channel-hopping requires tight time synchronization among immediate neighbors. 7927
However, the internal clock of a non-routing DLE that has been disconnected from D-subnet 7928
operation for more than a few minutes may have drifted by tens or hundreds of milliseconds 7929
or more in relation to the overall D-subnet clock. Slow or hybrid channel-hopping 7930
configurations support the continued operation of such DLEs. 7931

 – 318 – 62734/2CDV © IEC(E)

9.1.9.1.2 International atomic time 7932

In this standard, time is based on international atomic time (TAI) as the time reference. See 7933
5.6. 7934

9.1.9.1.3 Alignment intervals 7935

In this standard, one-second TAI increments are divided into 250 ms (1/4 s) alignment 7936
intervals, wherein the 250 ms (2-2 s) cycles shall align with nominal TAI s as shown in Figure 7937
76. 7938

 7939

Figure 76 – 250 ms alignment intervals 7940

Continuous control loops in the process industries, which have been a traditional focus of 7941
IEC TC65, are frequently based on fixed-period computation of control outputs. These 7942
process loops usually repeat at rates of 4 Hz (250 ms), 1 Hz (1 s) or multiples of either 4 s or 7943
5 s. Process monitoring is usually mapped onto this same 4 Hz (and slower) structure. 7944

Applications with slightly higher loop rates, such as compressor surge control loops running at 7945
12 Hz, are supportable by scheduling multiple communications opportunities per 250 ms 7946
cycle. 7947

9.1.9.1.4 Timeslot duration, timeslot alignment, and idle periods 7948

Within 250 ms alignment intervals, time is divided into timeslots of configurable but equal 7949
duration. A timeslot is a time interval of predefined duration used to send or receive a Data 7950
DPDU and any corresponding ACK/NAK DPDU(s). Timeslots are generally shared by at least 7951
one pair of DLEs that communicate during the allocated time. The DL organizes these 7952
timeslots into superframes, which are collections of timeslots with a common period and 7953
potentially other common attributes. 7954

Timeslot durations are configured during D-subnet setup. Normally, during a given period of 7955
operation, all timeslots within a D-subnet have the same duration. Timeslot duration is 7956
configured in units of 2-20 s (~0,95 µs). 7957

NOTE 1 The DL binds timeslot duration to superframes, and nothing in the standard prevents multiple 7958
superframes with different timeslot durations from being active simultaneously within a D-subnet. However, this 7959
standard considers only configurations wherein a single timeslot duration is used in a given D-subnet. A DLE 7960
supporting multiple timeslot durations simultaneously, such as a backbone router or a bridge between two 7961
D-subnets, is modelable as containing multiple DLEs running in parallel. 7962

Timeslots align with the 250 ms alignment intervals, but timeslot durations do not necessarily 7963
divide evenly into 250 ms. Therefore, the system inserts a short idle period every 250 ms as 7964
needed, thus realigning the timeslots to a 4 Hz cycle. This is shown in Figure 77 with two 7965
illustrative examples using different timeslot durations of 9,999 ms and 11,719 ms, 7966
respectively. 7967

62734/2CDV © IEC(E) – 319 –

250 ms

11,719 ms slot
3,906 ms idle

time

250 ms

9,999 ms slot
0,018 ms idle

 7968

Figure 77 – Timeslot durations and timing 7969

NOTE 2 Calculations for the idle times in Figure 77: 7970

a) 10 485 × 25 × 2-20 s = 249,982 ms. Subtract from 250 ms to get 0,018 ms; 7971

b) 12 288 × 21 × 2-20 s = 246,094 ms. Subtract from 250 ms to get 3,906 ms. 7972

NOTE 3 A timeslot intended closely to approximate 10 ms is 10 485 units, or 9,999 275 ms, in duration. 7973

The idle period is not used by the system for scheduled operations; it is simply a short period 7974
inserted to ensure that timeslots align and repeat at 250 ms intervals. This makes it 7975
straightforward for the system manager to organize collections of timeslots that repeat at 7976
exact multiples of 250 ms. 7977

Slow-hopping periods can span an alignment interval. In such cases, slow-hopping periods 7978
are not interrupted by idle periods; that is, if a slow-hopping period traverses the edge of an 7979
alignment interval, the receiver’s radio continues operation through the idle period. 7980

9.1.9.1.5 Scheduled timeslot time 7981

Each DL timeslot has a scheduled fractional-second start time, which is called the scheduled 7982
timeslot time. Both the DL and higher-layer protocols use this coordinated time sense as 7983
security material, thus providing replay protection. See 7.3.2.6. 7984

Since the 250 ms intervals align with TAI quarter-seconds, scheduled timeslot timing can be 7985
derived from the timeslot duration. For example, if timeslot duration is 9,999 ms, scheduled 7986
timeslot times in the second quarter-second of TAI time t are t + 0,250 000 s, t + 0,259 999 s, 7987
t + 0,269 998 s, etc. 7988

NOTE This mixed-radix time representation facilitates inter-conversion at higher layers, where PDUs often span 7989
D-subnets with different data rates, different timeslot durations and/or different DL protocols. 7990

The scheduled timeslot start time is in units of 2-20 s (microsecond precision). DLEs 7991
commonly use internal clocks based on a 215 Hz (32 KiHz) very-precise very-low-power 7992
“watch” crystal. Implementations may, and commonly will, round the scheduled timeslot start 7993
time to the nearest 32 KiHz clock tick. This rounding is permitted on a per-timeslot basis, 7994
without adjusting the underlying timeslot schedule based on units of 2-20 s. However, this 7995
rounding to 32 KiHz is not permitted to accumulate over a 250 ms period, as shown in Table 7996
101. This consideration is included within the ±96 µs jitter allowed by this standard; see 7997
9.4.3.3.1. 7998

 – 320 – 62734/2CDV © IEC(E)

Table 101 – Approximating nominal timing with 32 KiHz clock 7999

Nominal timeslot
offset (ms)

2-20 s
(clock counts)

2-15 s (clock
counts, rounded)

Actual timeslot
offset (ms)

0 0 0 0

10 10 485×1 328 10,010

20 10 485×2 655 19,989

30 10 485×3 983 29,999

••• ••• ••• •••

200 10 485×20 6 553 199,982

210 10 485×21 6 881 209,991

220 10 485×22 7 208 219,971

230 10 485×23 7 536 229,980

240 10 485×24 7 864 239,990

 8000

9.1.9.2 DL time propagation 8001

9.1.9.2.1 General 8002

The DLE uses TAI time for its internal operation, and provides a notion of TAI time as a 8003
service (through the DMAP) to wireless neighbors compliant with this standard. 8004

In a D-subnet, DLEs may take on three functions in the time propagation process: 8005

• DL clock recipient, a receiver of periodic clock updates through the DL; or 8006

• DL clock source, a provider of periodic clock updates to DL neighbors; or 8007

• DL clock repeater, a DL clock recipient that also acts as a DL clock source to some of its 8008
neighbors. 8009

Additional information about time propagation can be found in 6.3.10. 8010

9.1.9.2.2 DLE clock stability 8011

The clock stability of the DLE is the nominal clock stability of a wireless device, in the 8012
presence of periodic time corrections from the D-subnet. 8013

The DLE, when configured as a clock recipient, relies on the D-subnet to provide periodic time 8014
updates wirelessly. It may also use these time updates in calibration of its internal clock to 8015
account for conditions such as temperature, aging, and voltage. 8016

The time reference for a D-subnet originates from one or more clock masters, which provide 8017
time that is monotonically increasing at a rate that closely tracks real time. 8018

When the DLE joins the D-subnet, the DLE reports its clock stability to the system manager as 8019
dlmo.DeviceCapability.ClockStability (called ClockStability here), which is in units of parts per 8020
million (1x10-6). ClockStability applies to any arbitrary 30 s period during the expected life of 8021
the device, under all conditions that a user might reasonably expect from the device’s 8022
published specifications. 8023

For example, if ClockStability reports that a DLE has a clock with maximum instability of 8024
10x10-6 s/s, then the DLE’s clock shall be stable to within ±300 µs during any arbitrarily 8025
selected 30 s period. 8026

62734/2CDV © IEC(E) – 321 –

ClockStability is reported as an envelope. For example, if ClockStability reports that a DLE 8027
has a maximum clock instability of 10x10-6 s/s, then the clock shall be stable to within 8028
±300 µs at all instants during any arbitrarily selected 30 s period. This is intended to allow for 8029
devices that are subjected to occasional environmental shocks that can cause small clock 8030
discontinuities. Small discontinuities are acceptable, as long as they do not add up to more 8031
than ±ClockStability × 30 µs at any time over any 30 s period. 8032

NOTE 1 ClockStability, specified in units of 1x10-6 s/s, is equivalently 1 µs/s. 8033

NOTE 2 It is possible that neighboring DLEs have clocks that drift in opposite directions. Therefore, in the worst 8034
case, ClockStability is additive between pairs of neighboring DLEs. In practice clock repeaters are corrected 8035
periodically, which lessens that effect. 8036

The standard assumes that clock drift is negligible within a timeslot. 8037

ClockStability is reported to the system manager without caveats. If the device is specified to 8038
work under environmental stress, such as extremes of temperature or mechanical shock, then 8039
ClockStability shall reflect performance under such stress. 8040

The attribute dlmo.ClockExpire, configured by the system manager, provides the maximum 8041
number of seconds that the DLE can safely operate in the absence of a clock update. 8042
Normally, the system manager arranges that a DLE will maintain clock synchronization as a 8043
by-product of normal communication. However, when the DLE fails to receive a clock update 8044
for an extended period of time, defined by ClockExpire, the DLE should actively interrogate a 8045
DL clock source for a time update. Failure to do so will eventually result in loss of time 8046
synchronization with the D-subnet. ClockExpire defaults to a value that is appropriate for use 8047
during the join process. 8048

A clock repeater should not send clock corrections to its neighbors through ACK/NAK DPDUs 8049
if it has not itself received a clock correction for a period that exceeds the ClockExpire 8050
attribute. If a clock repeater’s clock has expired and it is polled for a time update, it should 8051
respond with a NAK1. 8052

A DLE with an expired clock should not be used as a clock repeater, but it may continue to 8053
operate in the D-subnet, albeit with a potential risk of losing synchronization with its 8054
neighbors. The attribute dlmo.ClockTimeout provides the maximum amount of time that a DLE 8055
may reasonably continue operating in a D-subnet in the absence of a clock update. If the DLE 8056
has not received a clock update for a period of time that exceeds DLTimeout, the DLE may 8057
reasonably reset itself to the provisioned state and initiate a search for a new D-subnet. 8058

NOTE 3 A DLE operating in a slow-channel-hopping configuration is capable of being configured to retain a 8059
D-subnet connection for extended periods of time, even with a clock that has drifted across timeslots. 8060

9.1.9.2.3 Preferred and secondary clock sources 8061

The system manager configures each DL clock recipient to treat one or several of its 8062
neighbors as DL clock sources. Such DL clock sources may be designated as preferred or 8063
secondary, based on the attribute dlmo.Neighbor[].ClockSource. Multiple neighbors may be 8064
designated as preferred DL clock sources. A DL clock recipient should adjust its clock value 8065
whenever it has an interaction with a preferred DL clock source. 8066

The attribute dlmo.ClockStale defines a period of time that shall pass before a DLE begins 8067
accepting clock updates from secondary DL clock sources. If, after a period of ClockStale, no 8068
clock update is received from any preferred source, the DL clock recipient should accept clock 8069
updates in its interactions with neighbors that are designated as secondary DL clock sources. 8070
Once a DL clock recipient accepts a clock update from a secondary DL clock source, it should 8071
continue to use that secondary DL clock source until either (a) it receives a clock update from 8072
a preferred DL clock source, or (b) the secondary DL clock source times out. 8073

The attribute dlmo.ClockStale determines the timeout interval. For example, if ClockStale is 8074
set to 45 s by the system manager, then a DL clock source should not accept clock updates 8075

 – 322 – 62734/2CDV © IEC(E)

from a secondary DL clock source until it has not received a clock update from any preferred 8076
DL clock source for at least 45 s. 8077

Each DL clock recipient can be configured to retain and periodically report statistics (see 8078
9.4.3.9) for any of its preferred DL clock sources, including: 8079

• A count of clock timeout events. 8080

• A running average of clock corrections, a signed integer in units of 2-20 s, indicating a bias 8081
if nonzero. 8082

• The standard deviation of clock corrections, estimated in units of 2-20 s, for example, a 8083
value that roughly accounts for approximately 68% of clock corrections. 8084

• A count of clock corrections in excess of three such standard deviations. 8085

9.1.9.2.4 Shared time sense during D-subnet operation 8086

D-subnet transactions nominally occur in a DL timeslot, on a schedule known to both sender 8087
and receiver. This shared sense of time is used as security material, both for header 8088
compression and for replay protection. 8089

DL clock sources may be configured to periodically transmit DL advertisements embedded in 8090
a Data DPDU’s DAUX subheader. Each such advertisement provides a TAI time reference for 8091
the D-subnet. All standard-compliant DLEs that receive an advertisement are assumed to be 8092
capable of participating in time-synchronized communication with the advertising DLE. DL 8093
clock recipients with relatively imprecise clocks may have a limited capability to communicate 8094
only with routers that use slow-channel-hopping. 8095

MAC layer authentication requires shared security keys, shared time sense, and knowledge of 8096
a neighbor’s EUI64Address. This information is acquired stepwise during the join process, 8097
with security keys provided at the end. The DL uses the standard block cipher (usually AES-8098
128), together with a well-known security key, during the join process in order to provide 8099
enhanced integrity checking (but not security). This is described in more detail in 7.4. 8100

In slotted-channel-hopping, both transaction initiators and transaction recipients share an 8101
intrinsic sense of which timeslot is being used; otherwise, the DLEs would not be able to 8102
communicate. Every timeslot has a scheduled start time that is known by all participating 8103
DLEs. 8104

In slow-channel-hopping, a DLE with an inaccurate sense of DL time will nominally transmit in 8105
a particular timeslot, based on its own sense of time. However, such a DLE is permitted to 8106
miss its target, and may actually transmit in any timeslot within the slow-channel-hopping 8107
period. Therefore, unicast Data DPDUs that are transmitted using a slow-channel-hopping 8108
superframe shall include an extra octet in the Data DPDU’s header to indicate which timeslot 8109
within the slow-channel-hopping period was intended. This allows the receiving DLE to 8110
reconcile its timeslot sense with that of the transmitting DLE, applying time correction across 8111
timeslots to validate the accuracy of the transaction initiator’s clock, and to use the timeslot’s 8112
scheduled start time as security material. 8113

For security purposes, a timeslot’s scheduled start time (which is not the start time of a 8114
resulting Data DPDU) is passed to the DSC for use in DL-related security operations. See 8115
9.1.11. In most cases, the timeslot of the Data DPDU and the timeslot of any responding 8116
ACK/NAK DPDU are the same. There is one exception, which occurs for slow-channel-8117
hopping when the clock of one of the DLEs has drifted into a different timeslot. In that case, 8118
the channel-hopping-offset of the acknowledging DLE shall be included in the ACK/NAK 8119
DPDU’s DMXHR (Table 117) to identify unambiguously the exact time that is to be used for 8120
security operations, even if the acknowledging DLE is not acting as a DL clock source for the 8121
ACK/NAK DPDU recipient. Absence (i.e., non-inclusion) of the channel-hopping-offset field in 8122
the ACK/NAK DPDU implies that the DLE originating the Data DPDU and the DLE originating 8123
the ACK/NAK DPDU are using the same timeslot. 8124

62734/2CDV © IEC(E) – 323 –

9.1.9.3 Pairwise time synchronization 8125

9.1.9.3.1 General 8126

Clock updates are propagated through the D-subnet in the course of normal communications 8127
within a timeslot or slow-channel-hopping period. These building blocks are leveraged by the 8128
system manager to arrange the propagation of D-subnet time. 8129

DL clock sources use three general mechanisms to propagate clock updates to their 8130
neighbors. 8131

• A DL clock source originates a Data DPDU that includes an advertisement. The time is 8132
conveyed based on when the Data DPDU is transmitted. 8133

• A DL clock source acknowledges a received Data DPDU in a timeslot. The time is 8134
conveyed by measuring when the DL clock source detects the start of the Data DPDU and 8135
echoing the result of this measurement in the ACK/NAK DPDU(s). 8136

• A DL clock source acknowledges a Data DPDU within a slow-channel-hopping period. The 8137
process is similar to acknowledgment within a timeslot, with the addition of an octet to 8138
identify the timeslot uniquely if needed. 8139

The standard relies on stable clocks, particularly in field routers, for reliable D-subnet 8140
operation. For DL clock stability requirements, see Table B.8. 8141

A DL clock recipient maintains a list of valid neighboring DL clock sources. If it receives a 8142
clock update from a designated DL clock source, it uses the data to update its clock. 8143

When a DLE discovers a D-subnet, it acquires the D-subnet’s TAI time and uses that 8144
reference for subsequent communication. The DLE shall then periodically re-synchronize its 8145
internal clock to the D-subnet clock. These re-synchronization operations are incremental, 8146
based on offsets into a timeslot with a scheduled time reference known to both DL clock 8147
source and DL clock recipient. 8148

Whenever a DLE interacts with one of its designated DL clock sources, it receives updated 8149
clock information. Clock adjustments are included in ACK/NAK DPDUs, thus conveying time 8150
information to the recipient. Clock updates are also included in the DAUX subheader of 8151
advertisement Data DPDUs originating from DL clock sources. 8152

Thus, a DLE may receive clock updates as a by-product of routing data through a DL clock 8153
source. Alternatively, if a DLE needs more frequent clock updates, it may be configured to 8154
receive clock updates by enabling its receiver to operate at times coinciding with periodic 8155
scheduled Data DPDUs from DL clock sources that include the DAUX subheader with an 8156
advertisement. 8157

A DLE may acquire a clock update by sending a Data DPDU with a zero-length DSDU to a DL 8158
clock source. A DL clock source shall acknowledge such a Data DPDU and then discard it. 8159

9.1.9.3.2 Clock source acknowledges receipt of a Data DPDU within a timeslot 8160

When a DLE transmits a unicast Data DPDU (see Figure 81) to a DL clock source, it may 8161
receive a clock update in the ACK/NAK DPDU, as shown in Figure 78. 8162

 – 324 – 62734/2CDV © IEC(E)

Source’s
start of
timeslot

End of
timeslot

Radio startup RX DPDU • Process DPDU
• Radio transition TX ACK

Clock source
(receives
DPDU)

TX DPDU Radio
transition RX ACK

Clock recipient
(transmits

DPDU)

• Prepare DPDU
• Radio startup C

C
A

Recipient’s
start of
timeslot Data

ACK/NACK
Report DPDU received
at Time X

Offset Y

Offset X

 8163

Figure 78 – Clock source acknowledges receipt of a Data DPDU 8164

The ACK/NAK DPDU from the DL clock source includes the start time of the original 8165
transmission reported as a time offset (with microsecond precision, in units of 2-20 s) of the 8166
Data DPDU’s start time (i.e., the start time of the PhSDU) from the scheduled timeslot start 8167
time as measured by the DL clock source. 8168

A given unicast D-transaction occurs on a single channel, with the Data DPDU and ACK/NAK 8169
DPDU(s) all transmitted on the same channel. 8170

This clock synchronization information is targeted at the DLE that originated the Data DPDU. 8171
While other DLEs may overhear and update their clocks based on the same information, the 8172
design is not optimized for that usage. 8173

While a DLE’s internal details of clock synchronization are not specified by this standard, the 8174
transaction is intended to support a clock synchronization process that operates generally as 8175
follows: 8176

a) The DL clock recipient sends a Data DPDU to the DL clock source and records that it sent 8177
the Data DPDU at time offset Y. 8178

b) The DL clock source receives the Data DPDU at virtually the same instant and records 8179
that it received the Data DPDU at time offset X. 8180

a) The diagram shows the case where the DL clock recipient’s clock is running faster than 8181
the DL clock source. In that case, X > Y. If the DL clock source is running faster, X < Y. 8182
The time of the DL clock source is assumed to be correct. 8183

b) In the ACK/NAK DPDU, the DL clock source reports that it received the Data DPDU at 8184
time offset X. 8185

c) The DL clock recipient applies a time correction that is computed as (Y – X). 8186

The result shown in the Figure 78 is that the timeslots start at different times but end at the 8187
same time. An actual implementation may delay application of time corrections, such as by 8188
adjusting the clock gradually. See 9.1.9.2.2. 8189

62734/2CDV © IEC(E) – 325 –

9.1.9.3.3 Clock source originates a Data DPDU that includes an advertisement 8190

A DL clock source is often the originator of a Data DPDU. This is generally the case when a 8191
DL clock source transmits a scheduled advertisement that includes the TAI time. The payload 8192
of the Data DPDU may be unrelated to time synchronization; the TAI time information is 8193
contained within the DAUX subheader, so that it may be overheard by any of the DL clock 8194
source’s neighbors. 8195

Multiple DLEs may be configured to enable their receivers simultaneously in anticipation of a 8196
scheduled Data DPDU conveying an advertisement. 8197

This standard requires that a DL clock source be capable of precisely controlling when 8198
advertisement Data DPDUs are transmitted, with a precision of ±96 µs (3 octets), referenced 8199
to the DLE’s internal clock. See 9.4.3.3.1. 8200

9.1.9.3.4 Clock source acknowledges a Data DPDU within a slow-channel-hopping 8201
period 8202

As noted previously, DL clock sources use ACK/NAK DPDUs to report time with microsecond 8203
resolution (2-20 s), as offsets relative to the scheduled nominal start time of a timeslot. 8204
Identification of the timeslot is assumed to be unambiguous, known to both sender and 8205
recipients. Thus only the offset is communicated in clock updates. 8206

However, within slow-channel-hopping periods, a DL clock recipient’s internal clock may have 8207
drifted tens or hundreds of milliseconds or more relative to the sender’s clock, so that the 8208
presumption of shared identification of the timeslot might be incorrect. Therefore, an extra 8209
octet, identifying a specific timeslot, is added to both Data and ACK/NAK DPDU headers 8210
within slow-channel-hopping-periods, as specified in the DPDU’s DHDR. The initial timeslot 8211
within a slow-channel-hopping period is defined as having an offset of zero. 8212

Within slow-channel-hopping-periods, DLEs with an accurate sense of time should operate 8213
within timeslot boundaries. However, DLEs without an accurate sense of time might not be 8214
capable of respecting timeslot boundaries, and might not even know which timeslot they are 8215
actually using. A timeslot offset in each DPDU header allows the receiver to reconstruct the 8216
sender’s time sense and vice versa (see 9.3.3.3). 8217

9.1.9.3.5 Auditing the quality of a neighbor’s clock 8218

When a DLE joins the D-subnet, it reports its clock stability specifications to the system 8219
management function. In their normal interactions with these DLEs, DL clock sources and DL 8220
clock recipients can be configured by the system to collect diagnostics, on a per-neighbor 8221
basis, to audit these nominal specifications (see 9.4.3.9). 8222

9.1.9.3.6 Discontinuous clock adjustments 8223

Under some conditions, it may be necessary for the system manager to adjust all of its DLE’s 8224
clocks by tens or hundreds of milliseconds or more, for example, when two D-subnets are 8225
being joined. The system manager may schedule a discontinuous clock adjustment to occur at 8226
a particular TAI time, by setting the dlmo.TaiAdjust attribute on each of its DLEs. At the 8227
designated time, all DLEs shall adjust their clocks forward or backward by the specified 8228
amount of time. 8229

There are some system impacts of a clock adjustment that should be considered whenever 8230
this feature is used. 8231

• The security model in this standard does not allow time to run backward. Time is used in 8232
the security nonce, which can never be repeated in any standard communication layer. 8233
Consequently, there shall be an interruption in service, equal to the magnitude of the 8234
adjustment plus at least one timeslot, if time is adjusted to an earlier time. 8235

 – 326 – 62734/2CDV © IEC(E)

• Phased reports will shift in time by the amount of the clock adjustment, unless 8236
corresponding contracts are revised in tandem with the clock adjustment. 8237

• DLEs that do not receive the time correction before the cutover time may lose 8238
synchronization with D-subnet operation, and may need to re-discover their neighbors. 8239

9.1.9.4 Transactions within timeslot templates 8240

9.1.9.4.1 General 8241

NOTE Transactions are also described in 4.6.11. 8242

Transaction timing within a DL timeslot is specified by timeslot templates. This standard 8243
defines default timeslot templates that are needed by the DLE in its interactions with a 8244
wireless provisioning DLE. Additional timeslot templates may be added by the system 8245
manager during or following the join process. (See 9.4.3.3 for more information on timeslot 8246
templates.) 8247

Figure 79 illustrates some aspects that are addressed by DL timeslot templates. 8248

 8249

Figure 79 – Transaction timing attributes 8250

As shown in Figure 79, timeslot templates define the timing for operations such as Data 8251
DPDU reception wait time, and the turnaround time (Data DPDU reception processing and 8252
radio transition) between receiving a Data DPDU and transmitting an ACK/NAK DPDU. 8253

Generally, there are two types of transaction templates: transmit and receive. A transaction 8254
initiator template specifies a time range to begin Data DPDU transmission, to check the 8255
channel for activity before transmission, and the relative placement of any ACK/NAK DPDU(s) 8256
in the timeslot. A transaction receiver template specifies the interval during which a received 8257
Data DPDU can begin arriving, and thus when to timeout if no Data DPDU start is detected. It 8258
also specifies the timing of any ACK/NAK DPDUs sent by transaction responders. 8259

Default timeslot templates cover baseline transactions needed to interact with a provisioning 8260
DLE, which are usable during the join process. Default templates may also be used by joined 8261
DLEs for general transactions. Additional templates may be provisioned into the DLE to 8262
accommodate features such as: 8263

• carrier sense multiple access with collision avoidance (CSMA/CA) periods at the start of a 8264
timeslot (see 9.1.9.4.8); and 8265

• extended timing of ACK/NAK DPDUs relative to the end of the Data DPDU or the end of 8266
the timeslot (see 9.1.9.4.6) . 8267

By convention in this standard, timeslot template timing is specified based on the start and 8268
end times of both Data and ACK/NAK DPDUs and the end of the timeslot. PhPDU timing, 8269

• Prepare DPDU,
• transmitter startup DPDU • Process DPDU

• Radio transition ACK #1

Start of
timeslot

End of
timeslot

DPDU
wait time

Receiver
startup

C
C

A

62734/2CDV © IEC(E) – 327 –

dependent on the details of the physical layer that conveys each DPDU, can be inferred from 8270
those DPDU start and end times (see 9.4.3.3). 8271

9.1.9.4.2 D-transaction overview 8272

As shown in Figure 80, the DL supports both unicast and broadcast transactions. 8273

Destination

Source

one

> one

• Contention-free
• Dedicated timeslots

• Collisions possible
• CSMA and/or shared timeslots

one > one

• Unicast
• Acknowledged

• Broadcast
• No ACK 8274

Figure 80 – Dedicated and shared transaction timeslots 8275

Unicast transactions, indicated in the left half of Figure 80, may use dedicated timeslots, for 8276
example, when a DLE reports repetitively on a schedule. Duocast is a variant of unicast, 8277
wherein a second receiver is scheduled to overhear the Data DPDU and provides a second 8278
ACK/NAK DPDU. Duocast is shown graphically in Figure 84. 8279

Receipt of an ACK (positive acknowledgment) DPDU by the transaction initiator indicates that 8280
the transaction recipient has successfully received the Data DPDU and that the transaction 8281
initiator should mark the transaction as complete. Unicast and duocast transactions require 8282
the transmission of ACK/NAK DPDUs in response to such receipt. 8283

Broadcast transactions, indicated in the right half of Figure 80, may also use dedicated 8284
timeslots, such as for scheduled advertisements. Broadcast transactions cannot use a DL 8285
immediate acknowledgment (i.e., via an ACK/NAK DPDU). 8286

As shown in the lower left quadrant of Figure 80, unicast and duocast transactions may use 8287
shared timeslots, such as within slow-hopping periods. Shared timeslots are commonly used 8288
for retries, join requests, exception reporting, and burst traffic. 8289

As shown in the lower right quadrant of Figure 80, broadcast transactions such as 8290
solicitations may also use shared timeslots. 8291

 – 328 – 62734/2CDV © IEC(E)

The term contention-free in Figure 80 is relevant only within the scope of D-subnet timeslot 8292
allocation. If two D-subnets, or DLEs within the same D-subnet, are allocating timeslots in an 8293
uncoordinated fashion, then access is not contention-free. Likewise, other users of the 8294
2,4 GHz spectrum, such as WiFi, Bluetooth®7, ZigBee, IEC 62591 and IEC 62601, potentially 8295
may also interfere. Improved coexistence with these uncoordinated systems is achieved by 8296
using CCA (see 9.1.9.4.3) to check the channel before transmission. 8297

The use of broadcast in this standard is limited to these DL operations: advertisements and 8298
solicitations. Advertisements and solicitations, used for D-subnet discovery, are described in 8299
9.1.13. 8300

NOTE Broadcast as described here does not use broadcast MPDUs defined in IEEE 802.15.4. See 9.1.5. 8301
Broadcast and multicast, as AL services, are not supported in this version of the standard. 8302

9.1.9.4.3 Unicast transaction 8303

Figure 81 illustrates a unicast transaction. 8304

TX DPDU Radio transition RX ACK

Radio startup RX DPDU • Process DPDU
• Radio transition TX ACK

DPDU length ACK length
Start of
timeslot

End of
timeslot

Transmitter

Receiver

• Prepare DPDU
• Radio startup C

C
A

 8305

Figure 81 – Unicast transaction 8306

Before a DLE transmits a Data DPDU in a timeslot, it prepares the Data DPDU for 8307
transmission, generally with DL security. Prior to transmission, the DLE is normally configured 8308
to perform a clear channel assessment (CCA) of the radio space. 8309

CCA shall be implemented as described in IEEE 802.15.4:2011. That standard specifies a 8310
detection period of 8 symbols. CCA shall be performed as configured in the timeslot template 8311
field dlmo.TsTemplate[].CCAmode (see Table 163), where the choices, listed by their coding, 8312
are: 8313

• CCA Mode 4 (Aloha); 8314

• CCA Mode 1 (energy above threshold); 8315

• CCA Mode 2 (carrier sense only); 8316

• CCA Mode 3 (carrier sense and/or energy above threshold). 8317

Compliance to IEEE 802.15.4:2011 requires that at least one of the CCA modes be supported. 8318
Compliance to EN 300 328 requires that CCA Mode 1 be supported. If a non-zero value for 8319
dlmo.TsTemplate[].CCAmode is selected and the selected mode is not supported by the DLE, 8320
the DLE may choose a different CCA mode that is supported by the DLE and permitted by the 8321
applicable regulatory regime. CCA modes supported by the DLE are indicated in 8322
dlmo.DeviceCapability.SupportedCCAmodes; see 9.4.2.23. 8323

7 Property of the Bluetooth Special Interest Group

62734/2CDV © IEC(E) – 329 –

IEEE 802.15.4:2011 permits CCA Mode 3 to be implemented either as the AND or the OR of 8324
CCA Mode 1 and CCA Mode 2. When CCA Mode 3 is implemented as the AND of CCA Mode 8325
1 and CCA Mode 2, it may be used in lieu of CCA Mode 1 in regulatory regimes that require 8326
CCA Mode 1. When CCA Mode 3 is implemented as the OR of CCA Mode 1 and CCA Mode 2, 8327
it cannot be used in lieu of CCA Mode 1 in regulatory regimes that require CCA Mode 1. 8328

If a specific CCA mode is required by regulation, but is not supported by implementation, then 8329
the DLE shall not initiate transactions. 8330

If CCA reports a busy medium, the transmission transaction shall be aborted. 8331

Use of CCA as defined by IEEE is not intended to exclude additional CCA checks that might 8332
be supported by advanced devices. For example, if a backbone router is capable of detecting 8333
IEEE 802.11 modulation, the DLE may reasonably leverage this capability to detect and report 8334
a busy medium. 8335

CCA should be complete 192 µs prior to the start of the physical layer header. 8336

If the D-transaction requires an ACK/NAK DPDU, the transmitting DLE enables its receiver 8337
after the transmission is completed, at a time specified in the TsTemplate. If an ACK DPDU is 8338
received, the transmitted Data DPDU is deleted from the DLE’s transmit queue. 8339

When a DLE is scheduled to receive a Data DPDU, it enables its PhLE’s receiver at the time 8340
specified in the TsTemplate and waits for the expected PhPDU. If it detects a valid 8341
IEEE 802.15.4:2011 SHR and PHR, it continues to attempt to receive the entire PhPDU. It 8342
then processes the contained Data DPDU (including DMIC authentication) and determines if 8343
the Data DPDU requires an acknowledgment. To send an ACK/NAK DPDU in 8344
acknowledgment, a DLE that is a transaction responder enables its PhLE’s transmitter and 8345
sends the ACK/NAK DPDU within the same timeslot, such that the ACK/NAK DPDU is 8346
transmitted at the time specified by the timeslot template for the primary (or a secondary, etc.) 8347
responder in that timeslot, depending on the DLE’s role as primary, etc., responder. 8348

The time window for each expected ACK/NAK DPDU is defined by the timeslot template. If 8349
there is a substantial delay between the end of the Data DPDU and the scheduled start of the 8350
expected ACK/NAK DPDU, an implementation may sensibly power down its receiver during 8351
the delay. 8352

9.1.9.4.4 Negative acknowledgments 8353

A transaction recipient shall respond to receipt of a unicast Data DPDU with a NAK DPDU 8354
when it cannot accept the Data DPDU at that time, but has successfully received it without 8355
other error. Time synchronization information may be included in NAK DPDUs. Similarly, a 8356
NAK DPDU ensures that RF statistics correctly log a clean transmission. A NAK DPDU can be 8357
used to exert back-pressure as a simple flow control mechanism. 8358

The DL supports two types of NAK DPDUs: NAK0 and NAK1. A NAK0 DPDU is intended to 8359
indicate resource limitations in the router, while a NAK1 DPDU is intended to signal 8360
downstream connectivity problems in the D-subnet. 8361

The DLE shall respond to a unicast Data DPDU with a NAK0 DPDU when it correctly receives 8362
the Data DPDU but cannot accept it due to lack of capacity in its message queue. See 9.1.8.5 8363
for a discussion of the DLE’s message queue. A DLE may also respond with a NAK0 when it 8364
is configured in excess of its forwarding capability (ForwardRate), as described in 9.4.2.23. 8365

The DLE may respond to a unicast Data DPDU with a NAK1 DPDU to apply back pressure in 8366
the event of lost downstream connectivity. For example, when the DLE loses downstream 8367
connectivity to all of its next neighbors in a specific graph, and then receives a Data DPDU 8368
that is following the same graph, the DLE may sensibly generate an immediate response of a 8369

 – 330 – 62734/2CDV © IEC(E)

NAK1 DPDU to indicate the lack of ability to forward Data DPDUs that are directed to the 8370
same graph. 8371

When a DLE receives a NAK0 or a NAK1 DPDU from a neighbor, it shall back off by not 8372
transmitting more Data DPDUs to that neighbor for a period of dlmo.NackBackoffDur. This 8373
backoff delay does not include delay of Data DPDUs without a payload, which allows the DLE 8374
to poll a neighbor that is a DL clock source for a time update even though the neighbor is not 8375
accepting Data DPDUs at that time. 8376

As described in 9.1.9.2.2, if a DL clock repeater’s clock has expired and it is polled for a time 8377
update, it should respond with a NAK1. 8378

9.1.9.4.5 Explicit congestion notification 8379

The standard supports explicit congestion notification (ECN) as described in IETF RFC 3168. 8380
ECN provides a mechanism for a router to affect AL flow control. 8381

As described in 12.12.4.2.3, there is a limited number of data source requests that can be 8382
simultaneously awaiting response from a data sink. Flow control at the data source operates 8383
by incrementally increasing the limit on outstanding requests, based on receipt of timely data 8384
sink acknowledgments. 8385

ECN provides a mechanism whereby flow control can be effective without driving the 8386
D-subnet to the point of failure. Any router along the path from data source to data sink may 8387
set ECN to indicate that the router is nearing its capacity. When the data sink receives the 8388
ECN, it echoes it back to the data source, which then accounts for the ECN in its flow control 8389
logic. 8390

An ECN indicator in the Data DPDU header may be set by any field router that is experiencing 8391
congestion, following the guidelines in IETF RFC 3168, as a signal to a data source that it 8392
should apply flow control to reduce its use of D-subnet resources. This ECN indicator is 8393
propagated to the data sink, such as a gateway, and eventually works its way back to the data 8394
source through a TL acknowledgment. 8395

In addition, the DL provides a special type of acknowledgment called ACK/ECN. A DLE 8396
receiving an ACK/ECN treats it as a normal DL acknowledgment. In addition, the DLE may 8397
treat the ACK/ECN as an early indication that the data sink’s acknowledgment will include an 8398
ECN. 8399

Use of the ACK/ECN should be limited to Data DPDUs with a priority of seven (7) or less, 8400
corresponding to best effort queued and real time sequential flows. 8401

9.1.9.4.6 Data DPDU wait times 8402

The clock times of transmitting and receiving DLEs are rarely in perfect synchronization. 8403
Therefore, a transmitting DLE is unlikely to transmit a PDU (protocol data unit) at exactly the 8404
time that a receiving DLE expects it. If a PDU is transmitted too early, the receiver might not 8405
yet be enabled. If a PDU is transmitted too late, the receiving DLE may have disabled its radio 8406
in order to save energy. PDU wait time (PWT) is the time period when the receiver is 8407
expected to listen for incoming PDUs. A particular degree of timing accuracy between the 8408
DLEs is implicit in the system manager’s selection of PWT. 8409

DLEs compliant with this standard accommodate configurable PWTs and configurable timeslot 8410
durations. PWT is not directly specified in this standard, but can be inferred within timeslot 8411
templates from the earliest and latest times that PDU reception begins. See Table 161. 8412

NOTE 1 This tutorial does not make a distinction between PhPDU and DPDU timings. As specified in 9.4.3.3, the 8413
DL follows a convention of specifying timeslot timing in reference to the DPDU (PhSDU), and not to the PhPDU. In 8414
implementations based on IEEE 802.15.4:2011 (2,4 GHz), PhPDU header detection involves receipt of a preamble, 8415

62734/2CDV © IEC(E) – 331 –

start frame delimiter (SFD), and frame length, for a total PhPDU header of 192 µs (6 octets) before the DPDU 8416
begins. Similarly, radio transmission of a PhPDU begins 192 µs prior to the nominal DPDU start time. 8417

PDU wait times in a unicast PDU are illustrated in Figure 82. The same principles apply to 8418
other types of PDUs. 8419

TX PDU Radio transition RX ACK

Radio startup RX PDU • Process PDU
• Radio transition TX ACK

Start of
timeslot

End of
timeslot

Transmitter

Receiver

• Prepare PDU
• Radio startup C

C
A

PWT

 8420

Figure 82 – PDU wait time (PWT) 8421

The duration of the PWT is configured by the system manager accounting for the intrinsic 8422
stability of transmitting and receiving DLE’s clocks, and the guaranteed maximum time 8423
between clock updates. 8424

For example, if transmitting DLEs are accurate to ±1 ms relative to the receiver within the 8425
clock expiration period (dlmo.ClockExpire), the receiver’s PWT should be 2 ms long. A less 8426
accurate transmitting DLE will require a longer receiver PWT or a shorter clock expiration 8427
period. (In this example, the radio’s listening time should be slightly longer than the 2 ms 8428
PWT, to account for the PhPDU’s SHR and PHR durations.) 8429

If the receiver does not begin receiving the expected PDU by the end of its PWT, the receiver 8430
is permitted to disable its radio for the duration of the timeslot. 8431

Timeslot durations of 10 ms have a timing budget that can allocate about 2 ms to PWT. For a 8432
longer PWT, either other allocations have to be adjusted or the timeslot duration has to be 8433
increased. For example, if the D-subnet supports DLEs that sleep for up to two minutes, 8434
timing errors of about ±2 ms may accumulate between reports. This can be accommodated by 8435
increasing the PWT from (for example) 2 ms to 4 ms, with a corresponding increase in 8436
timeslot duration and receiver energy consumption. 8437

NOTE 2 DLEs with infrequent reporting intervals are capable of being configured to check the D-subnet 8438
periodically for receivable Data DPDUs. These DLEs are capable of receiving clock corrections through the DAUX 8439
subheader as part of the same process. 8440

9.1.9.4.7 Duocast/N-cast transactions 8441

Duocast/N-cast is a variant of unicast, wherein one or more additional receivers are 8442
scheduled to overhear the Data DPDU and provide additional acknowledgments. 8443
Duocast/N-cast provides support for latency-controlled access to a backbone with an 8444
increased probability of first-try success. Duocast/ N-cast transactions are intended primarily 8445
for DLEs with links to two or more infrastructure DLEs, particularly to backbone routers, as 8446
shown in Figure 83. 8447

 – 332 – 62734/2CDV © IEC(E)

 8448

Figure 83 – Duocast support in the standard 8449

DLEs receiving the duocast/N-cast acknowledgments, circled in Figure 83, need to be 8450
configured with timeslot templates with an extended listening window for the additional 8451
acknowledgment(s). DLEs sending the secondary duocast/N-cast acknowledgments (e.g., one 8452
of those gray DLEs circled in Figure 83) need to be configured individually with timeslot 8453
templates with appropriately delayed/deconflicted acknowledgment windows for their 8454
individual acknowledgments, and with the address of the primary intended recipient to enable 8455
them to respond only to the expected Data DPDU. Duocast/N-cast support usually involves 8456
increased timeslot duration of approximately 1 ms to 2 ms per secondary receiver, as 8457
configured by the system manager. 8458

NOTE 1 Coordination of the duocast/N-cast response often involves back-channel coordination between the 8459
responding infrastructure DLEs (since such responders usually are backbone routers that are also connected to a 8460
higher-throughput backbone), but coordination via standard configuration messaging is also possible, depending on 8461
the design of the infrastructure DLEs. 8462

NOTE 2 If the probability of success of a single acknowledged-unicast transaction is p, the probability of failure 8463
for such a unicast transaction is (1-p). For the corresponding duocast transaction it is typically (1-p)2, while in the 8464
general case for an N-cast transaction it is (1-p)N. Thus when p = 95%, the probability of failure for a unicast 8465
transaction is 5%, for a duocast transaction it is 0,25%, for a 3-cast transaction it is 0,0125%, etc. Thus, in most 8466
relatively planar environments duocast suffices, though in highly metallic and obstructed three-dimensional 8467
environments such as offshore oil platforms 3-cast (“triocast”) may be worth consideration. 8468

NOTE 3 In many cases duocast is for contracts with a small maximum APDU size, such that the transaction-8469
initiating Data DPDU and both acknowledging ACK/NAK DPDU subslots would require no greater duration than a 8470
maximal-payload unicast transaction with a single-acknowledgment Data DPDU and its subsequent single 8471
acknowledging ACK/NAK DPDU. In that case a single timeslot duration is usable for both unicast and restricted 8472
duocast transactions, albeit with different transaction templates. 8473

Duocast/N-cast timeslots may be scheduled in conjunction with available digital bandwidth for 8474
a fast retry on an alternate channel, as shown in Figure 66. 8475

Figure 84 illustrates a transaction involving duocast transmission and reception. 8476

62734/2CDV © IEC(E) – 333 –

Radio startup RX DPDU • Process DPDU
• Radio transition TX ACKReceiver 1

Radio
transitionTX DPDU RX ACK

DPDU length ACK length
Start of
timeslot

End of
timeslot

Transmitter • Prepare DPDU
• Radio startup C

C
A

Radio startup RX DPDU • Process DPDU
• Radio transitionReceiver 2 TX ACK

RX ACK

 8477

Figure 84 – Duocast transaction 8478

In the example in Figure 84, the Data DPDU is addressed to receiver 1, the primary recipient, 8479
and is overheard by receiver 2, a secondary recipient. For duocast/N-cast transactions, the 8480
destination address of the Data DPDU is set to that of the primary recipient (receiver 1 in 8481
Figure 84), and an acknowledgment is expected from at least one recipient during the same 8482
timeslot. As illustrated in Figure 84, the primary recipient transmits an ACK/NAK DPDU upon 8483
receipt of the Data DPDU. Secondary recipients also transmit an ACK/NAK DPDU, but after 8484
an additional recipient-dependent delay to allow time for any preceding ACKNAK DPDUs to 8485
complete. 8486

If an ACK DPDU is received from any acknowledging recipient, the transaction is complete 8487
and the Data DPDU is deleted from the transaction-originator’s DLE’s message queue. 8488

If an ACK DPDU is received from a recipient, the DLE that originated the transaction is not 8489
required to expend energy receiving and processing any subsequent ACK/NAK DPDU(s) in 8490
that transaction. However, the DLE that originated the transaction should periodically verify 8491
that it is able to receive an ACK/NAK DPDU from each expected acknowledging recipient, to 8492
confirm the continuing availability of the secondary receiver(s). 8493

As noted in 9.1.5 and described in 9.3.4, a duocast/N-cast acknowledgment from a secondary 8494
recipient includes the acknowledging DLE’s own address field in the source address field of 8495
the MHR. This enables the transaction initiator to identify the acknowledgment’s source and 8496
occasionally to report the same to the system/security manager to facilitate detection of 8497
cyber-attacks. 8498

9.1.9.4.8 Shared timeslots with CSMA/CA 8499

Unicast transactions may occur in timeslots that are dedicated to a specific link. Alternatively, 8500
shared timeslots may be designated to provide bandwidth on demand to a collection of DLEs. 8501
Shared timeslots are usually configured to transmit only near the start of the timeslot. 8502

Timeslot templates specify transmission time as a range as per 9.4.3.3. At a minimum, the 8503
transmit time shall be configured to a range of at least 192 µs, thereby allowing for ±96 µs 8504
(±6 PHY symbol periods) of jitter that is permissible in a transaction initiator. If the 8505
transmission time range is configured to be larger than 200 µs, the DLE shall select a 8506
randomized time within that range to begin its transmission, making reasonable 8507
accommodation for the DLE’s actual transmission jitter characteristics. 8508

Figure 85 illustrates the use of a shared timeslot with active CSMA/CA. 8509

 – 334 – 62734/2CDV © IEC(E)

Radio
startup RX DPDU • Process DPDU

• Radio transition TX ACK

DPDU length ACK length
Start of
timeslot

End of
timeslot

Receiver

Transmitter 2 • Prepare DPDU
• Radio startup C

C
A

TX DPDU Radio
transition RX ACKTransmitter 1 • Prepare DPDU

• Radio startup C
C

A

B

ac
ko

ff

 8510

Figure 85 – Shared timeslots with active CSMA/CA 8511

In the example in Figure 85, two DLEs are contending for use of the channel in a shared 8512
timeslot. This approach is used for all shared slots, configurable to be used in various ways. 8513

Priorities within a shared timeslot may be managed by configuring DLEs with different timeslot 8514
templates. A DLE with a high-priority Data DPDU, such as a retry for a failed duocast 8515
transaction, may be configured to transmit its Data DPDU as early as possible within the 8516
timeslot. A DLE with less critical requirements may be configured to delay its transmission to 8517
slightly later in the timeslot, such as 2 ms later. If another DLE has already claimed the 8518
timeslot, as shown in Figure 85, the CCA of the delayed DLE might (or might not) detect that 8519
the channel is in use and consequently defer its transmission to another timeslot. 8520

Use of active CSMA/CA within shared timeslots may involve configurations with longer 8521
timeslots and longer Data DPDU wait times, and use of more receiver energy. 8522

9.1.9.4.9 Transactions during slow-channel-hopping periods 8523

Some DLEs do not have a sufficiently stable time base to communicate at their normal 8524
messaging rate within short timeslots. These DLEs may need to use slow-hopping periods for 8525
their communication. Slow-channel-hopping periods are simply a set of concatenated 8526
timeslots on the same channel, wherein the receiver runs its radio continuously and the 8527
transaction initiator is not required to respect timeslot boundaries within the slow-hopping 8528
period. 8529

As shown in Figure 86, a transaction during a slow-channel-hopping period is very similar to a 8530
unicast transaction in a shared timeslot, except that Data DPDU transmission can occur 8531
anywhere within the slow-channel-hopping period. Transmitting DLEs target the beginning of 8532
a specific timeslot within a slow-channel-hopping period, based on the transaction initiator’s 8533
own sense of time, which is not required to be very well synchronized with that of the intended 8534
receiver(s). Transmitting DLEs use CCA to check the channel before transmission. In the 8535
absence of higher priority operations (such as forwarding of Data DPDUs), a receiver hosting 8536
the slow-channel-hopping period runs its radio receiver continuously except when responding 8537
to Data DPDUs that it receives. 8538

62734/2CDV © IEC(E) – 335 –

C
ha

nn
el

s

time

...

Slotted
hopping Slow hopping

TX DPDU RX ACK

Start of
timeslot

End of
timeslot

Transmitter C
C A

RX DPDU TX ACKReceiver

DPDU length ACK length

0 6 10741 2 8 11953 12 13 14Slow
hopping
period

Radio
transition

• Prepare DPDU
• Radio startup

• Process DPDU
• Radio transition

Radio
transition

Timeslot
offset

 8539

Figure 86 – Transaction during slow-channel-hopping periods 8540

DLEs can target any timeslot within a slow-channel-hopping period, with one major caveat: 8541
scheduled Data DPDU timeslot time is required to increase with each transaction. 8542

DLEs should respect timeslot boundaries within slow-channel-hopping periods to the best of 8543
their ability. If all DLEs within slow-channel-hopping periods are well behaved, with well-8544
synchronized clocks, the resulting performance is approximately comparable to that of the 8545
slotted Aloha protocol. 8546

A DLE whose time sense differs from that of its intended receiver(s) will nominally transmit 8547
near the start of a particular timeslot, based on its own sense of time. However, such a DLE 8548
may actually initiate transmission in any phase of any timeslot within the slow-channel-8549
hopping period. 8550

For example, a DLE that has a clock source with a stability of ±50×10-6 over a few-minute 8551
interval, due to uncompensated environmental fluctuations, may sleep for 3 minutes between 8552
transactions, corresponding to a clock drift of about ±9 ms. A DLE of this type might wait for a 8553
scheduled advertisement to get itself resynchronized prior to transmission. Alternatively, it 8554
might transmit during a slow-channel-hopping period (if available) and receive time 8555
synchronization in the acknowledgment. Continuing with this example, a DLE with ±9 ms 8556
accuracy would select one of the slots within the slow-channel-hopping period, and transmit 8557
using the appropriate link template. The DLE would nominally be transmitting in a particular 8558
timeslot, based on the DLE’s own sense of time, but may actually be transmitting in a different 8559
timeslot. 8560

In this example, the DLE should not attempt to transmit in the first or last timeslot in the slow-8561
channel-hopping period, because it may actually transmit outside of the available time range. 8562
It is the DLE’s responsibility to avoid selecting timeslots that are inconsistent with the DLE’s 8563
time-keeping capabilities, accounting for the DLE’s own uncalibrated clock drift in combination 8564
with the 10×10-6 clock drift allowed for a neighboring router or the 100×10-6 clock drift allowed 8565
for a neighboring non-routing field device. 8566

 – 336 – 62734/2CDV © IEC(E)

All Data DPDUs in slow-channel-hopping periods shall include an extra octet in the Data 8567
DPDU header to indicate which timeslot offset within the slow-channel-hopping period was 8568
intended. This enables the receiving DLE to reconstruct timeslot information from the 8569
transmitting DLE, to apply time correction across timeslots, to validate the accuracy of the 8570
transaction initiator’s clock, and to use the scheduled timeslot start time as security material 8571
for message authentication. (This is specified in the Data DPDU MAC subheaders, DMXHR; 8572
see 9.3.3.4.) 8573

If necessary, a corrected timeslot offset is provided in the acknowledgment (see 9.3.4). 8574
Unambiguous shared timeslot identification is needed for both the transaction initiator and 8575
transaction receivers to authenticate the Data DPDU and to resynchronize time. Even if the 8576
transmitting DLE has a highly accurate sense of time, the receiving DLE(s) might not; 8577
therefore the channel-hopping-offset octet is required for all Data DPDUs using a slow-8578
channel-hopping superframe. 8579

The initial timeslot within a slow-channel-hopping period is defined as having an offset of 8580
zero. 8581

 D-subnet addressing 9.1.108582

9.1.10.1 Address types 8583

DL16Addresses shall always be used within a D-subnet, except that EUI64Addresses are 8584
used in a limited way during the initial phases of the join process to communicate with the 8585
joining device. 8586

Every DLE in a D-subnet is identified in three ways: 8587

• Each D-subnet DLE has an EUI64Address identifier that is presumed to be unique. 8588

• Each DLE compliant with this standard shall be assigned at least one IPv6Address when it 8589
joins the D-subnet. However, within the DL, only the DL16Address alias for this 8590
IPv6Address (described next) shall be used. 8591

• Each DLE or foreign device that is accessible through a D-subnet has a D-subnet-unique 8592
DL16Address, which is an alias for its IPv6Address. The scope of any DL16Address shall 8593
be limited to a particular D-subnet. 8594

The EUI64Address shall be used as a new DLE’s address for immediate neighbor addressing 8595
prior to and during the join process. Once a DLE has joined the D-subnet and received its 8596
IPv6Address, it shall be addressed by either its IPv6Address or a D-subnet-local 8597
DL16Address alias of that IPv6Address. 8598

The EUI64Address is also used in each DPDU security nonce. Whenever a DL16Address is 8599
used in a Data DPDU or an ACK/NAK DPDU, the DPDU’s recipient(s) need(s) a-priori 8600
knowledge of the corresponding EUI64Address. This neighbor information is provided by the 8601
system manager as part of the link establishment process. An exception is made for a new 8602
DLE that is communicating with a neighbor that has advertised its DL16Address. In that case, 8603
the DLE of the joining DLE shall acquire the EUI64Address of the advertising DLE by initiating 8604
a transaction with that neighbor, sending it a Data DPDU with a null payload while requesting 8605
the EUI64Address in the replying ACK/NAK DPDU, as described in 9.3.3.3. For that 8606
bootstrapping transaction, the applicable D-key is K_global, used with a DMIC-32, which is 8607
the same as for other Data DPDUs involving an EUI64Address. (See 9.1.11 for discussion of 8608
DL security.) 8609

When a DL16Address refers to a DLE within a D-subnet, the DL16Address is always the 8610
16-bit MAC address of the DLE. When a Data DPDU contains a DL16Address that refers to a 8611
device not within the scope of the D-subnet, the Data DPDU is routed to a DLE that is serving 8612
as a backbone router, which maps the logical DL16Address to its IPv6Address counterpart. 8613

62734/2CDV © IEC(E) – 337 –

Most Data DPDUs include two source DL16Address and two destination DL16Address . One 8614
pair of source/destination DL16Address is for next-hop addressing at the MAC sublayer. A 8615
second pair of source/destination DL16Addresses (actually D-aliases) are found within the 8616
Data DPDU’s DADDR subheader, where they specify the D-subnet-local ultimate source and 8617
destination NLEs via their D-aliases. 8618

Routing is usually specified by graphs, not by D-addresses. However, when source routing is 8619
used within a D-subnet, DL16Addresses are normally used. Again, the one exception is that 8620
EUI64Addresses are used during the join process for communication with an immediate 8621
neighbor within the D-subnet. 8622

9.1.10.2 Subnet identifier and uniqueness of DL16Addresses 8623

The scope of a DL16Address is a D-subnet. A neighboring D-subnet may use the same 8624
DL16Address to reference a different DLE. Different D-subnets may use different 8625
DL16Addresses to refer to the same backbone device. 8626

Each D-subnet has a 16-bit D-subnet identifier (dlmo.SubnetID; see 9.4.2.1), which has the 8627
same value as the PAN ID found in the IEEE 802.15.4:2011 MPDU header. Within the scope 8628
of a network, each D-subnet shall have a unique dlmo.SubnetID. However, different networks 8629
are not necessarily coordinated, so dlmo.SubnetIDs across co-located standard-compliant 8630
networks are not guaranteed to be unique. Thus, it is possible, though unlikely, that a DPDU 8631
from a different standard-compliant D-subnet will be received with what appears to be a valid 8632
DL16Address and PAN ID. The DLE relies on the DSC to discard such DPDUs on receipt due 8633
to DMIC mismatch or DMIC non-authentication, where that mismatch occurs due to non-8634
identical D-security symmetric keys. 8635

SubnetID=0x0000 and SubnetID=0xFFFF shall not be used as D-subnet IDs in this standard. 8636
SubnetID=0x0001 is reserved for provisioning D-subnets (see 13.1) and shall not otherwise 8637
be used. 8638

 DL management service 9.1.118639

9.1.11.1 General 8640

Management messages to a DLE are fully secured at the AL, using the end-to-end 8641
relationship between the system/security manager and the DLE’s DMAP. 8642

The DL’s MAC, based on IEEE 802.15.4:2011, is not accessed directly by the DMAP; instead 8643
it is configured indirectly through the DMSAP. This isolates the rest of this standard from 8644
evolutionary changes to IEEE specifications, facilitates future adoption of alternative physical 8645
layer specifications (e.g., radios) that may have alternative or enhanced associated MACs, 8646
and enables some MAC and PHY operational aspects (such as CCA) to be used or not on a 8647
timeslot-by-timeslot basis. 8648

As shown in Figure 87, DL management commands generally flow through the full 8649
communication protocol stack defined by this standard. 8650

 – 338 – 62734/2CDV © IEC(E)

Upper data link layer

MAC extension

Application sub-layer

User
application
process a

User
application
process n

U
A

P
M

E
-

2
S

A
P

U
A

P
M

E
-

n
S

A
P

ASLDE-n
SAP

ASLDE-2
SAP

ASMSAP

ASLDE-0
SAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-2

PMSAPPDSAP

NMSAP

NDSAP

TMSAP

TDSAP-0TDSAP-n

Device manager
(DMAP)

MDSAP

DMSAP

DDSAP

MMSAP

 8651

Figure 87 – DL management SAP flow through standard protocol suite 8652

A DLE is configured via its DMAP through its DMSAP. Most management SAPs are generic, 8653
simply reading and setting data structures within the layer. Those data structures generally 8654
define how a DLE operates its state machine. The DMAP communicates with the system 8655
manager through the application sublayer, using end-to-end security. 8656

For information on the general handling of standard management objects, see 6.2.5 and 8657
6.2.6. 8658

9.1.11.2 Management attributes and indexed attributes 8659

DMSAPs involve the manipulation of the DL management object (DLMO). The DLMO includes 8660
a variety of attributes that are used to configure the DLE and/or report its status. 8661

Some DLMO attributes apply to specific values. For example, attribute dlmo.SubnetID 8662
provides the subnet-ID for the D-subnet that the DLE has joined. 8663

Some DLMO attributes can be visualized as tables with a collection of indexed rows. Each 8664
such attribute is specified as an indexed OctetString. For example, the DLE includes the 8665
attribute dlmo.Neighbor, which is an indexed OctetString attribute containing a collection of 8666
neighboring DLEs. Each entry of the dlmo.Neighbor attribute includes a set of fields for that 8667
neighbor, such as an indicator of whether that neighbor is a DL clock source. Each entry of 8668
the dlmo.Neighbor table is uniquely identified by the neighbor’s DL16Address. Indexed 8669
OctetString attributes in the DLMO include: 8670

• dlmo.Ch: channel-hopping patterns; 8671

• dlmo.TsTemplate: timeslot templates; 8672

• dlmo.Neighbor: DLE neighbors; 8673

• dlmo.NeighborDiag: diagnostics for DLE neighbors; 8674

62734/2CDV © IEC(E) – 339 –

• dlmo.Graph: graphs for routing; 8675

• dlmo.Superframe: superframes specifying common attributes for associated links; 8676

• dlmo.Link: links, each of which is associated with a superframe; 8677

• dlmo.Route: routes usable in DROUT subheaders. 8678

Relationships among these attributes are described in 9.4.3.1. 8679

DLMO attributes shall be maintained through the DMAP using methods that are described in 8680
Clause 9 and Clause 12. The ASLE services Read and Write described in Table 271 provide a 8681
general framework for reading and writing DLMO attributes. Methods for writing attributes that 8682
are to become active at a TAI cutover time, as well as methods for reading and writing 8683
indexed OctetString attributes, are described in 9.5. 8684

The format of the DLMO attributes is defined in the DLE specification. When these objects are 8685
embedded within over-the-air messages, the specified formats shall be used. This standard 8686
does not (and cannot) constrain how data is stored within a DLE, or define how corresponding 8687
information is relayed internal to a DLE. 8688

9.1.11.3 Management messages from immediate neighbors 8689

Any Data DPDU may include a DAUX subheader, for example carrying advertisement 8690
information from an immediate neighbor. The DAUX subheader information is not propagated 8691
to higher layers of the communication protocol suite. In most cases, the content of the DAUX 8692
subheader is intended for the recipients DLE’s management process, which in turn may use 8693
this information to configure the DLE state machine. For example, the DAUX subheader may 8694
include superframe definitions that are intended to be used by the DLE as a starting point in 8695
the join process and/or for neighbor discovery. 8696

The DAUX subheader is modeled as being instantly visible to the DMAP and immediately 8697
acted on if necessary. 8698

NOTE Since standards apply only to externally-visible aspects, the internal DMSAP interface is not subject to 8699
standardization. 8700

9.1.11.4 Multiple D-subnets 8701

DL management objects support only one active D-subnet at a time. All DL16Addresses shall 8702
be unique within the scope of that single D-subnet. This constraint does not prevent a DLE 8703
from participating in multiple D-subnets simultaneously. Multiple D-subnets might be modeled 8704
as multiple instances of a DLE, but such operation is not specified by this standard. 8705

If dlmo.SubnetID=0, the DLE is not yet participating in a D-subnet. 8706

9.1.11.5 Multiple PhLEs (radios) 8707

Each DSAP of a DLE is assumed to be associated with only one PhLE (radio). This does not 8708
preclude implementations with multiple radios, which might be modeled as multiple instances 8709
of a DLE. Such operation is not specified by this standard. 8710

 Relationship between DLE and DSC 9.1.128711

The relationship between the DLE and the DSC is described in 7.3.2. Careful review of 7.3.2 8712
is essential for anyone who wishes to fully understand DLE operation. 8713

Generally, the DLE relies on the DSC for authentication, integrity and conditional 8714
confidentiality. All DPDUs include a DMIC that unambiguously validates that an MPDU 8715
originates from a DLE that shared the same D-subnet key, vs. those that implement another 8716
protocol using similar modulation, coding and channels. The DMIC uses a non-secret security 8717

 – 340 – 62734/2CDV © IEC(E)

key during the join process but then is usually configured to use a shared-secret key once the 8718
DLE is joined. 8719

ACK/NAK DPDUs are expanded by the DLE, by inserting the Data DPDU’s DMIC into the 8720
ACK/NAK DPDU’s header, as a virtual field before being processed by the DSC. This virtual 8721
field, which is not transmitted, is included in the ACK/NAK DPDU’s DMIC calculation. Thus the 8722
Data DPDU’s DMIC is essentially echoed in the ACK/NAK DPDU without actually transmitting 8723
the field. In this manner, the ACK/NAK DPDU is unambiguously bound to the corresponding 8724
Data DPDU of the D-transaction. 8725

 DLE neighbor discovery 9.1.138726

9.1.13.1 General 8727

Wireless D-subnets compliant with this standard are detected by the DLE. A new DLE may 8728
hear advertisements from neighboring DLEs that have already joined a D-subnet of interest. 8729
This is called neighbor discovery. Following neighbor discovery, the DLE can join the 8730
D-subnet as described in 7.4. 8731

The DL advertisement and neighbor discovery processes are the building blocks that enable a 8732
DLE to learn the DL16Address and EUI64Address of a neighboring router, and the set of 8733
scheduled links that have been allocated for use when joining. That information is then used 8734
by the DLE and DME to join the D-subnet. 8735

DLEs discover D-subnets through advertisement Data DPDUs received from one or more 8736
advertising DLEs that periodically announce their presence. An advertising DLE is capable of 8737
acting as a proxy in the provisioning or joining process. An advertisement contains 8738
information that enables a new DLE to send a join request to the advertising DLE, for relay to 8739
a system manager, and some time later to receive a join response. 8740

After joining a D-subnet, the DLE receives advertisement Data DPDUs from neighboring DLEs 8741
in the D-subnet and builds a local list of candidate neighbors with which it may have 8742
reasonable quality communications. This list of candidates is reported to a system manager 8743
through the attribute dlmo.Candidates. The system manager uses this information to 8744
determine how the DLE fits into the D-subnet topology. In turn that information is used to 8745
establish communication relationships between the new DLE and its neighbors. 8746

Advertising DLEs may be discovered using passive scanning, active scanning, or a 8747
combination of passive and active scanning. 8748

In passive scanning, the DLE periodically listens for advertisements on a series of channels. 8749
Generally, a battery-powered passive scanning DLE will listen frequently when first powered 8750
on. If a D-subnet is not discovered quickly, the DLE may extend its battery life by scanning 8751
less frequently and/or by allocating shorter time intervals for each scan. Such reductions can 8752
result in substantial delays in D-subnet joining and/or D-subnet formation, so are used only 8753
after the rapid join strategy has failed. 8754

Active scanning overcomes some disadvantages of passive scanning. DLEs that are 8755
configured for active scanning will search for a D-subnet by periodically transmitting 8756
solicitation Data DPDUs, which trigger advertisement Data DPDUs from neighboring routers in 8757
response. The DLE transmitting the solicitation Data DPDU is called an active scanning 8758
interrogator, while the responding DLE is called an active scanning host. Active scanning 8759
hosts expend energy operating their radio receivers while listening for solicitation Data 8760
DPDUs. Some active scanning hosts have energy available for continuous receiver operation. 8761
Active scanning hosts with more limited energy sources may be configured to listen 8762
continuously for certain periods of time, such as during D-subnet formation. 8763

62734/2CDV © IEC(E) – 341 –

Link schedules used for joining are not necessarily related to superframe schedules used for 8764
normal D-subnet operation. Thus, little information about D-subnet operation needs to be 8765
conveyed in the advertisements. 8766

9.1.13.2 Auxiliary subheader and advertisements 8767

DL advertisements and solicitations are conveyed in a Data DPDU’s auxiliary subheader 8768
(DAUX) within the DPDU header (DHR). See 9.3.1 for an overview of the DHR. A Data DPDU 8769
that conveys a solicitation is known as a solicitation DPDU. Similarly, a Data DPDU that 8770
conveys an advertisement is known as an advertisement DPDU. 8771

The DAUX subheader is usually absent from a DHR, but shall be included in any DHR if so 8772
configured for a particular link. A Data DPDU containing a DAUX subheader may also carry a 8773
higher layer payload that is unrelated to the neighbor discovery function. 8774

Transmission of an advertisement is triggered by an advertisement flag as configured within a 8775
link definition. The advertisement flag indicates that an advertisement shall be transmitted in a 8776
superframe’s timeslot, in the absence of a higher priority link. 8777

The same link definition may also include a transmission flag, in which case the DLE shall 8778
check the message queue for matching outbound Data DPDUs. Thus, the Data DPDU may 8779
simultaneously carry: 8780

• an advertisement; and 8781

• a DSDU payload that is entirely unrelated to the advertisement. 8782

The payload capacity of the Data DPDU is reduced when an advertisement is embedded 8783
within the DHR. Some Data DPDUs on the message queue, particularly messages that have 8784
been fragmented at the NL, may be too long to be combined with an advertisement. Such 8785
messages are not candidates for links that are shared with an advertisement, effectively 8786
giving the advertisement priority access to those timeslots. 8787

NOTE When messages are fragmented by the NL, the fragment size is set by the NL before being passed to the 8788
DLE, with fragment size being configured by the system manager. In configurations where advertisements are 8789
infrequently combined with transmit links, the maximum fragment size often is limited by the Data DPDU payload 8790
capacity without considering the combined advertisement. 8791

In general, Data DPDUs containing an advertisement use a DMIC based on the D-subnet’s 8792
security key, thereby providing an advertisement that can be trusted by DLEs after they have 8793
joined the D-subnet. This DMIC cannot be validated prior to joining, because an unjoined DLE 8794
does not yet have the D-subnet security key. Therefore, an unjoined DLE that is scanning for 8795
a D-subnet is permitted to process an advertisement in a DAUX subheader even if it is unable 8796
to authenticate the Data DPDU containing the DAUX. 8797

Without the benefit of a DMIC, an unjoined DLE receiving an advertisement can still use the 8798
IEEE 802.15.4:2011 FCS as an integrity check. However, the IEEE 802.15.4:2011 FCS alone 8799
does not filter MPDUs from other systems that use IEEE 802.15.4:2011. Therefore this 8800
standard provides an additional integrity check, not involving a security key, specifically 8801
covering the advertisement subheader, as specified in 9.3.5.2.4.3. 8802

9.1.13.3 Active scanning solicitation and response 8803

In active scanning a new DLE, acting as an active scanning interrogator, periodically solicits 8804
advertisements from active scanning hosts that happen to be in radio range. A DLE receiving 8805
the solicitation can be configured to respond with an advertisement. 8806

Active scanning is intended for configurations in which an advertising DLE, in its capacity as 8807
an active scanning host, is able to operate its receiver more or less continuously in a slow-8808
channel-hopping configuration. Active scanning hosts may be continuously powered. 8809

 – 342 – 62734/2CDV © IEC(E)

Alternatively they may be energy-constrained DLEs that run their receivers in a slow-channel-8810
hopping configuration for limited periods of time, such as during D-subnet formation. 8811

The solicitation request is encoded in the DAUX subheader of the solicitation Data DPDU. A 8812
solicitation Data DPDU shall not contain an NL payload. 8813

A solicitation Data DPDU, when received by an active scanning host DLE, causes that DLE to 8814
transmit an advertisement Data DPDU in the next timeslot if the DLE is so configured. A 8815
router receiving a solicitation Data DPDU shall respond by transmitting an advertisement Data 8816
DPDU in the next full timeslot if, and only if: 8817

• the default receive link for scanning (Table 165) applies in the next timeslot and occurs on 8818
the same radio channel as the solicitation; and 8819

• the DLE attribute dlmo.ActScanHostFract is configured for response to solicitation Data 8820
DPDUs. Dlmo.ActScanHostFract indicates the fraction of time that the DLE should 8821
respond when it receives an active scanning solicitation, where 8822
– a value of 0 indicates that the DLE is not configured as an active scanning host and 8823

that will not respond to solicitations, 8824
– a value of 255 indicates that the DLE should always respond to solicitations, and 8825
– a value in the range 1..254 indicates that the DLE makes a uniformly-random selection 8826

from the range 1..255 each time it receives a solicitation, and does not respond with a 8827
solicitation if the result is greater than dlmo.ActScanHostFract, thus generating a 8828
solicitation response Data DPDU with probability dlmo.ActScanHostFract / 255; and 8829

• the DLE is configured to respond to the D-subnet ID included in the advertisement Data 8830
DPDU, as described in 9.4.2.20. A solicitation Data DPDU may be configured to include a 8831
D-subnet ID to limit respondents to a desired set of D-subnets. 8832

The next full timeslot, in this context, shall be defined as the next timeslot that starts following 8833
the end of the solicitation’s PhPDU plus 1 ms . Within that next timeslot, the advertisement 8834
Data DPDU shall be transmitted using timing as defined in the default transaction initiator 8835
template in Table 166, even if that default template is overwritten during DLE configuration. 8836

An active scanning interrogator, which is presumably not synchronized with D-subnet timing, 8837
should enable its radio to receive an advertisement Data DPDU starting as early as 3 212 µs 8838
following the end of the solicitation Data DPDU, which is 1 ms plus the 2 212 µs from Table 8839
166. Following that time, the active scanning interrogator should keep its receiver enabled 8840
long enough to receive an advertisement Data DPDU beginning at any time during a full 8841
timeslot duration. The active scanning interrogator should use its own timeslot duration as the 8842
assumed timeslot duration of the active scanning host. Therefore, when solicitation Data 8843
DPDUs are used, the active scanning interrogator should be configured with a timeslot 8844
duration that matches or exceeds the timeslot duration of the target D-subnet. 8845

A solicitation Data DPDU is required for a link that is configured as a solicitation link. 8846

To support passive scanning by new DLEs, active scanning hosts may also be configured to 8847
transmit advertisement Data DPDUs periodically. 8848

It may be necessary to suppress solicitations, to account for situations where it is unsafe or 8849
illegal for a DLE to operate its radio transmitter without authorization. To address such 8850
situations, the DLMO attribute dlmo.RadioSilence provides a mechanism to disable 8851
solicitations along with all other DLE transmissions. 8852

Solicitations are disabled by default. Solicitations are not used in the default configuration, 8853
and dlmo.ActScanHostFract defaults to zero. 8854

62734/2CDV © IEC(E) – 343 –

9.1.13.4 Continuous scanning 8855

Neighbor discovery should be an ongoing process even after a DLE has joined the D-subnet. 8856
Ongoing scans can, over time, help to form a more optimal D-subnet. Mains-powered routers 8857
that spend a substantial portion of their time listening can, over time, receive many 8858
advertisements from nearby routers. Battery-powered devices cannot spend a high 8859
percentage of their time listening, but even if they just sample the channel periodically, they 8860
can, over extended periods of time, build a comprehensive picture of neighboring routers. If 8861
the D-subnet is configured with a coordinated schedule of advertisements, such scanning can 8862
be performed more efficiently. 8863

A system management function may establish an overall D-subnet schedule for 8864
advertisements, and a joined DLE may be provisioned with a schedule of receive links to 8865
ensure that such advertisements are heard over time. When used, this approach enables 8866
DLEs on the D-subnet to find neighbors efficiently. Additionally, a low-duty-cycle DLE may be 8867
configured to use these scheduled advertisements to remain time-synchronized with the 8868
D-subnet. 8869

Advertisements are authenticated with a DMIC, to enable DLEs that have joined the D-subnet 8870
to rely on scheduled advertisements as a trusted source of timing and connectivity 8871
information. 8872

 Neighbor discovery and joining – DL considerations 9.1.148873

9.1.14.1 General 8874

The DL provides a configurable mechanism to discover neighboring DLEs. 8875

During provisioning, a DLE is configured to scan for neighbors that can act as proxies in the 8876
join process. When an advertisement is received from a candidate neighbor, the DLE uses 8877
information in the advertisement to create communication links to and from that neighbor, and 8878
then provides the neighbor’s addressing information to the DMAP. For the remainder of the 8879
join process, the DLE provides communication support to upper layers by passing Data 8880
DPDUs to and from the neighbor. 8881

After joining the D-subnet, the DLE is implicitly or explicitly instructed by the system manager 8882
to scan for new neighbors for a designated period of time, using superframes and links 8883
provided by the system manager. The result of this scan is reported as neighbor information 8884
to the system manager that uses the information to provide the DLE with an optimal 8885
configuration within the DLE’s mesh. The DLE then continues to accumulate information about 8886
new candidate neighbors throughout its lifecycle, and this information is periodically reported 8887
to the system manager to facilitate configuration of improved and adaptive mesh 8888
configurations. 8889

The D-subnet joining process from the DLE’s point of view can be informatively summarized 8890
as follows: 8891

– The DLE, possibly in its factory state, searches for an advertisement from the provisioning 8892
DLE. This search is built into the DLE as defined by this standard. 8893

– The DLE receives an advertisement from the provisioning DLE. This advertisement, with 8894
D-subnet ID = 1, provides a compressed but fully functional configuration for the DLE’s 8895
state machine. The DLE uses this configuration to communicate with the provisioning 8896
DLE. During provisioning, a different DLE configuration, that is subsequently used to 8897
search for the target D-subnet, is written to the device provisioning object (DPO). 8898

– At the end of provisioning, the provisioning DLE sets Join_Command=1, indicating 8899
successful completion of the provisioning process and causing the DLE to reset to the 8900
provisioned state. The DLE defines that reset as first resetting the DLE to its factory state, 8901
thus erasing the material from the provisioning DLE’s advertisement, and then initializing 8902
the DLE with the settings stored in the DPO. 8903

 – 344 – 62734/2CDV © IEC(E)

– The DLE then commences operation of its state machine, using the configuration as 8904
initialized by the DPO. This configuration from the provisioning DLE should be matched to 8905
the target D-subnet to facilitate efficient D-subnet discovery. For example, if the target 8906
D-subnet is configured to transmit advertisements on three channels, the DPO might 8907
reasonably configure the DLE to scan those same three channels. 8908

The discovery process is successful when the DLE receives an advertisement from the target 8909
D-subnet. This advertisement contains a compressed but fully functional DLE configuration 8910
that can be used for communication with the system manager through the router that 8911
transmitted the advertisement. 8912

If the join process times out, the DLE is reset to the provisioned state. The configuration 8913
derived from the advertisement is erased, the DPO configuration is re-established, and the 8914
DLE resumes its search for a target D-subnet. 8915

If the join process is successful, the DLE’s joining configuration persists until explicitly 8916
updated by the system manager. Thus, at the end of the join process, the DLE usually retains 8917
an interim connection with the system manager through the advertising router. 8918

Following a successful join, the DLE searches for a set of candidate routers that can be used 8919
for communication. After a configurable period of time, defaulting to 60 s, the DLE reports this 8920
list of candidates to the system manager. This information is used by the system to replace 8921
the interim connection with a more permanent and resilient DLE configuration. 8922

If the DLE’s intended reporting rate will be so low that the time synchronization required for 8923
slotted-channel-hopping will not be maintainable, and if the local D-subnet provides slow-8924
channel-hopping intervals, then the DLE can shift to using slow-channel-hopping for most of 8925
its infrequent communications. 8926

NOTE The join process, which is intended for infrequent, acyclic use by any given DLE, uses slotted-channel-8927
hopping; slow-channel-hopping during the join process is not supported. 8928

9.1.14.2 DLE states 8929

When a device is manufactured, the DLE is in its default state. Attributes in the default state 8930
are defined by this standard. 8931

In the default state, the DLE shall periodically scan for a provisioning D-subnet, using a 8932
search procedure defined by this standard. When the DLE receives one or more 8933
advertisements from a provisioning DLE in a provisioning D-subnet, the DLE shall use 8934
information in one of the advertisements to establish a superframe with links that can be used 8935
to communicate with the selected provisioning DLE. The DLE then informs the DPO (device 8936
provisioning object) that a D-association has been established, and switches the DLE to the 8937
provisioning state. 8938

In the provisioning state, the DLE halts the search procedure defined by this standard. 8939
Instead, the DLE operates its state machine according to a superframe with links that were 8940
provided by the provisioning DLE’s advertisement. During the provisioning process, the DLE 8941
provides communication services to upper layers by operating its state machine according to 8942
the advertised superframe and links, so that provisioning APDUs can be passed between the 8943
DPO and the provisioning DLE via the DLE that is being provisioned. 8944

If the provisioning process times out, the DLE reverts to its default state and resumes its 8945
default search procedure for a provisioning D-subnet. 8946

If the provisioning process is successful, the DPO provides the DLE with a set of attributes, 8947
including D-subnet information, superframes, and links, that the DLE can use to search for the 8948
target D-subnet(s). The DLE then switches from the provisioning state to the provisioned 8949
state, and operates its state machine as configured in the superframes and links that were 8950
provided by the DPO. 8951

62734/2CDV © IEC(E) – 345 –

The switch from the provisioning state to the provisioned state is triggered when the 8952
provisioning DLE sets Join_Command=1 (Table 10). When that occurs, the DLE is reset to its 8953
provisioned state and then operates its state machine as configured in order to search for a 8954
target D-subnet. 8955

In general, a DLE reset to a provisioned state is accomplished in two steps. First, the DLE is 8956
reset to its default state. Then, information from the DPO’s Target_DL_Config attribute is 8957
applied to the DLE. This provides a set of attributes, including D-subnet information, 8958
superframes, and links, that the DLE uses to search for the target network and corresponding 8959
D-subnets. See 13.8. 8960

If the DLE is provisioned through an out-of-band mechanism, the provisioning state may be 8961
bypassed and in that case the DLE transitions directly from the unprovisioned state to the 8962
provisioned state. 8963

The DPO retains a copy of the information that was used to provision the DLE, providing a 8964
means to reset the DLE back to its provisioned state by putting the DLE into its default state 8965
and then adding the provisioned attributes from the DPO. 8966

A DLE in the provisioned state operates its state machine as configured in its provisioned 8967
superframes and links. The provisioned superframes and links should be matched to the 8968
operating characteristics of the target D-subnet(s), so that a target network is efficiently 8969
discovered when the DLE and a target D-subnet are in proximity to each other. The result is 8970
that the DLE receives at least one advertisement from at least one proxy DLE that is 8971
participating in one of those target D-subnets. The DLE uses the information conveyed by one 8972
of the received advertisements to establish a superframe with links that can be used to 8973
communicate with the sending proxy DLE. The DLE that is attempting to join the D-subnet 8974
then informs its DMAP that a D-association has been established to a neighboring proxy, and 8975
that DLE then switches from the provisioned state to the joining state. 8976

When the DLE enters the joining state, it retains its configuration from the provisioned state 8977
(see 13.8), and adds the superframe, links and other attributes defined or implied by the 8978
advertisement. The DLE then provides communication services to upper layers during the 8979
joining process, by operating its state machine according to the advertised superframe and 8980
links with the result that joining APDUs are passed between the DMAP and proxy DLE 8981
through the DLE that is being provisioned. 8982

If the DMAP’s joining process times out, the DLE resets to its provisioned state and resumes 8983
scanning for a D-subnet using the provisioned superframes and links. 8984

If the DMAP’s joining process is successful, the advertised superframes and links continue to 8985
be used temporarily for communication with the system manager. The DPO retains the 8986
information needed to reset the DLE back to the provisioned state in the event of a DLE reset. 8987

When the DLE is first placed in its joined state, it has a single connection to the D-subnet 8988
through the neighboring proxy DLE, using the superframe and links defined in the 8989
advertisement. This single connection, selected implicitly when the DLE selected the proxy 8990
DLE, lacks path diversity, and may be suboptimal for any number of reasons. Therefore, the 8991
system manager shall provide instructions for the DLE to search for several neighbors and to 8992
report the result when the search is completed. Simple instructions may be provided through 8993
the same advertisement that established the initial connection to the proxy DLE, or more 8994
elaborate search instructions may be provided by the system manager immediately after the 8995
DLE joins the D-subnet. In either case, the DLE provides the system manager with a list of 8996
candidate neighbors soon after it joins the D-subnet, with 60 s being the default reporting time 8997
as controlled by the attribute dlmo.DiscoveryAlert. The system manager analyzes this list of 8998
candidate neighbors and then provides the DLE with an updated configuration that includes 8999
path diversity (mesh) and generally provides a more optimal D-subnet connection. 9000

 – 346 – 62734/2CDV © IEC(E)

To support security processing, the DMAP needs the EUI64Address of the advertising DLE 9001
during both the provisioning and joining process. Since the advertisement Data DPDU 9002
provides only the advertising router’s DL16Address, the DLE shall acquire the EUI64Address 9003
from the neighbor when communication begins. The neighbor’s EUI64Address shall be 9004
acquired by using a transmit link to interrogate the neighbor using a Data DPDU with a null 9005
payload, setting the DHDR request EUI64Address bit (bit 5, Table 118) to a value of 1, 9006
causing the neighbor’s EUI64Address to be returned in the ACK/NAK DPDU. 9007

9.1.14.3 Consolidated DL configuration information 9008

The DPO maintains the attribute Target_DL_Config that includes the settings for various 9009
attributes in the DLE. This OctetString is provided to the DLE at the end of the provisioning 9010
process, and is retained by the DPO in the event that it needs to reset the DLE back to its 9011
provisioned state. 9012

The DL_Config_Info OctetString contains a collection of attributes that the DPO provides to 9013
the DLE in order to establish the provisioned state. Each attribute is expressed as a tuple 9014
including the attribute number, followed by an OctetString that contains the new attribute 9015
value. The structure of DL_Config_Info is shown in Table 102. 9016

Table 102 – DL_Config_Info structure 9017

Octets Bits

7 6 5 4 3 2 1 0

1 octet N (number of attributes)

1 octet AttributeNumber1 (Unsigned8)

– NewAttribute1 (OctetString)

… …

1 octet AttributeNumberN (Unsigned8)

– NewAttributeN (OctetString)

 9018
Several of the attributes in DL_Config_Info are indexed OctetStrings. In these cases, 9019
NewAttributex is a new row entry. By DL convention, each row entry in an indexed OctetString 9020
attribute includes the row index as its first field. 9021

DL_Config_Info can be used to configure any read/write attribute in the DLE. At a minimum, 9022
DL_Config_Info shall configure: 9023

• AdvFilter, which provides a filter so that the DLE can select superframes that are of 9024
interest. 9025

• At least one superframe, and at least one link, that can be used by the DLE in searching 9026
for advertisements. 9027

Timeslot templates used for searching for the D-subnet, if different from the default timeslot 9028
templates, shall be provided to the DLE during the provisioning process. 9029

DL_Config_Info shall not be used except through the DPO. 9030

The DLE’s provisioned attributes shall be retained by the DPO so that the DLE can be reset to 9031
its provisioned state. 9032

Superframe operation may be delayed or disabled by setting the IdleTimer field within the 9033
superframe. For example, two superframes may be provisioned in a DLE, with superframe 9034
number1 searching aggressively for the D-subnet and superframe number2 searching on a 9035
low-duty cycle. The IdleTimer of superframe number1 might cause that superframe to time out 9036
a few minutes after the DLE is configured. Alternatively, a superframe might be configured 9037

62734/2CDV © IEC(E) – 347 –

with an IdleTimer so that it is idle until some future time. If the DLE is reset to the provisioned 9038
state, the superframe idle timers shall be reset to the originally provisioned state as well. 9039

A DLE in the provisioned state shall operate its DL clock and increment TAI time. This 9040
enables the DLE to operate its superframes as provisioned to discover candidate D-subnets. 9041
During the join process, a revised TAI time will be received in advertisements and the DL 9042
clock reset accordingly. 9043

The DLE might completely lose its time sense while in the provisioned state, for example due 9044
to removal of a battery. Complete loss of time sense in a provisioned DLE shall trigger a reset 9045
of the DLE to its provisioned state. 9046

9.1.14.4 Scanning for neighbors in the unprovisioned state 9047

An unprovisioned DLE begins in the system default state. Its DLE configuration includes the 9048
five default channel-hopping patterns and the three default timeslot templates. Its 9049
superframes, links, graphs, and routes are blank. 9050

Before attempting to join the plant network, the unprovisioned DLE needs to establish contact 9051
with a provisioning DLE and be transitioned to the provisioned state. This may occur through 9052
an out of band mechanism, such as a wired modem or an infrared link. 9053

This standard defines an unprovisioned DLE’s search procedure for a provisioning D-subnet’s 9054
advertisement. The search procedure is radio silent, not involving solicitations or any other 9055
transmission until an advertisement is received from a provisioning D-subnet. 9056

An unprovisioned DLE shall scan for a provisioning D-subnet’s advertisements on channels 4 9057
and 14, corresponding to IEEE 802.15.4:2011 channels 15 and 25, if radio regulations so 9058
permit (see Figure 59). In each of these channels, the unprovisioned DLE shall scan for an 9059
advertisement at a fixed interval of exactly 0,25 s, 0,5 s, 1 s, 2 s, 4 s, 8 s, 16 s, or 32 s. When 9060
the DLE is powered on or physically reset, it shall scan at the shortest interval of 0,25 s for at 9061
least 10 s, and then may gradually increase the interval as necessary to preserve its energy 9062
supply. 9063

SubnetID=1 is reserved for the provisioning D-subnet. Therefore, only advertisements with 9064
SubnetID=1 shall be considered by a DLE in the unprovisioned state. 9065

9.1.14.5 Scanning for neighbors in the provisioned state 9066

Once a DLE is in the provisioned state, it shall use its provisioned superframes and links to 9067
scan for a D-subnet of interest. The DLE may discover multiple advertisement routers and 9068
then select one to be used as a proxy in the join process. 9069

9.1.14.6 Scanning for neighbors after joining the D-subnet 9070

A DLE joins the D-subnet through a single neighbor that is sending advertisements. Initial 9071
contracts are established based on a route that is not necessarily optimal, through the joining 9072
proxy DLE. Having established a single connection through the join process, the DLE shall be 9073
configured by the system manager to immediately search for additional and alternative 9074
neighbors in order to support a more optimized mesh configuration. 9075

A DLE in the joined state can be configured by the system manager to passively scan for 9076
advertisements by configuring the DLE with links and superframes that enable the DLE’s radio 9077
receiver at scheduled times. The DLE may be configured to actively scan for advertisements 9078
using solicitations. 9079

The NeighborDiscovery alert (see 9.6.2 and 9.4.2.24) provides a mechanism for the DLE to 9080
transfer this information to the system manager. The alert is intended for the following 9081
scenarios: 9082

 – 348 – 62734/2CDV © IEC(E)

• Within 15 s of entering the joined state, the DLE shall be configured with superframes and 9083
links that search for advertisements from routers that are in range, and select the most 9084
promising candidates. The configuration can be accomplished through the advertisement 9085
itself, prior to joining, as described in 9.3.5.2.4.2. Alternatively, the configuration can be 9086
provided by configuring DLMO attributes after joining. After a configurable elapsed amount 9087
of time, as defined by the attribute dlmo.DiscoveryAlert, the DLE shall use the neighbor 9088
discovery alert to send the list of candidates to the system manager. A superframe 9089
dedicated to this initial search can be configured to automatically time out through its 9090
IdleTimer field. 9091

• The DLE should be configured by the system manager to continuously passively and/or 9092
actively scan for advertisements on an ongoing basis. Over time, this enables the DLE to 9093
build a list of candidate neighbors. The HRCO may be configured to periodically transmit 9094
this candidate neighbor table, along with neighbor diagnostics, to the system manager. 9095
The system manager may alternatively read the candidate neighbor table, 9096
dlmo.Candidates, on its own schedule. 9097

• A DLE shall also use the neighbor discovery alert whenever a connectivity issue is 9098
reported through the DL_Connectivity alert (see 9.6.1). This provides an up-to-date picture 9099
of neighborhood connectivity, enabling the system manager immediately to consider 9100
alternative solutions to the reported DLE connectivity problem. 9101

 Radio link control and quality measurement 9.1.159102

9.1.15.1 General 9103

Signal quality information is accumulated in the DLE and reported through the DMAP. In 9104
support of these higher-level functions, the DLE provides primitives that report signal quality 9105
information. The DLE also provides attributes that enable the system manager to control radio 9106
emissions. 9107

9.1.15.2 Performance metrics 9108

Numerous performance metrics can be accumulated by the DLE on a per-neighbor basis, 9109
configured by the system manager and reported through the DMAP (see 9.4.3.9). 9110

The DLE can be configured by the system manager to accumulate the following types of 9111
performance data on a per-neighbor basis: 9112

• Received signal strength indicator (RSSI) and received signal quality indicator (RSQI). 9113

NOTE This standard defines practices for RSSI and RSQI reporting to facilitate consistency, so that signal 9114
characteristics are somewhat comparable among devices of differing construction. 9115

• For transmissions: counts of successful transmissions, CCA backoffs, unicast errors, and 9116
NAKs. 9117

• Count of received Data DPDUs. 9118

• Diagnostics of clock corrections. 9119

Per-channel diagnostics are also collected and consolidated for all neighbors. 9120

RSSI shall be reported as a signed 8-bit integer, reflecting an estimate of received signal 9121
strength in dBm. RSSI reports shall be biased by +64 dBm to give an effective range 9122
of -192 dBm to +63 dBm. For example, a reported RSSI value of -16 corresponds to a 9123
received signal strength of -80 dBm. 9124

The actual received signal strength for a device depends on the receiver’s noise floor, which 9125
is device-construction and operating-temperature dependent, as well as on the receiver’s 9126
minimum sensitivity. These can be accounted for within the receiving device, as they are quite 9127
repeatable for a given device design and device operating temperature. Thus device 9128
designers should approximately map available indications of received signal strength and 9129

62734/2CDV © IEC(E) – 349 –

device temperature (where known) to a reasonable estimate of RSSI, so that system 9130
managers have a consistent basis for making routing decisions among DLEs. 9131

RSQI shall be reported as a qualitative assessment of signal quality, with higher number 9132
indicating a better signal. A value of 1..63 indicates a poor signal, 64..127 a fair signal, 9133
128..191 a good signal, and 192..255 an excellent signal. A value of zero indicates that the 9134
chipset does not support any signal quality diagnostics other than RSSI. 9135

RSSI is a quantitative measurement, mapped to physical units. RSQI is a qualitative 9136
measurement. RF devices from different manufacturers, or with different part numbers, or 9137
even with an improved die layout or photolithography shrink, may generate different raw RSQI 9138
values. Since the IEEE 802.15.4 PHY does not specify a common measurement and reporting 9139
methodology for the underlying hardware, no superior software sublayer can create it; the 9140
information simply is not present consistently across different devices. 9141

RSQI metrics are intended to be particularly useful when comparing different entries in 9142
dlmo.Candidates, where the assessment is among signaling of differing origins received by a 9143
single device. A DLE may use innovative techniques to report comparisons of the likely link 9144
quality of different candidate neighbors. Because inter-device variances at the receiving 9145
device are removed, RSQI entries in dlmo.Candidates reported from a single given DLE may 9146
be reasonably compared to each other, and fine distinctions can be taken as meaningful. For 9147
example, differences within the range of good signals can be reasonably taken into 9148
consideration if the RSQI metrics are from the same DLE. 9149

RSQI may also be compared across different DLEs, but fine distinctions are unlikely to be as 9150
meaningful. For example, the distinction between a fair and an excellent link is likely to be 9151
meaningful even if reported from unlike devices, but distinctions between different levels of 9152
good links has no standard meaning if reported from different devices. 9153

Since any reported RSQI value is a qualitative measurement, comparison of such values must 9154
necessarily take the RF-chip-specific nature of such measurements into account. Given the 9155
specified interpretation of reported values, any two non-zero RSQI values reported by 9156
different DLEs that differ by an amount of 32 or more can be ranked as “better” and “worse”, 9157
where the confidence in the ranking increases with increasing numeric difference. 9158

Similarly, differing RSSI values reported by the same device at different times or for different 9159
remote correspondents may be compared reliably, as can RSSI values among devices that 9160
are known (by vendor and other device-specific model identification) to provide callibrated 9161
RSSI estimates. In other cases such comparisons are at best approximate, somewhat similar 9162
to RSQI though presumably more closely approximating the actual strength of received 9163
signaling at the reporting device. In particular, magnitude ordering among reports from the 9164
same reporting device are always reliable in terms of their ordering and approximate 9165
magnitude of difference. 9166

9.1.15.3 Accumulating and reporting diagnostic information 9167

The system manager establishes a DL communication relationship between a DLE and its 9168
neighbor by adding an entry to the DLE’s dlmo.Neighbor attribute. Each such entry specifies a 9169
level of diagnostics to be collected, through the field dlmo.Neighbor[].DiagLevel. For each 9170
neighbor, diagnostics may be collected at a baseline level, or at a detailed level including 9171
clock diagnostics. 9172

Per-channel diagnostics are accumulated and consolidated for all neighbors, in the attribute 9173
dlmo.ChannelDiag. 9174

When the dlmo.Neighbor[].DiagLevel field is set for a particular neighbor, the DLE shall 9175
create corresponding entries in the read-only attribute dlmo.NeighborDiag. NeighborDiag 9176
values are accumulated from the time that the dlmo.NeighborDiag entry is created. 9177

 – 350 – 62734/2CDV © IEC(E)

Three mechanisms are provided for reporting diagnostic information contained in 9178
dlmo.NeighborDiag and dlmo.ChannelDiag: 9179

• The health reports concentrator object (HRCO), described in 6.2.7.7, can be configured to 9180
report any attribute in the DLE on a periodic basis. dlmo.NeighborDiag entries and 9181
dlmo.ChannelDiag can be reported through that mechanism. 9182

• Diagnostic information can be retrieved at any time by the system manager, by reading the 9183
applicable attributes. 9184

• Diagnostic information can be reported by the DLE on an exception basis, through the 9185
DL_Connectivity alert. 9186

Diagnostics include a combination of levels, such as RSSI, and counters, such as a count of 9187
acknowledgments. 9188

Levels are accumulated as exponential moving averages (EMAs). The level is initialized with 9189
the first data value, after which each new data value is accumulated into the EMA level as 9190
follows, where: 9191

 EmaLevelNEW = EmaLevelOLD + (α / 100) × (NewData − EmaLevelOLD) 9192

The smoothing factor α is expressed as an integer in the range of 0..100, representing a 9193
percentage; it is configured by the system manager through the attribute dlmo.SmoothFactors 9194
(see 9.4.2.25). 9195

Counters in dlmo.NeighborDiag are accumulated as ExtDLUint unsigned integers, which 9196
internally are 15-bit integers. When a counter reaches its maximum value, of 32 767 9197
(0x7FFF), it shall “stick” and continue to report that maximum value. Counters shall be reset 9198
to zero whenever the row is reported through the HRCO or retrieved through a read operation. 9199
Reporting the value through the DL_Connectivity alert shall not reset any counters. 9200

9.1.15.4 Radio silence 9201

The DLE can be configured to transmit only when actively participating in a D-subnet. This 9202
behavior is configured by the dlmo.RadioSilence attribute, which designates a timeout period 9203
for D-subnet participation, in seconds. For example, if the dlmo.RadioSilence attribute is set 9204
to the default of 600 s (10 min), the DLE silences its radio transmitter 10 min after losing 9205
communication with the D-subnet. When all DLEs on a D-subnet are configured for radio 9206
silence, it is possible to disable the D-subnet entirely, even if some DLEs do not receive an 9207
explicit command to disable communications. 9208

When a valid time update is accepted by the DLE from an advertisement or an 9209
acknowledgment, the DLE internally records the current time as the radio silence time 9210
reference. If the DLE does not accept another time update in the subsequent time period 9211
designated by dlmo.RadioSilence, the DLE shall become silent by ignoring all of its configured 9212
transmit links, including solicitations. In the radio silent state, the DLE continues to operate its 9213
radio receiver as per its scheduled receive links, but without transmitting acknowledgments in 9214
the absence of a clock update. 9215

For example, suppose the DLE receives a time update at 01h:02m:03s, and 9216
dlmo.RadioSilence is set to 600 s (10 min). If the DLE does not receive another time update 9217
by 01h:12m:03s, i.e., 10 min later, it will silence its radio at that time. 9218

If dlmo.RadioSilence is configured as zero, the feature is disabled. 9219

Radio silence is the default. The default D-subnet discovery procedure does not use 9220
solicitations, and dlmo.RadioSilence defaults to 600 s. 9221

Support of the dlmo.RadioSilence attribute is required for all DLEs. 9222

62734/2CDV © IEC(E) – 351 –

The radio silence profile limits the permitted range of the dlmo.RadioSilence attribute. The 9223
radio silence profile is reported to the system manager on joining through 9224
dlmo.DeviceCapability. A DLE with the radio silence profile shall reject updates to 9225
dlmo.RadioSilence that are greater than 600 s, thus ensuring that such a DLE will never 9226
spontaneously transmit a DPDU once it has lost contact with the D-subnet for 600 s. 9227

Temporary radio silence can be accomplished with another attribute, dlmo.RadioSleep. When 9228
dlmo.RadioSleep is set to a positive value, the DLE treats all links, including receive links, as 9229
idle for the designated number of seconds. Activation of dlmo.RadioSleep shall be slightly 9230
delayed to allow for transmitting an AL acknowledgment for the DMAP APDU that causes the 9231
attribute to be set. When the sleep period is over, dlmo.RadioSleep is automatically reset to 9232
zero, indicating that the feature is disabled. 9233

9.1.15.5 Radio transmit power 9234

This standard provides the system manager with a degree of control over radio transmit 9235
power, through the attribute dlmo.RadioTransmitPower. 9236

dlmo.RadioTransmitPower is used to control the DLE’s radio transmit power level, in dBm 9237
EIRP. It defaults to the DLE’s maximum supported power level, and is always constrained by 9238
dlmo.CountryCode (9.1.15.6) to the regulatory constraints of the locale of use. This 9239
constrained default value is also reported to the system manager during the join process 9240
through dlmo.DeviceCapability. 9241

When dlmo.RadioTransmitPower is changed by the system manager, the DLE shall not 9242
transmit at an output power level in excess of dlmo.RadioTransmitPower. 9243

In addition, a DLE may autonomously calibrate its output power level to the minimum level 9244
needed to maintain reliable connectivity. To enable this, the DLE supports the echoing of 9245
signal quality information in acknowledgments, so that an implementation can calibrate the 9246
received signal quality at various power levels. See 9.3.5.5. 9247

NOTE 1 An accurate calculation of the DLE’s actual output level from correspondent reports of received RSSI 9248
depends on design information for the reporting correspondent DLE that is not known to the self-calibrating DLE. 9249
Those factors include the correspondent DLE’s receiver noise floor and minimum receive sensitivity. Thus any self-9250
adjustment of transmit levels based on received RSSI is at best approximate, particularly when the corresponding 9251
DLEs’ RF subsystems do not share a common design (such as when they are from different manufacturers). 9252

It is possible for DLEs to provide local correction of the RSSI values that they report to 9253
account for the influence of their own receiver’s noise floor and minimum receive sensitivity. 9254
Such self-correction, which is not addressed by the IEEE 802.15.4 standard, typically can be 9255
performed in a piecewise-linear manner. The resulting reported values are considered to meet 9256
the RSSI requirements of both this standard and those of IEEE 802.15.4, even though they 9257
are slightly adjusted from the measurements of the RF subsections of implementing DLEs 9258
(since those actual measurements do not take those other relevant characteristics of the RF 9259
subsystem into account). See also 9.1.15.2. 9260

9.1.15.6 Country code 9261

The provisioning DLE and/or the system manager can inform the DLE being provisioned of 9262
regulatory considerations through its dlmo.CountryCode attribute, Table 103, which is a 16-bit 9263
packed structure consisting of a 10-bit country code and six Booleans: 9264

• Bits 0..9 provide a 10-bit country code as an Unsigned10 integer, using ISO 3166-1 9265
numeric three-digit country codes. 9266

• Bits 10..15 specify a six-element Boolean array: 9267
– Bit10 (Index 0), FCC, indicates whether FCC rules apply. A DLE shall operate in 9268

compliance with FCC rules when Index0 (Bit10) is TRUE. 9269
– Bit11 (Index 1), ETSI, indicates whether ETSI rules apply. A DLE shall operate in 9270

compliance with ETSI rules when Index1 (Bit11) is TRUE. 9271

 – 352 – 62734/2CDV © IEC(E)

– Bit12 (Index 2), LP, indicates whether a 10 dBm EIRP limit applies. A DLE shall limit 9272
its emissions to ≤ 10 dBm EIRP when Index2 (Bit12) is TRUE. 9273

– Bit13 (Index 3), LBT, indicates whether the DLE shall operate under adaptive 9274
modulation rules, using LBT to sense the channel when initiating a transaction, 9275
ceasing use of the slot if activity is detected: FALSE=non-adaptive, TRUE=adaptive. 9276

– Bit14 (Index 4), FHSS, indicates whether the DLE shall operate under frequency-9277
hopping spread-spectrum rules: FALSE=not-FHSS-rules, TRUE=FHSS-rules. 9278

– Bit15 (Index 5), Locked, indicates whether the value of this attribute is fixed while the 9279
DLE is operational. Once this “sticky” bit is set, any subsequent attempt to modify this 9280
attribute shall be rejected except when the DLE is reset to the factory default state 9281
during (re)provisioning. 9282

Table 103 – CountryCode 9283

Octet
number

Bits

7 6 5 4 3 2 1 0

1 Locked FHSS LBT LP ETSI FCC bits 9..8

2 ISO 3166-1 CountryCode bits 7..0

 9284
When Bit11 and Bit13 (ETSI and LBT) are both TRUE, each D-transaction shall begin with a 9285
LBT observation interval of at least 20 us, using CCA Mode 1, thus supporting modes V.4 3) 9286
and V.4 6). 9287

NOTE 1 CCA Mode 3 is also acceptable under EN 3003 328 v1.8.1 when it is implemented as the AND of CCA 9288
Mode 1 and CCA Mode 2, but not when it is implemented as the OR of CCA Mode 1 and CCA Mode 2. See 9289
9.1.9.4.3. 9290

When Bit11, Bit13 and Bit14 (ETSI, LBT and FHSS) are all TRUE, operation switches 9291
momentarily to the non-adaptive rules of ETSI EN 300 328 while sending an ACK/NAK DPDU 9292
(as short control signaling) within a transaction and for the immediately following Tx-gap-time 9293
of EN-mandated non-transmission, thus supporting mode V.4, 6). 9294

Bit15 (Locked) supports device operation (when TRUE) in regulatory regimes that prohibit the 9295
ability to reconfigure a device in such a way that it would violate regulatory restraints, while 9296
still supporting devices (when FALSE) on mobile platforms such as ships and trains that may 9297
cross regulatory jurisdictional boundaries, and while still permitting (via the reprovisioning 9298
exception) the repair or refurbishment of devices with subsequent resale into or reuse in 9299
markets where other regulations apply. 9300

When no specific country of intended use has been identified, the default for 9301
dlmo.CountryCode shall be 0x3C00, indicating that a device in the default state should 9302
comply with FCC rules, ETSI rules, the < 10 dBm EIRP limit, and be classified as an adaptive 9303
non-FHSS device. See 5.2.5 and Annex V. 9304

NOTE 2 This default value ensures that the equipment, before it has been provisioned, meets the regulatory 9305
requirements of most regions in which it might be deployed, and in particular as such rules would apply to the 9306
three-channel default configuration used for out-of-the-box over-the-air provisioning. Such constraint enables the 9307
device to participate in short-range provisioning over the Type A wireless medium, at which point the 9308
dlmo.CountryCode attribute would be changed to reflect the intended regulatory regime that applies to the device’s 9309
initial (and usually only) locale of deployment. 9310

 DLE roles and options 9.1.169311

The DL specified by this standard is designed with the general goal of constraining the range 9312
of construction options for a conforming device, while enabling flexible and innovative system 9313
solutions. 9314

The DL framework does not require that all DLEs be equivalent. For example, some routers, 9315
designed as dedicated infrastructure devices, might have a continuous source of energy, 9316

62734/2CDV © IEC(E) – 353 –

powerful processors, and essentially unlimited memory capacity. In contrast, some field 9317
instruments may have low-capacity batteries and may lack routing capability. 9318

These distinctions among DLEs are covered in three general ways in this standard: 9319

• memory capacity; 9320

• DLE capabilities; and 9321

• DLE roles. 9322

Every DLE has a limited amount of memory that is available for DL operations, and the 9323
system manager needs knowledge of these limitations in order to configure the DLE and 9324
balance the D-subnet operation. DLE DL memory is not reported as a single block, but rather 9325
as specific capacities of memory for specific purposes. For example, each indexed 9326
OctetString attribute supports a limited number of entries, with the capacity available to the 9327
system manager as metadata. Similarly, buffer capacity for Data DPDU forwarding is reported 9328
by the DLE on startup. 9329

Certain DLE capabilities are also reported on startup. For example, the DLE reports the 9330
stability of its own clock, as well as a list of radio channels that it can support legally. DLE 9331
capabilities reported with the join request are enumerated in 9.4.2.23. 9332

DLE roles describe the general capabilities of a given DLE configuration. For example, a DLE 9333
may be capable of routing or not. Distinctions of this type have various implications 9334
throughout the DLE, in terms of minimum memory capacity, DLE capabilities, and support of 9335
various features. The DLE simply reports which roles it supports, and the system manager is 9336
then responsible for mapping this into a portfolio of DLE capabilities. Standard mappings 9337
between roles and minimum capabilities are provided in Annex B. 9338

 DLE energy considerations 9.1.179339

Devices have different levels of available energy. One device may have a continuous energy 9340
source. Another device may have a large battery, but may need most of that energy capacity 9341
for running a sensor. Yet another device may use energy scavenging as its primary energy 9342
source. Different battery chemistries have different characteristics, a given battery chemistry 9343
may provide different performance depending on the supplier, and a battery’s capacity may 9344
vary depending on environmental factors. New battery technologies are likely to emerge with 9345
currently unknown performance characteristics. One application might need a 20-year battery 9346
life, while a different application might tolerate a 6-month life. 9347

The DLE may be configured by the system manager to consume different amounts of energy. 9348
The DLE consumes energy in two general ways: 9349

• The DLE consumes energy by providing wireless service to its own applications. When a 9350
DLE establishes a contract to transmit data every 5 s, the DLE consumes a corresponding 9351
amount of energy. 9352

• The DLE consumes energy acting as a router on behalf of neighboring DLEs. A DLE may 9353
be configured to transmit advertisements every 10 s. A DLE may be configured to operate 9354
its receiver almost continuously, listening for solicitations. The D-subnet may be 9355
configured so that a DLE forwards up to 100 DSDUs per minute. All of these scenarios 9356
consume energy. 9357

The DLE reports a general sense of its capacity to support DL routing operations in certain 9358
fields of the dlmo.EnergyDesign attribute. This attribute is reported through the 9359
dlmo.DeviceCapability attribute. 9360

dlmo.EnergyDesign indicates the device’s designed energy capacity to handle DL operations. 9361
This attribute is constant over the life of the device and reflects the device’s design, not its 9362
current state. A system manager should configure a DLE within these stated energy 9363
limitations: 9364

 – 354 – 62734/2CDV © IEC(E)

– EnergyLife indicates the device’s energy life by design. A positive value provides energy 9365
life in days; a negative value provides energy life magnitude in hours. A value of 0x7FFF 9366
indicates a continuous power source and no constraining device energy limitations. Other 9367
EnergyDesign fields describing DLE energy capacity are based on this target energy life. 9368
Configuration of the DLE beyond these stated energy capacities will likely reduce the 9369
device’s energy life. 9370

– ListenRate indicates the DLE’s energy capacity on average, in seconds per hour, to 9371
operate its radio’s receiver. ListenRate includes time to receive Data DPDUs for the DLE’s 9372
own application contracts, plus Data DPDUs being forwarded by the DLE on behalf of 9373
other DLEs. 9374

– TransmitRate indicates the DLE’s energy capacity, in Data DPDUs per minute, to transmit 9375
Data DPDUs on its own behalf and to forward Data DPDUs on behalf of its neighbors. 9376

– AdvRate indicates the DLE’s energy capacity, in Data DPDUs per minute, to transmit 9377
dedicated advertisement (or solicitation) Data DPDUs. 9378

EnergyDesign is a constant, and does not reflect the changing state of a device’s energy 9379
source. The dlmo.EnergyLeft attribute is a dynamic read-only attribute that can be used to 9380
report the device’s remaining energy capacity. A positive value indicates the remaining life in 9381
days, and a negative value indicates the magnitude of the remaining life in hours. A value of 9382
0x7FFF indicates that the feature is not supported. dlmo.EnergyLeft is reported on startup 9383
through dlmo.DeviceCapability, and may also be reported periodically through the HRCO. 9384

 DDSAP 9.29385

 General 9.2.19386

The DDSAP supports the multi-hop conveyance of a DSDU (e.g., and NPDU) between DLEs 9387
in a D-subnet. 9388

DD-DATA.request takes a DSDU from the NLE, prepends a Data DPDU header, and adds it to 9389
the message queue. DD-DATA.confirm subsequently reports whether the DSDU was 9390
successfully conveyed to a neighboring DLE in the D-subnet. 9391

DD-DATA.indication indicates the receipt of a Data DPDU that has reached its final destination 9392
within the D-subnet, and passes its DSDU to the NLE. 9393

All interfaces between the DLE and adjacent layer entities or management entites are internal 9394
interfaces within the device, and thus are unobservable. Therefore they are strictly notional 9395
and not subject to standardization. 9396

 DD-DATA.request 9.2.29397

DD-DATA.request is a primitive that accepts DSDU from the NL, selects the route through the 9398
D-subnet, and places a corresponding Data DPDU on the DLE’s message queue. 9399

The semantics of the DD-DATA.request primitive are as follows: 9400

DD-DATA.request (9401
 SrcAddr, 9402
 DestAddr, 9403
 Priority, 9404
 DE, 9405
 ECN, 9406
 LH, 9407
 ContractID, 9408
 DSDUSize, 9409
 DSDU, 9410
 DSDUHandle) 9411
Table 104 describes the parameters for DD-DATA.request. 9412

62734/2CDV © IEC(E) – 355 –

Table 104 – DD-DATA.request parameters 9413

Parameter name Parameter type

SrcAddr (DL source address) Type: DL16Address or EUI64Address

DestAddr (DL destination address) Type: DL16Address or EUI64Address

Priority (priority of the payload) Type: Unsigned4

DE (discard eligible) Type: Unsigned1

ECN (explicit congestion notification) Type: Unsigned2

LH (last hop, NL) Type: Unsigned1

ContractID (ContractID of the payload) Type: Unsigned16 or null

DSDUSize (payload size) Type: Unsigned8

DSDU (number of octets as per DSDUSize) Type: Octets

DSDUHandle (uniquely identifies each invocation of this primitive) Type: Abstract

 9414
DD-DATA.request parameters include: 9415

• SrcAddr is the source address of the NSDU. It is normally the DL16Address alias of the 9416
NSDU’s source IPv6Address, except when it is the EUI64Address of an unjoined DLE. 9417
Subnet ID is implicit, based on dlmo.SubnetID. 9418

• DestAddr is the destination address of the NSDU. It is normally the DL16Address alias of 9419
the NSDU’s destination IPv6Address, except when it is the EUI64Address of an unjoined 9420
DLE. Subnet ID is implicit, based on dlmo.SubnetID. 9421

• Priority is copied to the DROUT subheader and indicates the Data DPDU’s priority in DLE 9422
message queues. 9423

• DE is copied to the DADDR subheader. DE=1 indicates that the DSDU is eligible to be 9424
discarded from a message queue in favor of an incoming Data DPDU with DE=0, and of 9425
equal or higher priority. 9426

NOTE “is eligible” does not mean “is mandatory”. Such discard is an implementation option. 9427

• ECN is copied to the DADDR subheader. See 9.1.9.4.5 for a discussion of ECN. 9428

• LH is copied to the DADDR subheader. A value of 1 indicates that the DSDU entered the 9429
D-subnet through a backbone router, and therefore shall not exit the DL through a 9430
backbone router to avoid circular routes at the NL. This enables the NL to elide the IPv6 9431
hop limit field. Logically, LH is carried by the DL on behalf of the NL, and LH shall not be 9432
changed by the DL. 9433

• ContractID may be used by the DLE in route selection, as discussed in 9.1.6.5. 9434

• DSDUSize indicates the number of octets contained in the Data DPDU payload. 9435

• DSDU is the set of octets forming the payload. It may be implemented as a pointer to 9436
memory that is shared among layers. 9437

• DSDUHandle is an abstraction that connects each invocation of DD-DATA.request with the 9438
subsequent callback by DD-DATA.confirm. 9439

 DD-DATA.confirm 9.2.39440

DD-DATA.confirm is a primitive that reports the results of a request to transmit a DSDU that 9441
was previously placed on the DLE message queue by DD-DATA.request. 9442

Table 105 describes the parameters for DD-DATA.confirm. 9443

 – 356 – 62734/2CDV © IEC(E)

Table 105 – DD-DATA.confirm parameters 9444

Parameter name Parameter type

DSDUHandle (identifier for the payload) Type: Abstract

Status (see Table 106) Type: Unsigned

 9445
Table 106 specifies the value set for the status parameter. 9446

Table 106 – Value set for status parameter 9447

Value Description

SUCCESS Operation was successful

FAILURE Operation was unsuccessful; operation timed out

 9448
NOTE Error handling between the DLE and collacted NLE is an internal device matter, not visible across any 9449
observable interfaces, and therefore is not standardized. 9450

 DD-DATA.indication 9.2.49451

DD-DATA.indication is a virtual primitive that indicates the receipt of a DSDU. A Data DPDU 9452
does not trigger a data indication until it reaches its destination on the D-subnet. 9453

The semantics of the DD-DATA.indication primitive are as follows: 9454

DD-DATA.indication(9455
 SrcAddr, 9456
 DestAddr, 9457
 Priority, 9458
 DE, 9459
 ECN, 9460
 LH, 9461
 DSDUSize, 9462
 DSDU) 9463
Table 107 describes the parameters for DD-DATA.indication. 9464

Table 107 – DD-DATA.indication parameters 9465

Parameter name Parameter type

SrcAddr Type: DL16Address or EUI64Address

DestAddr Type: DL16Address or EUI64Address

Priority (priority of the payload) Type: Unsigned4

DE (discard eligible) Type: Unsigned1

ECN (explicit congestion notification) Type: Unsigned2

LH (last hop, NL) Type: Unsigned1

DSDUSize (payload size) Type: Unsigned8

DSDU (number of octets as per DSDUSize) Type: Octets

 9466
DD-DATA.indication parameters include: 9467

• SrcAddr is the source address of the NSDU. It is normally the DL16Address alias of the 9468
NSDU’s source IPv6Address, except when it is the EUI64Address of an unjoined DLE. 9469
D-subnet ID is implicit, based on dlmo.SubnetID. 9470

• DestAddr is the destination address of the NSDU. It is normally the DL16Address alias of 9471
the NSDUs destination IPv6Address, except when it is the EUI64Address of an unjoined 9472
DLE. D-subnet ID is implicit, based on dlmo.SubnetID. 9473

62734/2CDV © IEC(E) – 357 –

• Priority is included in the DROUT subheader and may be used by the NL for subsequent 9474
routing. ContractID, if required by the NL, is not carried within the Data DPDU header. 9475

• DE provides the value of the DE bit copied from the incoming DADDR subheader. 9476

• ECN provides the value of the ECN bit copied from the incoming DADDR subheader, and 9477
corresponds to the ECN bit described in IETF RFC 3168. See 9.1.9.4.5 for a discussion of 9478
ECN. 9479

• LH provides the value of the LH bit copied from the incoming DADDR subheader. 9480

• DSDUSize indicates the number of octets contained in the Data DPDU payload. 9481

• DSDU is the set of octets forming the payload. It may be implemented as a pointer to 9482
memory that is shared among layers. 9483

 Data DPDUs and ACK/NAK DPDUs 9.39484

 General 9.3.19485

The structure of DPDUs used by this standard is shown in Figure 88. 9486

 9487

Figure 88 – PhPDU and DPDU structure 9488

The DPDU reflects the multi-layer PDU structure described in 9.1.4, including: 9489

• MAC header (MHR): The MHR is a data structure modeled on that of IEEE 802.15.4, as 9490
specified in 9.1.4 and 9.1.5, which includes frame-format information and D-subnet 9491
addressing information. The FCS, at the end of the DPDU, is logically associated with the 9492
MHR. 9493

• DPDU header (DHR): The DL header information follows the MHR. Subheaders within the 9494
DHR include: 9495
– DHR header (DHDR): DHDR includes settings for various DLE selections and a 9496

version number. 9497
– DHR MAC extension subheader (DMXHR): Additional fields, not specified by 9498

IEEE 802.15.4:2011, that are needed to send a Data DPDU to an immediate neighbor 9499
and to receive an immediate ACK/NAK DPDU. The DMXHR includes information about 9500
the cryptographic integrity and confidentiality measures that apply to the DPDU. The 9501
DMIC following the DSDU is logically associated with the DMXHR. 9502

– DHR auxiliary subheader (DAUX): Some DPDUs include auxiliary information to 9503
facilitate neighbor discovery, time propagation, information exchange, and command 9504
exchange among immediate neighbors. The DAUX subheader is frequently absent. A 9505
non-null DAUX field shall be included in dedicated advertisement or solicitation 9506
DPDUs, or alternatively it may be embedded in unrelated Data DPDUs. 9507

– DHR routing subheader (DROUT): The DROUT field contains information needed to 9508
route the contained DPDU payload through the D-subnet. A non-null DROUT field shall 9509
include a Data-DPDU priority class and forwarding limit, plus either GraphID or source 9510
routing information. 9511

– DHR address subheader (DADDR): The DADDR field contains the source and 9512
destination endpoint D-addresses within the D-subnet, along with the NL fields ECN, 9513
DE, and LH, all of which are conveyed by and visible to the DL. 9514

 – 358 – 62734/2CDV © IEC(E)

• DSDU: The DPDU’s higher-layer payload is a single 6LoWPAN NPDU as defined in 9515
Clause 10, which is passed to the DLE as a DSDU. The payload is conveyed transparently 9516
within the D-subnet. 9517

• DMIC: The DMIC, found near the end of the DPDU, is logically associated with the 9518
DMXHR. The DMIC is a cryptographically-strong integrity code that permits determination 9519
that the received DPDU 9520
– was originated by a device that shares the relevant encryption key, and 9521
– was unaltered before reception. 9522

NOTE In some cases the relevant DMIC encryption key is static and published, enabling forgery by an 9523
uninformed attacker. 9524

• FCS: The FCS, found at the end of the DPDU, is logically associated with the MHR. The 9525
FCS is a trivially-forgeable integrity code that enables detection of PhL-induced DPDU 9526
errors. 9527

Some classes of DPDUs that are generated by the DLE, such as dedicated advertisements 9528
and solicitations, have null DROUT, DADDR and DSDU fields. 9529

 Octet and bit ordering 9.3.29530

9.3.2.1 General 9531

Except in the DL, this standard uses most significant octet first (MSB or big-endian) 9532
transmission and documentation conventions, following the precedent set by ISO, IEC, IETF, 9533
and many others. That is: 9534

• for multi-octet values, the most significant octet is transmitted first; and 9535

• octet documentation shows bit 7 on the left and bit 0 on the right. 9536

However, IEEE 802.15.4:2011 uses the least significant octet first (LSB or little-endian) 9537
conventions. That is: 9538

• for multi-octet values, the least significant octet is transmitted first. 9539

NOTE The IEEE specification is not entirely consistent on this point: IEEE 802.15.4:2011 security subheaders use 9540
MSB transmission and documentation conventions. 9541

Bit transmission order within an octet is handled at the PhL. Within the DL the discussion of 9542
MSB and LSB is limited to the ordering of octets. 9543

As a result, the DL is unavoidably mixed-endian, with some sections using big-endian and 9544
others using little-endian bit ordering. 9545

Generally, the standard DPDU headers follow IEEE 802.15.4 conventions, as follows: 9546

– This standard, except for DL and MAC headers, follows MSB conventions. 9547
– Standard DL and MAC headers follow LSB conventions, with some clearly indicated 9548

exceptions in the DPDU header. 9549
– Within the DPDU, security subheaders follow MSB conventions, following the 9550

IEEE 802.15.4:2011 precedent. 9551
– All fields within the DPDU header are documented showing bit 7 on the left and bit 0 on 9552

the right, following the convention of this standard. 9553
– DLMO attributes, accessible to the system manager through the DMAP, are AL 9554

information, and as such generally use MSB conventions. Some exceptions are made for 9555
fields that interact directly with DPDU headers that use the LSB convention. 9556

LSB octet ordering is explicitly noted in various parts of the DL specification. By convention, 9557
octet 0 is the least significant octet. LSB indicates that the least significant octet (octet 0) is 9558

62734/2CDV © IEC(E) – 359 –

transmitted first, and the most significant octet (octet n) is transmitted last. When not 9559
specified, the reverse ordering is used for transmission. 9560

9.3.2.2 Extensible DL unsigned integers 9561

The DL specification uses a construct called ExtDLUint for compressed transmission of 9562
unsigned integers. This is not a type used in other standards, and as such ExtDLUint only 9563
appears in DPDU headers and within DL-defined octet strings. It is used to indicate 9564
compressed encoding of a 15-bit unsigned integer; it is not used in conveying other data. 9565
Since this type is not used outside of the DL, it is not specified as a standard AL-supported 9566
data type. 9567

An ExtDLUint shall be transmitted as one octet when its value is in the range of 0..127, and 9568
as two octets when its value is in the range of 128..32 767, with encoding as shown in Table 9569
108 and Table 109. Bit 0 in the first octet indicates whether one or two octets are transmitted. 9570
Octet ordering is always as shown here, with the size indicated in bit 0 of the first octet 9571
transmitted. 9572

Table 108 – ExtDLUint, one-octet variant 9573

Octets Bits

7 6 5 4 3 2 1 0

1 26 25 24 23 22 21 20 Selection
=0

 9574
Table 109 – ExtDLUint, two-octet variant 9575

Octets Bits

7 6 5 4 3 2 1 0

1 26 25 24 23 22 21 20 Selection
=1

2 214 213 212 211 210 29 28 27

 9576
 Media access control headers 9.3.39577

9.3.3.1 General 9578

This standard uses a MAC header format whose component data structures are compliant 9579
with the detailed structure and field coding of IEEE 802.15.4:2011, 5.2.1 and 5.2.2.2, followed 9580
by extensions that are particular to this standard. Only the Data DPDUs of 9581
IEEE 802.15.4:2011, 5.2.2.2 are used by this standard. 9582

This standard does not use IEEE 802.15.4:2011 security. Instead, similar security is handled 9583
in the DMXHR. DPDU security in this standard is similar to IEEE 802.15.4:2011 security; the 9584
main difference is that this standard incorporates the DLE’s shared sense of time and other 9585
usage-context-specific information in the cryptographic nonces, resulting in more compact 9586
DPDUs and improved resistance to replay and misdirection attacks. To facilitate that improved 9587
resistance to attack, the DPDU sequence numbers of this standard are derived from different 9588
content sources than that specified by IEEE 802.15.4:2011, 5.2.1.2. 9589

The ACK/NAK DPDUs of IEEE 802.15.4:2011, 5.2.3 cannot be reliably distinguished from a 9590
similarly-timed identical DPDU sent by a device that is not the intended recipient. Such 9591
indistinguishability can arise due to concurrent activity on the same physical channel by other 9592
devices than the intended recipient, for example in other nearby networks, or due to an 9593
attacker’s deliberate spoofing of the ACK/NAK DPDU after jamming reception of the Data 9594
DPDU of the transaction. Therefore this standard uses short, authenticatable Data DPDUs to 9595
implement similar but extended ACK/NAK functionality. When the destination and source MAC 9596

 – 360 – 62734/2CDV © IEC(E)

addresses of such ACK/NAK DPDUs are those of the source and destination MAC addresses, 9597
respectively, of the soliciting Data DPDU, there is no need to convey those addresses 9598
explicitly. Thus this standard permits such ACK/NAK DPDUs to suppress both MAC address 9599
fields, which contradicts the constraint of IEEE 802.15.4:2011, 5.2.1.1.8. 9600

NOTE Although the amendments of IEEE 802.15.4:2012 were intended to cover similar issues to those that led to 9601
the just-described variances, they often do so in ways that are incompatible with the ANSI/ISA 100.11a standard on 9602
which this international standard is based, and thus are also incompatible with this standard, which strives to 9603
maintain compatibility with deployed equipment that uses that ANSI/ISA standard. 9604

9.3.3.2 Media access control header 9605

The format of the subset of the standard MHR specified in IEEE 802.15.4:2011, 5.2.1 and 9606
IEEE 802.15.4:2011, Figure 35, as used by this standard, is summarized in Table 110. 9607

Table 110 – Data DPDU MHR 9608

Number
of octets

bits

7 6 5 4 3 2 1 0

2 Frame control (LSB ordering)

1 Sequence number

0 or 2 PAN ID

0, 2, or 8 Destination address

0, 2, or 8 Source address

NOTE The PAN ID, Destination address and Source address fields are each transmitted in LSB order

 9609
The size of the MHR is usually 9 octets, including a PAN ID and two DL16Addresses, with 9610
these exceptions: 9611

• Solicitations Data DPDUs have a null (zero-length) PAN ID and two null MAC addresses, 9612
so the MHR is 3 octets. 9613

• Advertisement Data DPDUs have a null destination MAC address, so the MHR is 7 octets. 9614

• Other Data DPDUs to or from an unjoined DLE have one DL16Address and one 9615
EUI64Address, so an MHR addressed to or from an unjoined DLE is 15 octets. 9616

NOTE 1 The default DPDU payload capacity, dlmo.MaxDsduSize, is based on an MHR size of 15 octets, 9617
providing a basis for making fragmentation decisions for unjoined DLEs. 9618

• ACK/NAK DPDUs, which are used for immediate acknowledgments (short control 9619
signaling) have a null PAN ID, a null destination MAC address, and a source MAC address 9620
that is either 9621
– null (zero-length), so the MHR is 3 octets; or 9622
– a DL16Address, so the MHR is 5 octets; or 9623
– an EUI64Address, so the MHR is 11 octets. 9624

NOTE 2 The PAN ID is suppressed because the ACK/NAK DPDU’s security authentication serves to reject 9625
any ACK/NAK DPDU intended for a different device, whether on the same PAN or a different PAN. 9626

As shown in Table 110, fields include: 9627
a) Frame control. For this field, subfields are as specified in IEEE 802.15.4:2011, 5.2.1.1: 9628

– Frame Type shall be Data. 9629
– Security Enabled shall be FALSE, because IEEE 802.15.4:2011 is not used. 9630

NOTE 3 The extended security of this standard is handled in the DMXHR. 9631
– Frame Pending shall be FALSE. 9632
– AR (ack request) shall be FALSE. 9633

62734/2CDV © IEC(E) – 361 –

NOTE 4 The readily-spoofed IEEE 802.15.4:2011 immediate-acknowledgement DPDU type is not used 9634
by this standard. 9635

– When both a destination D-address and a source D-address are included, PAN ID 9636
compression shall indicate that the same PAN ID is used for both D-addresses. 9637
Otherwise, PAN ID compression shall be FALSE (because such compression only 9638
applies when there are two D-addresses). 9639

– MAC addresses are usually DL16Addresses, with exceptions as described below. 9640
EUI64Addresses are used by a DLE when joining a D-subnet. Destination addresses 9641
are omitted in dedicated advertisements and in solicitations. 9642

– The frame version shall be 0x01. 9643
b) Sequence number. Used by the DSC, as described in 7.3.2.4.10. 9644

NOTE 5 IEEE 802.15.4:2011 requires that each DLE increment its sequence number after each use, so that 9645
the sequence number is unique for all Data DPDUs and ACK/NAK DPDUs originated by that DLE. However, 9646
this standard uses the “sequence number” field for a somewhat different purpose and so provides an alternate 9647
method (other than cyclic sequentiality) of ensuring that cryptographic nonces generated by each real device 9648
are unique within the operational lifespan of the cryptographic key with which they are employed. 9649

NOTE 6 In this standard both the DLE and the TLE generate nonces. The provisions refered to in NOTE 5 9650
ensure that the two sets of generated nonces are disjoint. 9651

c) PAN ID shall match dlmo.SubnetID and shall be absent in solicitation Data DPDUs. If the 9652
DPDU conveys both a source and a destination MAC address, the PAN ID shall be the 9653
destination’s PAN ID (with the source PAN ID inferred to be identical). If there is no 9654
destination address, such as in an advertisement Data DPDU, the PAN ID shall be a 9655
source PAN ID. In a solicitation Data DPDU, where there is neither a source nor a 9656
destination address, this field shall be null (elided). This field shall be null (elided) in all 9657
ACK/NAK DPDUs. See 9.1.10.2. 9658

d) Destination address is normally a DL16Address alias for an IPv6Address. An 9659
EUI64Address shall be used to address DLEs that have not yet received a DL16Address. 9660
The destination address shall be absent in dedicated advertisement Data DPDUs, in 9661
solicitation Data DPDUs, and in ACK/NAK DPDUs. 9662

e) Source address is normally a DL16Address alias for an IPv6Address. An EUI64Address 9663
shall be used to identify DLEs that have not yet received a DL16Address. The source 9664
D-address shall be absent in solicitation Data DPDUs, and in ACK/NAK DPDUs where the 9665
D-address would be identical to the destination D-address of the received Data DPDU that 9666
initiated the transaction. 9667

9.3.3.3 Data DPDU subheader 9668

The structure of the DHDR for a Data DPDU is shown in Table 111. 9669

Table 111 – Data DPDU DHDR 9670

Number
of

octets

 Bits

7 6 5 4 3 2 1 0

1 ACK/NAK
DPDU

expected

Request
signal

quality in
ACK

DPDU

Request
EUI64Address
in ACK DPDU

Include
DAUX

DMXHR
includes

slow-
channel-
hopping-

offset

Clock
recipient

DL version

Always 01

 9671
This DHDR is always 1 octet. 9672

As shown in Table 111: 9673

• Bit 7 indicates whether ACK/NAK DPDUs are expected from the explicitly or implicitly 9674
addressed recipients. 9675

 – 362 – 62734/2CDV © IEC(E)

• Bit 6 indicates whether the receiving DLE should report signal quality information in the 9676
ACK/NAK DPDU. 9677

• Bit 5 indicates whether the receiving DLE should include its EUI64Address in the 9678
ACK/NAK DPDU. This setting shall be used by the sender whenever an acknowledgment 9679
is requested (bit 7 value of 1), and no EUI64Address for the neighbor exists in 9680
dlmo.Neighbor. See 9.1.10.1. 9681

NOTE Bit 7 is meaningful only for the initial Data DPDU of a transaction. Bits 6 and 5 are meaningful only when 9682
Bit 7 is meaningful and has the value TRUE. 9683

• Bit 4 indicates the presence or absence of a DAUX subheader in the Data DPDU. 9684

• Bit 3 indicates whether a slow-channel-hopping-offset is included in the DMXHR. This 9685
value shall be included in unicast Data DPDUs where slow-channel-hopping is used. See 9686
9.1.9.2.4. 9687

• Bit 2 indicates whether the transmitting DLE is a DL clock recipient. This is an implicit 9688
request to the receiver to include a clock correction in the acknowledgment. 9689

• Bits 0..1 indicates the DL version number. A value of 0x01 shall be used, with 0x10 being 9690
reserved for future use. A value of 0x11 is used in the same location in an ACK/NAK 9691
DPDU and helps to distinguish a Data DPDU from an ACK/NAK DPDU (see 9.3.4). 9692

9.3.3.4 DPDU MAC extension subheader 9693

A DMXHR following the DHDR is summarized in Table 112. 9694

Table 112 – Data DPDU DMXHR 9695

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Security control

1 Crypto Key Identifier

0..2 Slow-channel-hopping-offset (ExtDLUint)

 9696
NOTE For future PHYs with more than 16 channels, it is likely that the channel number will be added as a virtual 9697
field. This is a subject of future standardization, but has been considered in the DMXHR design. 9698

The size of the DMXHR is 2..4 octets. A DMXHR size of 3 octets, corresponding to a slow-9699
channel-hopping rate of about 1,25 s or less, was used to calculate the default 9700
dlmo.MaxDsduSize. 9701

As shown in Table 112, attributes include: 9702

• Security control and Crypto Key Identifier. The security fields are left unspecified by the 9703
DL, and are set by the DSC. See 9.1.12 for an overview of the relationship between the 9704
DL and DSCs. While IEEE allows a Crypto Key Identifier as large as 9 octets, in this 9705
standard its size is always 1 octet. 9706

• The slow-channel-hopping-offset specifies the timeslot offset into the slow-channel-9707
hopping period, if necessary to unambiguously identify a timeslot (because the transaction 9708
initiator and responder have different local perceptions of the proper timeslot). The 9709
presence or absence of this field is indicated in the DHDR. The slow-channel-hopping-9710
offset is described in 9.1.9.4.9. 9711

9.3.3.5 DPDU auxiliary subheader 9712

The DAUX subheader is used for: 9713

• DL neighbor discovery; 9714

• temporarily activating links; 9715

62734/2CDV © IEC(E) – 363 –

• reporting received signal quality in acknowledgments. 9716

The DAUX subheader, present only when bit 4 of the DHDR octet is set, is described in 9.3.5. 9717

A DAUX size of 0 octets was used to calculate the default dlmo.MaxDsduSize. 9718

NOTE dlmo.MaxDsduSize is used to make fragmentation decisions. The DAUX subheader is usable to activate 9719
links in a fragmentation scenario. However, link activation is not possible during the join process, and as such link 9720
activation is never combined with EUI64Addresses. Since the calculation of dlmo.MaxDsduSize includes one 9721
EUI64Address, it allows for a DAUX link activation subheader when an EUI64Address is not present. 9722

9.3.3.6 DPDU Routing subheader 9723

There are two variants of the DROUT subheader. A compressed variant, 2 octets in size, is 9724
used when a single graph is used for addressing. The compressed variant is also used when 9725
single-hop routing is used, with the route being implicit in the MAC-level addressing found in 9726
the IEEE 802.15.4:2011 MHR. When a series of addresses is needed, an uncompressed 9727
variant of the DROUT subheader shall be used. 9728

The DROUT subheader shall be elided in a Data DPDU that has no higher-layer payload, as 9729
indicated by a DSDU of zero size. 9730

The compressed variant of the DROUT subheader shall be used in the common case where a 9731
single graph, with an index of 255 or less, is used for routing. It is shown in Table 113. 9732

Table 113 – DROUT structure, compressed variant 9733

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Compress=1 Priority DlForwardLimit

0..1 DlForwardLimitExt

1 GraphID

 9734
A DROUT size of 2 octets was used to calculate the default dlmo.MaxDsduSize. 9735
MaxDsduSize normally needs to be reduced when source routing is used. 9736

As shown in Table 113, the compressed variant of the DROUT comprises: 9737

• Compress. If this value is set to 1, the compressed variant of the DROUT format shall be 9738
used. 9739

• Priority. This shall be set to the Data DPDU’s 4-bit priority. 9740

• DlForwardLimit and DlForwardLimitExt (forwarding limit) limit the number of times that a 9741
Data DPDU may be forwarded within a D-subnet. If the forwarding limit is less than 7, the 9742
value shall be transmitted in DlForwardLimit and DlForwardLimitExt shall be elided. If the 9743
forwarding limit is greater than or equal to 7, DlForwardLimit shall be transmitted as 7, and 9744
the forwarding limit shall be transmitted in DlForwardLimitExt. 9745
The forwarding limit is initialized by the DL when the route is selected, based on the value 9746
of dlmo.Route[].ForwardLimit. When a unicast Data DPDU is successfully received by the 9747
DL and needs to be forwarded, the Data DPDU shall be discarded if its forwarding limit is 9748
zero. If its forwarding limit is positive, the forwarding limit shall be decremented (possibly 9749
to zero) and the Data DPDU shall be placed on the message queue. 9750

• GraphID (8 bits). GraphIDs compliant with this standard are 12-bit unsigned integers. In 9751
the common case where the route is a single graph ID in the range of 1..255, the 9752
compressed variant of the DROUT subheader shall be used. Additionally, the compressed 9753
variant is used in single-hop source routing, wherein GraphID=0 shall indicate that the 9754
destination is one hop away. Since the single hop destination address can be found in the 9755

 – 364 – 62734/2CDV © IEC(E)

MHR, it does not need to be repeated in DROUT. GraphID=0 shall be used during the join 9756
process for addressing to and from a neighboring proxy, and is the only way in this 9757
standard to indicate a destination EUI64Address in DROUT. 9758

NOTE It is possible for a system manager to configure a circular D-route, with the Data DPDU being forwarded 9759
until the ForwardLimit decrements to zero. The LH field in the DL header, described in 9.3.3.7, is not intended to 9760
prevent circular routes within a D-subnet. 9761

The uncompressed variant of the DROUT subheader is shown in Table 114. 9762

Table 114 – DROUT structure, uncompressed variant 9763

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Compress=0 Priority) DlForwardLimit

0..1 DlForwardLimitExt

1 N (number of entries in routing table)

2*N Series of N GraphIDs/addresses (Unsigned16, LSB)

NOTE Each GraphID/address is transmitted in LSB order

 9764
As shown in Table 114, the uncompressed variant of the DROUT subheader comprises: 9765

• Compress. If this value is set to 0, the uncompressed variant of the DROUT format shall 9766
be used. 9767

• Priority, DlForwardLimit, and DlForwardLimitExt are as described above with Table 113. 9768

• N. This field shall be set to the number of entries in Route. The entries may be a 9769
combination of GraphIDs and DL16Addresses. The value of N shall not exceed 15. 9770

• Route. This field shall be set to a series of GraphIDs and/or DL16Addresses, specifying 9771
the route, in order, along which the Data DPDU will travel. IETF RFC 4944 limits unicast 9772
address ranges to 1..215-1. 12-bit GraphIDs in this field shall be represented disjointly 9773
from that address range as 0x 1010 gggg gggg gggg, which is the range 10×212..11×212-1. 9774

When source routing is used, the DROUT subheader shall be shortened by the DL of 9775
intermediate routers as the Data DPDU proceeds along the route, as described in 9.1.6. 9776

The first entry in the DROUT subheader is used to determine the next hop. For example, the 9777
route may be specified at the source as <000 123, 000 456, 000 789>. The first hop address, 9778
<000 123>, is used to send the Data DPDU to an immediate neighbor. The DROUT 9779
subheader, as received by DLE <000 123>, contains the source route <000 123, 000 456, 9780
000 789>. When received, this route is shortened to <000 456, 000 789> (see 9.1.6.3), 9781
indicating that address <000 456> is the next hop. 9782

When a graph is specified as the first entry in a source route, the Data DPDU shall follow that 9783
graph until it is terminated, as described in 9.1.6. 9784

9.3.3.7 Addressing subheader 9785

The addressing subheader (DADDR) includes NL source and destination addresses, along 9786
with three NL fields that are visible to the DL. 9787

The DADDR subheader shall be elided in a Data DPDU that has no higher order payload, i.e., 9788
a DSDU of zero size. 9789

The structure of the DADDR subheader is shown in Table 115. 9790

62734/2CDV © IEC(E) – 365 –

Table 115 – DADDR structure 9791

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 DE LH ECN Reserved=0

1..2 SrcAddr (ExtDLUint)

1..2 DestAddr (ExtDLUint)

 9792
A DADDR size of 4 octets was used to calculate the default dlmo.MaxDsduSize, reflecting an 9793
assumption that one or the other of the addresses is encoded in one octet. 9794

Fields include: 9795

• Discard eligible (DE) shall be set based on the value provided by the NL through 9796
DD-DATA.request. DE=1 indicates that the DSDU is eligible to be discarded from the 9797
message queue in favor of an incoming Data DPDU with DE=0, and of equal or higher 9798
priority. 9799

• Last hop (LH) shall be set based on the value provided by the NL through 9800
DD-DATA.request. This bit is carried by the DL to avoid circular routes at the NL, and does 9801
not affect DL behavior. 9802

• Explicit congestion notification (ECN) shall be set based on the value provided by the NL 9803
through DD-DATA.request. A router experiencing congestion may set ECN as described in 9804
IETF RFC 3168. See 9.1.9.4.5 for a discussion of ECN. 9805

• SrcAddr is set based on the value provided from the NL through DD-DATA.request. If the 9806
source D-address is duplicated in the MHR source D-address field, SrcAddr shall be 9807
encoded as 0x00. This covers the case, during the join process, where the source address 9808
is an EUI64Address. 9809

• DestAddr is set based on the value provided from the NL through DD-DATA.request. If the 9810
destination D-address is duplicated in the MHR destination address field, DestAddr shall 9811
be encoded as 0x00. This covers the case, during the join process, where the destination 9812
D-address is an EUI64Address. 9813

By encoding a duplicated DL-address as zero, an octet is compressed on the first and last 9814
hop when the address is less than 0x0080, saving energy. Thus a DADDR address encoded 9815
as zero references the corresponding DL16Address or EUI64Address in the MHR. 9816

 MAC acknowledgment DPDUs 9.3.49817

Figure 89 illustrates the structure of ACK/NAK DPDUs. 9818

 9819

Figure 89 – Typical ACK/NAK DPDU layout 9820

 – 366 – 62734/2CDV © IEC(E)

The source address of an ACK/NAK DPDU is the address of the DLE that transmits the 9821
DPDU. The destination address is the address of the intended recipient of the DPDU. 9822

Every ACK/NAK DPDU shall be authenticated with a DMIC, but not encrypted. Some fields 9823
are virtual, used in creating the DMIC but not actually transmitted. 9824

Although the ACK/NAK DPDU is an IEEE 802.15.4:2011 data frame, it can be distinguished 9825
from other such IEEE 802.15.4:2011 data frames based on: 9826

– the ACK/NAK DPDU’s timing, following Data DPDU transmission, as specified in 9.4.3.3; 9827
and 9828

– bits 1..0 of its DHR frame control field, as specified in Table 118; and 9829
– a virtual field in the ACK/NAK DPDU that echos the Data DPDU’s original DMIC, as 9830

specified in Table 117. 9831

As described in 7.3.2.2, the DMIC in an ACK/NAK DPDU uses the same security policy as the 9832
original Data DPDU of the D-transaction to which it is a response, with the exception that the 9833
ACK/NAK DPDU’s DMIC size shall always be 32 bits regardless of the Data DPDU’s security 9834
policy. 9835

The format of an IEEE 802.15.4:2011 MHR is summarized in Table 116. 9836

Table 116 – ACK/NAK DPDU MHR 9837

Number
of octets

Bits

7 6 5 6 3 2 1 0

2 Frame control (LSB ordering)

1 Sequence number

0 Destination address (null)

0 or 2 PAN ID

0, 2, or 8 Source address

NOTE The PAN ID and Source address fields are each transmitted in LSB order

 9838
The detailed description of these fields is specified in IEEE 802.15.4:2011. As shown in Table 9839
116, these attributes include: 9840

• Frame control attributes for ACK/NAK DPDUs, as follows: 9841
– Frame type shall be data. 9842
– Security shall be disabled, as it is handled in the DHR. 9843
– Frame pending shall be FALSE. 9844
– Ack.Request shall be FALSE. 9845

NOTE 1 The above bit requests generation of the unsecurable form of immediate acknowledgment 9846
offered by IEEE 802.15.4:2011, which is not used by this standard. 9847

– Source addressing mode shall be 0x00 (i.e., implicit), except for cases described 9848
below where the PAN ID and source address are included in the MHR. 9849

– Destination addressing mode shall be 0x00 (i.e., implicit). 9850
– Frame version shall be 0x01. 9851

• Sequence number, used by the DSC, as described in 7.3.2.4.10. As this standard does not 9852
use the unsecurable ACK frame type specified by IEEE 802.15.4:2011, its ACK/NAK 9853
DPDU does not carry the sequence number of its preceding Data DPDU. Rather the 9854
sequence number shall itself be similar to that of a Data DPDU, as specified in 9.3.3.2, 9855
and shall be used in construction of the D-nonce for the ACK/NAK DPDU’s DMIC. 9856

62734/2CDV © IEC(E) – 367 –

• PAN ID, present only when the source address is present (non-null). 9857

• Source address. Normally, a source D-address is not included in an ACK/NAK DPDU, 9858
because it matches the destination D-address of the last-received Data DPDU. However, 9859
there are two exceptions where it is included: 9860
– An immediate acknowledger of a received Data DPDU shall include its EUI64Address 9861

as the source address of the replying ACK/NAK DPDU’s MHR when so requested in 9862
the received Data DPDU’s DHDR. 9863

– An immediate acknowledger of a received Data DPDU whose D-address is different 9864
than the destination D-address of the last-received Data DPDU shall include its 9865
DL16Address as the source address of the replying ACK/NAK DPDU. 9866

NOTE 2 This second exception occurs in secondary duocast and N-cast acknowledgments. 9867

A prototype DHR following a MHR is summarized in Table 117. 9868

Table 117 – ACK/NAK DPDU DHR 9869

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 ACK/NAK DPDU DHDR

4 (virtual) Echoed DMIC of received Data DPDU

0, 2 Time correction (Unsigned16, LSB)
when requested

0..2 Timeslot offset (ExtDLUint)
when needed

0..3 DAUX subheader
usually absent

 9870
As shown in Table 117, attributes include: 9871

• The ACK/NAK DPDU’s DHDR is described in Table 118. 9872

• Echoed DMIC of received Data DPDU. For a discussion of handling of this virtual field, 9873
see 7.3.2. To unambiguously connect the ACK/NAK DPDU with the Data DPDU to which it 9874
is a response, the DMIC of the Data DPDU is included in the ACK/NAK DPDU’s DHR as a 9875
virtual field, with octet ordering matching the Data DPDU’s DMIC. This virtual field is used 9876
to calculate the ACK/NAK DPDU’s DMIC, but not transmitted. If the received DMIC is 9877
longer than 4 octets, only the initial (leftmost) 4 octets of the DMIC are echoed as a virtual 9878
field. 9879

• Time correction (LSB). Used by DL clock sources to correct the time of the DL clock 9880
recipient, if it is requested in the received DPDU’s DHDR. This 2-octet unsigned value, 9881
when included in the ACK/NAK DPDU, echoes the time that the Data DPDU was received. 9882
The value, in 2-20s (approximately 0,954 µs), reports an offset from the scheduled start 9883
time of the current timeslot in the acknowledger’s time base. The reported value is based 9884
on the Data DPDU’s start time. See 9.1.9.3.2. 9885

• Acknowledger’s timeslot offset is provided, when needed, within a slow-channel-hopping 9886
period. This value, when included in the ACK/NAK DPDU, indicates the current timeslot in 9887
the acknowledger’s time base. It shall be included only when the received Data DPDU is 9888
received in a different slow-channel-hopping timeslot than is used for the 9889
acknowledgment. The first timeslot in a slow-channel-hopping period has an offset of zero. 9890
When the corrected timeslot offset is non-zero, the time correction (previous field), when 9891
included, shall be an offset of the corrected scheduled timeslot time, Security requires that 9892
a DLE’s time increases from timeslot to timeslot. Therefore, if the timeslot is corrected to 9893
an earlier timeslot by a clock recipient, there shall be an interruption in service, equal to 9894
the magnitude of the timeslot correction plus at least one timeslot. See 9.1.9.4.9. 9895

• Auxiliary subheader (DAUX). DAUX may be included in an ACK/NAK DPDU, for the limited 9896
purpose of echoing received signal quality (see 9.3.5.5). 9897

 – 368 – 62734/2CDV © IEC(E)

In an ACK/NAK DPDU, the DHDR octet communicates the ACK/NAK type and other DPDU 9898
substructure information, as shown in Table 118. 9899

Table 118 – ACK/NAK DPDU DHDR 9900

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Clock
correction
included

Slow-
channel-
hopping-

offset
included

ACK/NAK type:
0: ACK
1: ACKwithECN
2: NAK0
3: NAK1

DAUX
subheader
included

Reserved
(=0)

ACK/NAK DPDU
(=11)

 9901
The DL protocol version number and MAC security key always match those of the received 9902
Data DPDU to which the ACK/NAK DPDU is an immediate acknowledgment, and therefore are 9903
not included explicitly in the ACK/NAK DPDU. 9904

Bit content is as follows: 9905

• Bit 7 indicates whether the ACK/NAK DPDU includes clock correction information. 9906

• Bit 6 indicates whether the ACK/NAK DPDU includes a slow-channel-hopping-offset. 9907

• Bits 5..4 indicate the class of the ACK/NAK DPDU: 9908
0b10: a NAK0 negative acknowledgment, signaling that the Data DPDU was received 9909

but could not be acknowledged due to message queue congestion (9.1.9.4.4); 9910
0b11: a NAK1, signaling that the Data DPDU was received but was not accepted due to 9911

a recent history of forwarding problems along the route (9.1.9.4.4). 9912
0b00: an ACK positive acknowledgment; 9913
0b01: an ACK positive acknowledgment with an ECN (explicit congestion notification) 9914

(9.1.9.4.5). 9915
A router that is signaling ECN in the forward direction should also signal the ECN through 9916
ACK/NAK DPDUs when the Data DPDU’s priority is 7 or less. A DLE receiving an ECN 9917
through an ACK/NAK DPDU may treat this signal as early notification that it is likely to 9918
receive an ECN at upper layers; 9919

• Bit 3 indicates whether the ACK/NAK DPDU includes a DAUX subheader, which may be 9920
included in an ACK/NAK DPDU for the limited purpose of reporting received signal quality. 9921

• Bit 2 is reserved and shall be set to zero. 9922

• Bits 1..0 are set to ones (11) to distinguish ACK/NAK DPDUs from other DPDUs. 9923

 DL auxiliary subheader 9.3.59924

9.3.5.1 General 9925

An auxiliary subheader (DAUX) may be included in any Data or ACK/NAK DPDU. Bits 7..5 of 9926
the first octet of the DAUX determine its type, with the subsequent subheader format different 9927
for each type. Defined types are: 9928

• Advertisement: type 0 in Data DPDU: Provides information needed by new DLEs to 9929
synchronize with and join the D-subnet; 9930

• Solicitation: type 1 in Data DPDU: Solicits an advertisement from a neighboring DLE; 9931

• Activate link: type 2 in Data DPDU: Activates an idle link for a period of time; 9932

• Signal quality: type 3 in ACK/NAK DPDU: Reports received signal quality. 9933

All other combinations of type and DPDU-class are reserved for future use. 9934

62734/2CDV © IEC(E) – 369 –

NOTE Following DL header conventions, DAUX fields use LSB (little-endian) order for transmission. There are 9935
some similar structures in the DLMO that use MSB (big-endian) order. For example, superframe structures are 9936
specified in both places, using LSB in the DL header and MSB in DLMO attributes. 9937

9.3.5.2 Advertisement auxiliary subheader 9938

9.3.5.2.1 General 9939

Fields within an advertisement DAUX can be grouped logically as: 9940

• advertisement selections; 9941

• time synchronization; 9942

• superframe information; 9943

• join information; and 9944

• integrity check. 9945

Table 119 summarizes the structure of the advertisement DAUX. 9946

Table 119 – Advertisement DAUX structure 9947

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 Advertisement selections; see Table 120

6 Time synchronization; see Table 122

6..10 Superframe information; see Table 124

4..10 Join information; see Table 127

2 Integrity check; see 9.3.5.2.4.4

NOTE As described in 9.3.5.2.4.2, join information field size is limited to 10 octets.

 9948
The advertising router’s D-subnet ID and DL16Address are conveyed through the MAC 9949
sublayer, and do not need to be transmitted redundantly within the DAUX. 9950

An advertisement DAUX may be included within a Data DPDU, but shall not be included within 9951
an ACK/NAK DPDU. 9952

An advertisement includes information that enables the receiving DLE to create superframes 9953
and links to be used during the join process. This information shall be retained by the DLE at 9954
the end of the join process and, along with DL defaults, constitute a starting database of link 9955
scheduling information for the DLE. The same links used for joining are temporarily used for 9956
general communications until the system manager provides an alternative configuration. 9957

Attributes set by the DLE based on information in the received advertisement include: 9958

• dlmo.SubnetID is set based on the SubnetID in the advertisement. 9959

• TAI time is synchronized by the advertisement. 9960

• dlmo.Superframe number1 is created with fields copied from the advertisement. 9961

• dlmo.Link number1 is created as a transmit link with fields copied from the advertisement. 9962

• dlmo.Link number2 is created as a receive link with fields copied from the advertisement. 9963

• dlmo.Link number3 may be created as passive scanning receive links with fields copied 9964
from the advertisement if provided. 9965

• dlmo.Neighbor is initialized by the DLE with an entry corresponding to the advertising 9966
router. 9967

 – 370 – 62734/2CDV © IEC(E)

• dlmo.Graph number1 is automatically created by the DLE, to provide access to the 9968
advertising router. 9969

• dlmo.Route number1 is automatically created by the DLE as the default route using graph 9970
number1. 9971

9.3.5.2.2 Advertisement selections 9972

Table 120 specifies the advertisement selections field in the advertisement DAUX. 9973

Table 120 – Advertisement selections elements 9974

Element name Element encoding

DauxType Type: Unsigned3

0=advertisement DAUX

ChMapOv Type: Unsigned1

0=default

DauxOptSlowHop Type: Unsigned1

0=default

Reserved (octet alignment) Type: Unsigned3=0

 9975
Table 121 illustrates the structure of the advertisement selections field. 9976

Table 121 – Advertisement selections 9977

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 DauxType=0 DauxChMapOv DauxOptSlowHop Reserved=0

 9978
The advertisement selections field is 1 octet. As shown in Table 120, attributes include: 9979

• DauxType. Always set to 0 for an advertisement DAUX. Indicates the DAUX structure in 9980
Table 119. 9981

• DauxChMapOv. TRUE indicates that the DauxChMap field is included in the advertisement 9982
DPDU. FALSE selects the default channel map of 0x7FFF. This field corresponds to 9983
dlmo.Superframe[].ChMapOv. 9984

• DauxOptSlowHop. TRUE indicates that D-subnet offers slow channel-hopping, and that 9985
DauxChRate is included in the advertisement DPDU. FALSE indicates the default of slotted-9986
channel-hopping. 9987

NOTE Slow-channel-hopping can be used during the join process as well as thereafter. 9988

• Bits 2..0 are reserved and shall be set to 0. 9989

9.3.5.2.3 Advertisement time synchronization 9990

Table 122 specifies the time synchronization field in the advertisement DAUX. 9991

62734/2CDV © IEC(E) – 371 –

Table 122 – Advertisement time synchronization elements 9992

Element name Element encoding

DauxTAIsecond (current TAI time) Type: Unsigned32 (LSB)

Units: 1 s

DauxTAIfraction (fractional TAI second) Type: Unsigned16 (LSB)

Units: 2-15 s

 9993
Table 123 illustrates the structure of the advertisement time synchronization field. 9994

Table 123 – Advertisement time synchronization structure 9995

Octets
Bits

7 6 5 4 3 2 1 0 Interpretation

1 27 26 25 24 23 22 21 20 DauxTAIsecond;
Integral part of
TAI time with
granularity of
1 s

2 215 214 213 212 211 210 29 28

3 223 222 221 220 219 218 217 216

4 231 230 229 228 227 226 225 224

5 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 DauxTAIfraction;
Fractional part
of TAI time with
granularity of
2-15 s

6 0
reserved 2-1 2-2 2-3 2-4 2-5 2-6 2-7

NOTE The above representation is radically different from that of TAINetworkTime (Table 362), with the octet
ordering reversed in the first four octets, and the ordering both reversed and shifted one bit in the last two
octets.

 9996
NOTE 1 The DauxTAIfraction unit of 2-15 s was chosen to match the 32 KiHz very-precise very-low-power “watch” 9997
crystals commonly used for the continuous clock hardware of WISN devices. 9998

The time synchronization field is 6 octets. As shown in Table 122, subfields include: 9999

– DauxTAIsecond. Current TAI time in units of 1 s. 10000
– DauxTAIfraction. Fractional TAI second in units of 2-15 s, with a range of 0..32 667. Within 10001

the TAI second, this indicates the advertisement DPDU’s actual start time. (An 10002
implementation that actually clocks based on SFD timing should account for a DPDU start 10003
time that is nominally 1 octet, or 32 µs, later than the time that the SFD is completely 10004
transmitted/received.) 10005

NOTE 2 Although TAI time is normally represented as a 6-octet scaled fixed point binary fraction, modulo 232 s, 10006
the above two-part transmittal ordering, where the each part is transmitted separately LSB first and the fractional 10007
part has an inserted unused bit at the binary point, does not honor the natural octet ordering of that scaled fixed 10008
point fraction. 10009

See 9.1.9 for more information on TAI time and timeslot alignment. 10010

The identity and scheduled timing of the current timeslot can be derived from the Data 10011
DPDU’s actual start time combined with the join superframe description. See 9.1.9.1.5. 10012

The time in an advertisement shall be an accurate reflection of the advertiser’s internal TAI 10013
clock to within ±96 µs (i.e., the transmission duration of 3 octets), which is the transmission 10014
window jitter presumed for devices conforming to this standard. 10015

An ACK/NAK DPDU to a join request includes a clock correction that may be more precise 10016
than the original advertisement, and also more current. 10017

 – 372 – 62734/2CDV © IEC(E)

9.3.5.2.4 Advertisement join superframe and links 10018

9.3.5.2.4.1 Advertisement join superframe 10019

NOTE The join process, including solicitation and advertisements and use of the information conveyed in 10020
advertisements, is described in 7.4. 10021

There are three links specified by the advertisement related to neighbor discovery: 10022

• link number1 for sending join requests, addressed to the neighboring advertising router; 10023

• link number2 for receiving subsequent join responses from the advertising router; and 10024

• link number3 for scanning for additional neighbors after the DLE successfully joins the 10025
D-subnet. 10026

All of these links refer to superframe number1, which is also specified in the advertisement. 10027

Field names in the advertisement correspond to equivalent fields in dlmo.Superframe and 10028
dlmo.Link. Following DL header conventions, LSB octet ordering is used on certain fields that 10029
are transmitted using MSB ordering in the superframe itself. To minimize processing 10030
requirements and to compress the DAUX subheader, a subset of superframe and link features 10031
is supported through the advertisement. 10032

Table 124 specifies the join superframe information field. 10033

Table 124 – Join superframe information subfields 10034

Subfield name Subfield encoding

DauxTsDur (timeslot duration) Type: Unsigned16

Units: 2-20 s

DauxChIndex (channel-hopping pattern ID) Type: ExtDLUint

Valid range: 1..5

DauxChBirth (channel-hopping reference starting point) Type: Unsigned8

DauxSfPeriod (number of timeslots in each superframe cycle) Type: ExtDLUint

DauxSfBirth (superframe cycle starting point) Type: ExtDLUint

Valid range: 0..127

DauxChRate (length of each slow-channel-hopping period, in
number of timeslots)

Type: Unsigned8

Not transmitted and defaults to 1
when DauxOptSlowHop is FALSE

DauxChMap (channel-hopping channel map for spectrum
management)

Type: Unsigned16 (LSB)

Not transmitted and defaults to 0x7FFF
when advChMapOv is FALSE

 10035
Table 125 summarizes the structure of the join superframe information field in the 10036
advertisement DAUX. ExtDLUint fields are shown as one octet. 10037

62734/2CDV © IEC(E) – 373 –

Table 125 – Join superframe information structure 10038

Number
of octets

Bits

7 6 5 4 3 2 1 0

2 DauxTsDur (LSB)

1 DauxChIndex

1 DauxChBirth

1..2 DauxSfPeriod

1 DauxSfBirth

0..1 DauxChRate

0..2 DauxChMap (LSB)

 10039
The join superframe information field is 6..10 octets. 10040

Each subfield of advertisement join superframe information corresponds to a field in 10041
dlmo.Superframe. See 9.4.3.5. 10042

When creating superframe number1 from the advertisement, the DL uses values from the 10043
advertisement to initialize corresponding superframe fields. Fields in the superframe number1 10044
that do not have equivalently named fields in the advertisement default to fixed values. Table 10045
126 shows the mapping from the advertisement’s subfields to superframe number1. 10046

Table 126 – Superframe derived from advertisement 10047

Superframe field name Value Notes

* Index 1 —

TsDur DauxTsDur —

ChIndex DauxChIndex —

ChBirth DauxChBirth —

SFType 0 —

Priority 0 —

ChMapOv DauxChMapOv —

IdleUsed 0 —

SfPeriod DauxSfPeriod Compressed data type used in advertisement. Limits
superframes used for joining to a period of
approximately 300 s

SfBirth DauxSfBirth Compressed data type used in advertisement,
consistent with SfPeriod

ChRate DauxChRate Compressed data type used in advertisement. Limits
superframes used for joining to a slow-channel-
hopping rate of approximately one hop per 2,5 s

ChMap DauxChMap Convert LSB to MSB

IdleTimer null —

rndSlots null —

 10048
9.3.5.2.4.2 Advertisement join links 10049

NOTE 1 The join process, including solicitation and advertisements and use of the information conveyed in 10050
advertisements, is described in 7.4. 10051

There are two sets of links related to joining provided in every advertisement: 10052

 – 374 – 62734/2CDV © IEC(E)

• an outbound set of links for transmitting join requests, used to initialize dlmo.Link 10053
number1; and 10054

• an inbound set of links for receiving join responses, used to initialize dlmo.Link number2; 10055

in addition, the advertising router may provide a set of links that a DLE can use to scan for 10056
advertisements when joining is complete, used to initialize dlmo.Link number3 when provided. 10057

Each device that is attempting to join a subnet, upon receiving an advertisement of a 10058
D-subnet that it chooses to join, shall configure its inbound and outbound links based on the 10059
information in the received advertisement. It shall then transmit its join request to the 10060
advertising router, using those outbound links. 10061

Links used for joining are constrained to a basic set of features. Default timeslot templates 10062
are used; see Table 165, Table 166, and Table 167. 10063

Three types of links are identified: 10064

– JoinTx links are used for transmitting join requests to the advertising router; 10065
– JoinRx links are monitored while waiting for a join response; 10066
– AdvRx links, when provided, are activated when joining is complete to passively scan for 10067

advertisements from alternative routers. 10068

Table 127 specifies the join information field in the advertisement DAUX. 10069

Table 127 – Join information elements 10070

Element name Element encoding

DauxJoinBackoff (maximum extent of backoff and retry while joining) Type: Unsigned4

DauxJoinTimeout (join timeout) Type: Unsigned4

DauxJoinFIdXmit (indicates fields that are transmitted) Type: Unsigned8

DauxJoinTx (JoinTx link(s)) Type: See Table 184

DauxJoinRx (JoinRx link(s)) Type: See Table 184

DauxAdvRx (Advertisement link(s)) Type: See Table 184 (or null)

 10071
The element DauxJoinFldXmit selects the link scheduling parameters used for elements 10072
DauxJoinTx, DauxJoinRx, and DauxAdvRx. DauxJoinFldXmit values 0..3 correspond to the 10073
semantics described in Table 184. 10074

Table 128 illustrates the structure of the join information field. Fields DauxJoinTx, 10075
DauxJoinRx, and DauxAdvRx may be 1..4 octets (or null only for DauxAdvRx), depending on 10076
the configuration and selection as described in Table 184. 10077

Table 128 – Join information structure 10078

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 DauxJoinBackoff DauxJoinTimeout

1 DauxJoinFldXmit

1..4 DauxJoinTx

1..4 DauxJoinRx

0..4 DauxAdvRx (may be absent)

 10079

62734/2CDV © IEC(E) – 375 –

Depending on the alternatives selected, it would appear from Table 128 that the total size 10080
could be anything between four and fourteen octets. However, alternatives shall be selected 10081
such that the total size of the fields shown in Table 128 does not exceed ten octets. 10082

As shown in Table 128, attributes include: 10083

a) DauxJoinBackoff. Maximum extent of exponential backoff on joining. If a join request does 10084
not receive an ACK/NAK DPDU due to CCA channel activity detection, or a failed 10085
transmission, the DLE shall back off by selecting a uniform-random time interval in the 10086
range of 0 s to 1 s for the first retry, and use the first available JoinTx timeslot after that 10087
time. Then double the time range with each retry. The DLE may retry up to 10088
DauxJoinBackoff times and shall not retry more than DauxJoinBackoff times. At that point, 10089
the DLE should abort the attempt to send a message to the advertising router, revert to 10090
the provisioned state, and search for another advertisement. 10091

b) DauxJoinTimeout. Guaranteed time, in s, to receive a system manager response to a join 10092
request. Expressed as an exponent, to the power of 2. For example, if 10093
DauxJoinTimeout=5, then the DLE can expect completion within 25 s (=32 s). Following a 10094
timeout, the DLE should abort the attempt to join through the advertising router, revert to 10095
the provisioned state, and search for another advertisement. 10096

c) DauxJoinFldXmit: 10097
– Bits 7..6: Unsigned2, describing contents of DauxJoinTx. See Table 184. Corresponds 10098

to dlmo.Link[].SchedType for link number1. Supported range is 0..2. 10099
– Bits 5..4: Unsigned2, describing contents of DauxJoinRx. See Table 184. Corresponds 10100

to dlmo.Link[].SchedType for link number2. Supported range is 0..2. 10101
– Bit 3: If Bit3=1, transmit DauxAdvRx. If Bit3=0, DauxAdvRx is null and not transmitted. 10102
– Bits 2..1: Unsigned2, describing contents of DauxAdvRx. See Table 184. Supported 10103

range is 0..2. Corresponds to dlmo.Link[].SchedType for link number3. If Bit3=0, Bits 2 10104
and 1 are meaningless and shall also be 0. 10105

– Bit 0 is reserved and shall be set to zero. 10106
d) DauxJoinTx. The join transmission timeslot(s) in each superframe cycle, corresponding to 10107

dlmo.Link[].Schedule for link number1. These are the transmission opportunities in which 10108
to send join requests. Bits 7, 6 of DauxJoinFIdXmit specify the format of DauxJoinTx, as 10109
defined in Table 184. 10110

e) DauxJoinRx, The join receive timeslot(s) in each superframe cycle, corresponding to 10111
dlmo.Link[].Schedule for link number2. Bits 5, 4 of DauxJoinFIdXmit specify the format of 10112
DauxJoinRx as defined in Table 184. 10113

f) DauxAdvRx. Receive links, for scanning for additional neighbors after joining, 10114
corresponding to dlmo.Link[].Schedule for link number3 when provided. Bits 2, 1 of 10115
DauxJoinFIdXmit specify the format of DauxAdvRx as defined in Table 184. It is 10116
transmitted and meaningful only when DauxJoinFldXmit.Bit 3=1; otherwise its value is null 10117
and no corresponding links are created in Table 129. 10118

Links are added to dlmo.Link[] based on parameters in the advertisement. Fields are set as 10119
shown in Table 129. 10120

 – 376 – 62734/2CDV © IEC(E)

Table 129 – Defaults for links created from advertisements 10121

Field name DauxJoinTx DauxJoinRx DauxAdvRx (when
DauxJoinFldXmit.Bit3

=1)

* Index 1 2 3

SuperframeIndex 1 1 1

Type-Transmit 1 0 0

Type-Receive 0 1 1

Type-Exponential Backoff 1 0 0

Type –Idle 0 0 1

Type-Discovery 0 0 0

Type-JoinResponse 0 0 0

Type-SelectiveAllowed 1 1 1

Template1 2 1 3

Template2 Null Null Null

NeighborType 1 0 0

Graph Type 0 0 0

SchedType From advertisement
DauxJoinFldXmit
Bits 7..6

From advertisement
DauxJoinFldXmit
Bits 5..4

From advertisement
DauxJoinFldXmit
Bits 2..1

ChType 0 0 0

PriorityType 0 0 0

Neighbor Address of advertising neighbor Null Null

GraphID Null Null Null

Schedule From advertisement
DauxJoinTx

From advertisement
DauxJoinRx

From advertisement
DauxAdvRx

ChOffset Null Null Null

Priority Null Null Null

 10122
Link number3, intended to be used to scan for neighbors after joining, is configured as an idle 10123
link. Normally, idle links are enabled through a DAUX subheader as described in 9.3.5.4. In 10124
addition, when the DL changes to the join state, it shall activate link number3 for a period of 10125
time equal to the initial value of dlmo.DiscoveryAlert.Duration (default 60 s). This causes the 10126
DL to collect information into the dlmo.Candidates table and then report it to system manager 10127
through the NeighborDiscovery alert, unless the DL is reconfigured by the system manager 10128
during the interval for a different result. 10129

NOTE 2 GraphType in Table 129 is set to zero, indicating that the feature is not applicable in this context. See 10130
9.4.3.7.2. 10131

The links created from the advertisement also need entries in dlmo.Neighbor, dlmo.Graph, 10132
and dlmo.Route. These entries are automatically added by the DL at the same time as the 10133
links, with values as shown in Table 130, Table 131, and Table 132 below. 10134

62734/2CDV © IEC(E) – 377 –

Table 130 – dlmo.Neighbor entry created from advertisements 10135

Field name Value

* Index Address of advertising router

EUI64Address Acquired from the advertising router as described in 9.1.10.1

GroupCode 0

ClockSource 2

ExtGrCnt 0

DiagLevel 1

LinkBacklog 0

ExtendGraph Null

LinkBacklogIndex Null

LinkBacklogDur Null

 10136
NOTE 3 ExtendGraph in Table 130 is set to null, indicating that the feature is not applicable in this context. See 10137
9.4.3.4.2. 10138

Table 131 – dlmo.Graph entry created from advertisements 10139

Field name Value

* Index 1

PreferredBranch 0

NeighborCount 1

Queue 0

MaxLifetime 0

Neighbors Address of advertising router

 10140
Table 132 – dlmo.Route entry created from advertisements 10141

Field name Value

* Index 1

Size 1

Alternative 3

ForwardLimit 16

Route One entry: 0xA001 (Graph number1)

Selector Null

 10142
NOTE 4 Route information in Table 132 is intended to be used as the default route after the DLE joins the 10143
D-subnet. Join messages to the neighboring proxy use source routing as described in 9.3.3.6. Sample DL headers 10144
for join messages are provided in Annex T. 10145

DLMO updates from DAUX join information are made at two points in the DL lifecycle. First, 10146
when a DLE in the default state receives an advertisement from a provisioning mini-D-subnet 10147
(SubnetID=1), it needs to update DLMO attributes with DAUX join information in order to join 10148
the mini-D-subnet. Second, when a DLE in the provisioned state joins a target D-subnet via 10149
an advertising router, it needs to update the DLMO with DAUX join information in order to join 10150
the target D-subnet. 10151

There are various other times when a DL might receive and process advertisements, such as 10152
when searching for multiple candidate neighbors in the provisioned state, searching for 10153
candidate neighbors in the joined state, or receiving D-subnet time updates in any state. The 10154

 – 378 – 62734/2CDV © IEC(E)

receipt and processing of such advertisements may trigger a join request only in the default or 10155
provisioned state, and DAUX join information in the advertisement is posted to the recipient’s 10156
DLMO only when the DLE attempts to join a mini-D-subnet from the default state or attempts 10157
to join a target D-subnet from the provisioned state. 10158

9.3.5.2.4.3 Slotted-hopping, slow-hopping and the join process 10159

An advertisement conveys a compressed form of a superframe definition. DauxChRate in the 10160
advertisement exactly corresponds to ChRate in the superframe, which is what distinguishes 10161
a slow-hopping superframe from a slotted-hopping one. If DauxChRate=1 the advertisement 10162
specifies a slotted-hopping superframe; when DauxChRate>1, the advertisement specifies a 10163
slow-hopping superframe. 10164

An advertisement can specify a range of links within a superframe, per Table 184. That 10165
provides a mechanism to specify and activate a contiguous set of timeslots. 10166

The slotted-hopping or slow-hopping specified by an advertisement DPDU is a functional 10167
subset of the slotted-hopping or slow-hopping specified by superframe and link data 10168
structures. The primary difference s that the information in the advertisement DPDU is 10169
somewhat compressed. That functional identity (for the subset) permits the information 10170
conveyed in a received advertisement DPDU to be used to initialize the superframe/link data 10171
structures in the device that is attempting the join operation. 10172

The handling of advertisement superframes and links is described in 9.1.14. The data cross-10173
mapping is specified in Table 126 and Table 129. The only significant difference is that, due 10174
to the compressed representation, the advertisement DPDU structure limits the slow-hopping 10175
response to 255 timeslots (typically about 2,5 s), which is noted in the description of the 10176
DPDU structure. That 2,5 s upper bound is not considered a significant limitation. 10177

The use of slotted hopping, slow hopping and hybrid-hopping is described in 9.1.8.4.4 through 10178
9.1.8.4.6. Figure 74 shows that slow-hopping can be combined with slotted-hopping to provide 10179
hybrid-hopping. In an advertising router configured for hybrid operation, an advertisement can 10180
instruct the joining device to use slow-hopping links, slotted-hopping links, or a combination. 10181
For example, Tx links (to the advertising router) might use slow hopping while Rx links (from 10182
the advertising router) might use slotted hopping. Such a configuration is reasonable for a 10183
router that is configured as an active scanning host (see 9.1.13.3), where slow-hopping links 10184
can perform double-duty as a vehicle for listening for solicitation DPDUs and other Data 10185
DPDUs. 10186

The slotted-hopping or slow-hopping or hybrid-hopping pattern is defined by superframe 10187
attributes in Table 174. The mapping is shown in Table 126. The timing of the links within the 10188
slotted-hopping or slow-hopping or hybrid-hopping superframe is defined in Table 181 and 10189
Table 184. Table 127 shows the mapping to Table 181 while referring specifically to Table 10190
184. 10191

In a hybrid configuration, such as in Figure 74, slow-hopping links may be limited to a 10192
particular range of timeslots. That is the intended use of the "range" in Table 184. It is also 10193
possible to designate specific timeslots (links) within a slow-hopping period, not just a range 10194
of timeslots, thus providing more flexibility for the designer of an actual deployed WISN. 10195

9.3.5.2.4.4 Integrity check 10196

DPDUs that embed a DAUX include the IEEE 16-bit ITU-T CRC (FCS) as an integrity check 10197
on the overall MPDU, plus a DMIC for authentication as a further integrity check. However, 10198
that DMIC cannot be authenticated by a receiving DLE without a shared sense of time, a 10199
shared security key, and knowledge of the sending DLE’s EUI64Address, which are not 10200
available to all DLEs that may overhear the DPDU and derive time from its DAUX subheader. 10201

NOTE 1 Time within the DAUX is usable as a shared sense of time for authentication of the DPDU that contains 10202
the DAUX. 10203

62734/2CDV © IEC(E) – 379 –

This standard permits a DLE to view and use the DAUX even if it cannot authenticate the 10204
overall DPDU. It was deemed insufficient to rely on the IEEE 802.15.4:2011 FCS as the only 10205
integrity check for advertisements. For this reason, an additional 16-bit integrity check is 10206
included within the DAUX, covering only the contents of the DAUX itself. 10207

The DAUX integrity check is similar to the UDP checksum described in IETF RFC 768. The 10208
checksum is the 16-bit ones complement of the ones’ complement sum of the octets that 10209
comprise the DAUX subheader, excluding the integrity check itself, padded with zero octets at 10210
the end (if necessary) to make a multiple of two octets. Octet ordering is as transmitted. If the 10211
computed checksum is zero, it is transmitted as all ones. An all-zero transmitted checksum 10212
value means that the creator of the DPDU generated no checksum. 10213

Transmission order of the integrity check is MSB, i.e., with the first octet reflecting bit 10214
operations on odd-numbered octets, with the octet count starting at 1, in the DAUX subheader 10215
(octets 1, 3, 5, etc.) and the second octet from even-numbered octets in the DAUX subheader 10216
(octets 2, 4, 6, etc.). 10217

NOTE 2 The use of a secret D-subnet security key for advertisements enables those advertisements to be trusted 10218
after the DLE has joined the D-subnet. Advertisements are usable for periodic surveys of neighboring routers, or 10219
for periodic time updates by DLEs with low-duty cycles. 10220

The advertisement provides only the DL16Address of the advertising router. However, an 10221
EUI64Address is needed for subsequent exchange of DPDUs with that router. As described in 10222
9.1.14.2, the responding DLE shall acquire the EUI64Address from the advertising DLE. 10223

9.3.5.2.5 Configuring advertisements 10224

NOTE The join process, including solicitation and advertisements and use of the information conveyed in 10225
advertisements, is described in 7.4. 10226

The timing of advertisements is determined by the structure of the advertising DLE’s 10227
superframes and links. Any link may include an advertisement flag, which indicates that the 10228
advertisement is included in the DAUX. 10229

An index value in the attribute dlmo.AdvSuperframe (see Table 141) selects a superframe in 10230
dlmo.Superframe that shall be used as a reference to build the advertisement. The reference 10231
superframe is configured by the system manager by establishing a superframe, which may be 10232
idle, and referring to its index in the dlmo.AdvSuperframe attribute. The reference superframe 10233
shall not use features that cannot be represented in the join superframe information field in 10234
Table 124. 10235

A zero value in dlmo.AdvSuperframe is the default, and indicates that the advertisement has 10236
not been configured. 10237

Link information is placed in the dlmo.AdvJoinInfo attribute, in exactly the format in which it is 10238
transmitted in the advertisement in the position corresponding to Table 128. In this way, the 10239
new DLEs JoinTx, Join Rx, and AdvRx links are specified. 10240

The system manager configures superframes in the advertising router that match those 10241
specified in the advertisement DPDU. At the time of JoinTx links, the advertising router shall 10242
be configured with links to receive join DPDUs. At the time of JoinRx links, the advertising 10243
router shall be configured with links where JoinResponse=1 (see Table 182). 10244

9.3.5.3 Solicitation auxiliary subheader 10245

9.3.5.3.1 General 10246

NOTE The join process, including solicitation and advertisements and use of the information conveyed in 10247
advertisements, is described in 7.4. 10248

 – 380 – 62734/2CDV © IEC(E)

A solicitation is a request for an advertisement to be transmitted by an active scanning host in 10249
range, on the same channel as the solicitation itself (see 9.1.13.3). 10250

Attributes within a solicitation DAUX can be grouped logically as: 10251

• solicitation header; and 10252

• D-subnet ID. 10253

The solicitation does not have a reliable sense of time, nor does it necessarily have a secret 10254
security key. Therefore, to allow the receiver of the solicitation to decode its DMIC, a 10255
solicitation’s DMIC shall be built using a security key of K_global and a nominal TAI time of 10256
zero. This allows for consistent processing, and provides a strong integrity check for the 10257
DPDU. No additional integrity check is included in the solicitation’s DAUX. 10258

A solicitation’s MHR (IEEE MAC header) shall not provide a source or destination address, 10259
and it shall not specify a D-subnet. See 9.1.5. 10260

9.3.5.3.2 Solicitation fields 10261

Table 133 specifies the solicitation header in the solicitation DAUX. 10262

Table 133 – Solicitation header subfields 10263

Subfield name Subfield encoding

DauxType Type: Unsigned3

1= solicitation DAUX

DauxSubnetInclude (indicates whether to transmit
DauxSubnetID in solicitation)

Type: Unsigned1

Reserved Type: Unsigned4=0

 10264
The solicitation header is 1 octet. As shown in Table 133, elements include: 10265

• DauxType. Set to 1 to indicate a solicitation DAUX. 10266

• DauxSubnetInclude. Indicates whether to transmit the DauxSubnetID field in the 10267
solicitation. If DauxSubnetInclude=0, the DauxSubnetID field is not transmitted, and the 10268
receiver (active scanning host) shall use the default value of DauxSubnetID=0 in filtering. 10269

Table 134 illustrates the structure of the solicitation header. 10270

Table 134 – Solicitation header structure 10271

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 DauxType=1 DauxSubnetInclude Reserved=0

 10272
Table 135 specifies the other fields in the solicitation DAUX. 10273

Table 135 – Solicitation DAUX fields 10274

Field name Field encoding

DauxSubnetID (specifies the SubnetID) Type: Unsigned16 (LSB)

 10275

62734/2CDV © IEC(E) – 381 –

DauxSubnetID transmits a D-subnet ID that can be used as a filter by the receiver, based on 10276
the receiver’s dlmo.SolicFilter attribute. When DauxSubNetInclude=0, DauxSubnetID defaults 10277
to 0x0000 and is not transmitted. 10278

Table 136 summarizes the structure of the solicitation DAUX. 10279

Table 136 – Solicitation DAUX structure 10280

Number
of octets

bits

7 6 5 4 3 2 1 0

1 Solicitation header (see Table 134)

0, 2 DauxSubnetID (LSB)

 10281
9.3.5.3.3 Configuring solicitations 10282

Due to regulatory and safety requirements, some applications cannot tolerate DLEs that 10283
transmit DPDUs while they are idle or in transit. Therefore, the default in this standard does 10284
not include solicitations in its configuration. The intent is that DLEs will be configured with 10285
solicitations, as appropriate, when they are provisioned or subsequently in the lifecycle. 10286

The timing of solicitations is determined by the structure of the DLE’s superframes and links. 10287
Transmission of a solicitation is triggered by a dlmo.Link[].Discovery field set to a value of 3. 10288

When a solicitation is transmitted, the contents of dlmo.SolicTemplate shall be copied 10289
verbatim into the DAUX subheader. If the size of SolicTemplate is zero, this shall be 10290
interpreted as a configuration error and the link shall be ignored. 10291

To support regulatory and safety requirements, solicitations can be enabled and disabled on a 10292
timed basis by the system manager through the attributes dlmo.RadioSilence, 10293
dlmo.RadioSleep, and dlmo.Superframe[].IdleTimer. 10294

9.3.5.4 Activate link auxiliary subheader 10295

9.3.5.4.1 General 10296

The activate link DAUX provides a mechanism that enables a transaction initiator to activate 10297
idle timeslots for a short period of time in order to efficiently forward a backlog of messages 10298
that have accumulated in a transaction initiator’s message queue. These idle links, when so 10299
configured by the system manager, are activated by the router in response to a burst of 10300
messages flowing through a DL toward a particular neighbor. 10301

The system manager configures: 10302

• An idle transmit link on the transmission side, addressed to a particular neighbor or group 10303
of neighbors, with a particular link index and schedule. 10304

• An idle receiver link on the reception side, with the same link index and schedule. 10305

• A set of parameters in the neighbor table, indicating 10306
– the link index (LinkBacklogIndex), 10307
– the size of the backlog that should trigger link activation (LinkBacklog), and 10308
– the duration of link activation (LinkBacklogDur). 10309
See 9.4.3.4.2 for the definition of these parameters. 10310

When the transaction initiator detects that there are LinkBacklog Data DPDUs on its message 10311
queue that can be forwarded to the Data DPDU’s destination address, the transaction initiator 10312
should use the activate link auxiliary subheader to activate the idle receive link through the 10313

 – 382 – 62734/2CDV © IEC(E)

activate link auxiliary subheader. When the transaction originator receives an ACK/NAK 10314
DPDU for the Data DPDU, that implies that the message has been processed and that the 10315
receive side of the idle link has been activated. The transaction initiator should then activate 10316
the transmit side of the idle link for the designated number of communication opportunities. 10317

The activated transmit link might be addressed to a group of neighbors, however, the receive 10318
side of the activated link occurs on only one neighbor. Therefore, only Data DPDUs 10319
addressed to that neighbor should be considered as candidates for the activated link. 10320

The activate link DAUX provides a link index and a number of communication opportunities 10321
that are used to activate an idle link by the receiver of the Data DPDU. It has the result of 10322
immediately activating an idle link for reception, for the number of communication 10323
opportunities indicated by DauxActivateDur. The transaction initiator of the activate link 10324
message is, in essence, informing the receiver that queued messages will be following that 10325
will be sent during communication opportunities (timeslots) associated with a particular 10326
receive link. 10327

Activation of idle links is triggered on the transaction initiator side by multiple queued Data 10328
DPDUs that can be routed to the receiver. See 9.4.3.4.2 for a description of the transmit side 10329
of the activate link message (LinkBacklogIndex, LinkBacklogDur). 10330

9.3.5.4.2 Fields 10331

Table 137 summarizes the activate link DAUX. 10332

Table 137 – Activate link DAUX fields 10333

Field name Field encoding

DauxType Type: Unsigned3

2=Link activation DAUX

Reserved (octet alignment) Type: Unsigned5=0

DauxLink_ID (identifier for link) Type: ExtDLUint

DauxActivateDur (number of communication
opportunities (timeslots) to activate the link, link
occurrences)

Type: Unsigned8

 10334
The link is activated for the number of occurrences of the link, whether the link is used or not. 10335
For example, the link occurrence is counted even if it is not used because of a higher priority 10336
link in the same timeslot. The link activation period begins with the next full timeslot after the 10337
link activation DAUX is received. See 9.4.3.4.2. 10338

Table 138 illustrates the structure of the activate link DAUX field. 10339

Table 138 – Activate link DAUX structure 10340

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 DauxType Reserved=0

1 or 2octets DauxLinkID

1t DauxActivateDur

 10341

62734/2CDV © IEC(E) – 383 –

9.3.5.5 Signal quality auxiliary subheader 10342

9.3.5.5.1 General 10343

The signal quality DAUX reports the quality of the received signal in an ACK/NAK DPDU, to 10344
support collection of round-trip signal quality diagnostics. Two octets are reported, one for 10345
signal strength (RSSI) and one for signal quality (RSQI). RSSI and RSQI are described in 10346
9.1.15.2. 10347

9.3.5.5.2 Fields 10348

Table 139 summarizes the report received signal quality DAUX. 10349

Table 139 – Report received signal quality DAUX fields 10350

Field name Field encoding

DauxType Type: Unsigned3

3=Signal quality DAUX

Reserved (octet alignment) Type: Bit5=0

DauxRSSI (RSSI) Type: Integer8

DauxRSQI (RSQI) Type: Unsigned8

 10351
Table 140 illustrates the structure of the report received signal quality DAUX. 10352

Table 140 – Report received signal quality DAUX structure 10353

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 DauxType Reserved=0

1 DauxRSSI

1 DauxRSQI

 10354
 DL management information base 9.410355

 General 9.4.110356

For information on the general handling of standard management objects in the DL, see 10357
9.1.11. 10358

 DL management object attributes 9.4.210359

9.4.2.1 General 10360

Table 141 summarizes the DL management object (DLMO) attributes. OctetStrings with a size 10361
of zero are referred to as null. 10362

 – 384 – 62734/2CDV © IEC(E)

Table 141 – DLMO attributes 10363

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

ActScanHostFract 1 DLE’s behavior as an
active scanning host

Type: Unsigned8 See 9.4.2.2

Classification: Static

Accessibility: Read/write

Default value: 0

AdvJoinInfo 2 Join information to be
placed in advertisement

Type: OctetString See 9.4.2.3

Classification: Static

Accessibility: Read/write

Default value: Null

AdvSuperframe 3 Superframe reference for
advertisement

Type: Unsigned16 See 9.4.2.3

Classification: Static

Accessibility: Read/write

Default value: 0

Valid range: 0..32 767

SubnetID 4 Identifier of the D-subnet
that the DLE has joined
or is attempting to join

Type: Unsigned16 See 9.4.2.4

Classification: Dynamic

Accessibility: Read only

Default value: 0

SolicTemplate 5 Template of DAUX
subheader used for
solicitations

Type: OctetString See 9.4.2.5

Classification: Static

Accessibility: Read/write

Default value: Null

AdvFilter 6 Filter used on incoming
advertisements during
neighbor discovery

Type: OctetString
See Table 142

See 9.4.2.20

Classification: Static

Accessibility: Read/write

Default value: See 9.4.2.20

SolicFilter 7 Filter used on incoming
solicitations

Type: OctetString
See Table 142

See 9.4.2.20

Classification: Static

Accessibility: Read/write

Default value: See 9.4.2.20

TaiTime 8 TAI time for DLE Type: TAINetworkTime Units: 2-16 s
See 9.4.2.6

Classification: Static

Accessibility: Read only

TaiAdjust 9 Adjust TaiTime at an
instant that is scheduled
by the system manager

Type: OctetString
See Table 143

See 9.4.2.21

Classification: Dynamic

Accessibility: Read/write

Default value: Null

 10364

62734/2CDV © IEC(E) – 385 –

Table 141 (continued)

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

MaxBackoffExp 10 Maximum backoff
exponent for retries

Type: Unsigned8 See 9.4.2.7

Classification: Static

Accessibility: Read/write

Default value: 5

Valid range: 3..8

MaxDsduSize 11 Maximum octets that can
be accommodated in a
single DSDU

Type: Unsigned8 See 9.4.2.8

Classification: Static

Accessibility: Read/write

Default value: 96

Valid range: 76..96

MaxLifetime 12 Maximum Data DPDU
lifetime

Type: Unsigned16 Units: 0,25 s

See 9.4.2.9 Classification: Static

Accessibility: Read/write

Default value: 120 (30 s)

Valid range: 8..1 920
(2 s..480 s)

NackBackoffDur 13 Duration of backoff after
receiving a NAK

Type: Unsigned16 Units: 0,25 s

See 9.4.2.10 Classification: Static

Accessibility: Read/write

Default value: 60 (15 s)

Valid range: 8..1 920
(2 s..480 s)

LinkPriorityXmit 14 Default priority for
transmit links

Type: Unsigned8 See 9.4.2.11

Classification: Static

Accessibility: Read/write

Default value: 8

Valid range: 0..15

LinkPriorityRcv 15 Default priority for receive
links

Type: Unsigned8 See 9.4.2.11

Classification: Static

Accessibility: Read/write

Default value: 0

Valid range: 0..15

EnergyDesign 16 DLE’s energy capacity as
designed

Type: OctetString See 9.4.2.22

Classification: Constant

Accessibility: Read only

Default value: See 9.4.2.22

EnergyLeft 17 Remaining energy for DLE Type: Integer16 See 9.1.17

Classification: Dynamic

Accessibility: Read only

 – 386 – 62734/2CDV © IEC(E)

Table 141 (continued)

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

DeviceCapability 18 Device capabilities Type: OctetString

See Table 147

See 9.4.2.23

Classification: Constant

Accessibility: Read only

Default value: See 9.4.2.23

IdleChannels 19 Radio channels that shall
be idle

Type: Unsigned16 See 9.4.2.12

Classification: Static

Accessibility: Read/write

Default value: 0

ClockExpire 20 Clock expiration deadline. Type: Unsigned16(MSB) Units 1s

See 9.4.2.13 Classification: Static

Accessibility: Read/write

Default value: See
description

ClockStale 21 DL clock source timeout Type: Unsigned16 Units: 1 s

See 9.4.2.14 Classification: Static

Accessibility: Read/write

Default value: See
description

Valid range: 5..300

RadioSilence 22 Radio silence timeout Type: Unsigned32 Units: 1s

See 9.4.2.15 Classification: Static

Accessibility: Read/write

Default value: 600

Valid range: Limited to
1..600 for radio silence
profile; otherwise 0..232-1

RadioSleep 23 Radio sleep period. Note:
DLE’s radio will be
disabled when this
attribute is set

Type: Unsigned32 Units: 1s

See 9.4.2.17 Classification: Dynamic

Accessibility: Read/write

Default value: 0

RadioTransmitPower 24 Radios maximum transmit
power level

Type: Integer8 Units: dBm

See 9.4.2.18 Classification: Static

Accessibility: Read/write

Default value: See text

Valid range: -20..36

62734/2CDV © IEC(E) – 387 –

Table 141 (continued)

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

CountryCode 25 Information about the
device’s regulatory
environment

Type: Unsigned16 See 9.4.2.19,
9.1.15.6 and
Annex V Classification: Static

Accessibility: Read/write

Default value: 0x3C00

Candidates 26 A list of candidate
neighbors discovered by
the DLE

Type: OctetString

See Table 151

See 9.4.2.24

Classification: Dynamic

Accessibility: Read/write

Default value: Null

DiscoveryAlert 27 Control of
NeighborDiscovery alert

Type: OctetString See 9.4.2.24

Classification: Dynamic

Accessibility: Read/write

Default value: See 9.4.2.25

Valid range: See 9.4.2.24

SmoothFactors 28 Smoothing factors for
diagnostics

Type: OctetString

See Table 153

See 9.4.2.25

Classification: Static

Accessibility: Read/write

Default value: See Table 153

Valid range: See Table 153

QueuePriority 29 Queue buffer capacity for
specified priority level

Type: OctetString

See Table 155

See 9.4.2.26

Classification: Static

Accessibility: Read/write

Default value: N=0

Ch 30 Channel-hopping patterns Type: OctetString (indexed)

See Table 159

See 9.4.3.2

Classification: Static

Accessibility: Read/write

Default value: See 9.4.3.2

Valid range: See 9.4.3.2

ChMeta 31 Metadata for Ch attribute Type: Metadata_attribute See 9.4.3.2
(Note 1)

Classification: Static

Accessibility: Read only

 – 388 – 62734/2CDV © IEC(E)

Table 141 (continued)

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

TsTemplate 32 Timeslot templates Type: OctetString (indexed)

See Table 161 and Table
163

See 9.4.3.3

Classification: Static

Accessibility: Read/write

Default value: See 9.4.3.3

Valid range: See 9.4.3.3

TsTemplateMeta 33 Metadata for TsTemplate
attribute

Type: Metadata_attribute See 9.4.3.3
(Note 1)

Classification: Static

Accessibility: Read only

Neighbor 34 Neighbors Type: OctetString (indexed)

See Table 168

See 9.4.3.4

Classification: Static

Accessibility: Read/write

Default value: Empty

Valid range: See 9.4.3.4

NeighborDiagReset 35 Used to update DiagLevel
field within Neighbor
attribute

Type: OctetString (indexed)

See Table 172

See 9.4.3.4.3

Classification: Static

Accessibility: Read/write

Valid range: See 9.4.3.4.3

NeighborMeta 36 Metadata for Neighbor
attribute

Type: Metadata_attribute See 9.4.3.4
(Note 1)

Classification: Static

Accessibility: Read only

Superframe 37 Superframes; structures
and activation

Type: OctetString (indexed)

See Table 175

See 9.4.3.5

Classification: Dynamic

Accessibility: Read/write

Default value: Empty

Valid range: See 9.4.3.5

SuperframeIdle 38 Used to update idle fields
within Superframe
attribute

Type: OctetString (indexed)

See Table 177

See 9.4.3.5.3

Classification: Dynamic

Accessibility: Read/write

SuperframeMeta 39 Metadata for Superframe
attribute

Type: Metadata_attribute See 9.4.3.5
(Note 1)

Classification: Static

Accessibility: Read only

62734/2CDV © IEC(E) – 389 –

Table 141 (continued)

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

Graph 40 Graphs Type: OctetString (indexed)

See Table 178

See 9.4.3.6

Classification: Static

Accessibility: Read/write

Default value: Empty

GraphMeta 41 Metadata for Graph
attribute

Type: Metadata_attribute See 9.4.3.6
(Note 1)

Classification: Static

Accessibility: Read only

Link 42 Links Type: OctetString (indexed)

See Table 180

See 9.4.3.7

Classification: Static

Accessibility: Read/write

Default value: Empty

LinkMeta 43 Metadata for Link attribute Type: Metadata_attribute See 9.4.3.7
(Note 1)

Classification: Static

Accessibility: Read only

Route 44 Routes Type: OctetString (indexed)

See Table 185

See 9.4.3.8

Classification: Static

Accessibility: Read/write

Default value: Empty

RouteMeta 45 Metadata for Route
attribute

Type: Metadata_attribute See 9.4.3.8
(Note 1)

Classification: Static

Accessibility: Read only

NeighborDiag 46 Neighbor link diagnostics Type: OctetString (indexed)

See Table 187

See 9.4.3.9

Classification: Dynamic

Accessibility: Read only

Default value: Empty

DiagMeta 47 Metadata for
NeighborDiag attribute

Type: Metadata_attribute See 9.4.3.9
(Note 1)

Classification: Static

Accessibility: Read only

ChannelDiag 48 Per-channel diagnostics
for spectrum management

Type: OctetString See 9.4.2.27

Classification: Dynamic

Accessibility: Read only

Default value: See 9.4.2.27

AlertPolicy 49 Report diagnostics if
connectivity problems are
detected between regular
HRCO reports

Type: OctetString See 9.6.1

Classification: Static

Accessibility: Read/write

Default value: See 9.6.1

 – 390 – 62734/2CDV © IEC(E)

Table 141 (continued)

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

DLTimeout 50 DLE may reasonably reset
to provisioned state if it
doesn’t receive a time
update in this time interval

Type: Unsigned16 See 9.4.2.15

Classification: Static

Accessibility: Read/write

Default value: See
description

Valid range: > 0

NOTE 1 Metadata containing a count of the number of entries in the table and capacity (the total number of rows
allowed) for the table.

 10365
9.4.2.2 dlmo.ActScanHostFract 10366

dlmo.ActScanHostFract configures the DLE’s behavior as an active scanning host, as 10367
specified in 9.1.13.3. The setting indicates the fraction of time that the DLE should respond 10368
when it receives an active scanning solicitation. The default of 0 indicates that the DLE is not 10369
configured as an active scanning host. 10370

9.4.2.3 dlmo.AdvJoinInfo and dlmo.AdvSuperframe 10371

dlmo.AdvJoinInfo and dlmo.AdvSuperframe configure the contents of an advertisement’s 10372
DAUX subheader. Their meaning is described in 9.3.5.2.5. 10373

9.4.2.4 dlmo.SubnetID 10374

dlmo.SubnetID is the identifier for the single D-subnet that the DLE is currently using or 10375
attempting to join. The DL management SAPs handle only one active D-subnet at a time. If a 10376
given device is participating in multiple D-subnets concurrently, this may be modeled as 10377
multiple instances of the DLE. dlmo.SubnetID=0 shall never be used as a D-subnet ID; its use 10378
indicates that the DLE is not participating in a D-subnet. dlmo.SubnetID=1 shall be used 10379
exclusively to identify provisioning D-subnets. The system manager doesn’t set the DLE’s 10380
SubnetID directly; rather, it is set by the DLE itself in the process of discovering and joining 10381
the D-subnet. See 9.1.10.2. 10382

NOTE In the IEEE 802.15.4:2011 design, SubnetID is usable as a filter for incoming MPDUs. As discussed in 10383
9.1.10.2, a DMIC provides an additional, stronger and more reliable filter once the DLE has joined the D-subnet. 10384

9.4.2.5 dlmo.SolicTemplate 10385

dlmo.SolicTemplate is a template for the DAUX subheader in a solicitation. When a 10386
solicitation is transmitted, the exact data in this OctetString (without a prepended explicit size) 10387
shall be used as the DAUX subheader. It is null (zero size) by default. See 9.3.5.3. 10388

9.4.2.6 dlmo.TaiTime 10389

dlmo.TaiTime, when read by the DMAP, is reported as the DLE’s best estimate of DL time at 10390
that instant. See 12.22.4.2 for encoding of TAINetworkTime. 10391

NOTE The dlmo.TaiTime attribute is described as a read-only attribute, where time is acquired by the DLE from 10392
its neighbors and provided as a service to other layers through the DMAP. This style of specification is not 10393
intended to preclude implementations, such as on DLEs that are clock masters, where time is provided to the DLE 10394
from an alternative source. 10395

62734/2CDV © IEC(E) – 391 –

9.4.2.7 dlmo.MaxBackoffExp 10396

dlmo.MaxBackoffExp is the maximum backoff exponent for retries; see 9.1.8.2 for a 10397
discussion of exponential backoff. 10398

9.4.2.8 dlmo.MaxDsduSize 10399

dlmo.MaxDsduSize is the maximum number of octets that can be accommodated in a single 10400
DSDU. This is used by the NL to make fragmentation decisions. Its default value of 96 allows 10401
for the following constraints: 10402

• A single EUI64Address in the MHR. See 9.3.3.2. 10403

• A one-octet Crypto Key Identifier and a slow-channel-hopping-offset in the DMXHR. See 10404
9.3.3.4. 10405

• A single compressed route in DROUT (i.e. no source routing beyond the single hop case). 10406
See 9.3.3.6. 10407

• No DAUX, so that a fragmented DSDU cannot be combined with an advertisement, with 10408
the exception of the link activation DAUX when 16-bit addressing is used. 10409

• A DMIC-32, not DMIC-64 or DMIC-128. 10410

NOTE MaxDsduSize was calculated as follows: 15 octets for the MHR (see 9.3.3.2); 1 octet for the DHR (see 10411
9.3.3.3); 3 octets for the DMXHR (see 9.3.3.4); 0 octets for the DAUX (see 9.3.3.5); 2 octets for the DROUT (see 10412
9.3.3.6); 4 octets for DADDR (see 9.3.3.7); 4 octets for the DMIC; and 2 octets for the FCS. This total of 31 octets 10413
is subtracted from the PhSDU capacity of 127 octets, to arrive at a MaxDsduSize of 96 octets. 10414

The system manager shall reduce the value of dlmo.MaxDsduSize as needed if additional 10415
constraints apply to a particular configuration. 10416

9.4.2.9 dlmo.MaxLifetime 10417

dlmo.MaxLifetime is the maximum duration, in units of 0,25 s, for which a Data DPDU is to be 10418
held in the message queue of a single DLE before it shall be discarded. dlmo.MaxLifetime can 10419
be overridden by dlmo.Graph[].MaxLifetime (see 9.4.3.6). 10420

9.4.2.10 dlmo.NackBackoffDur 10421

dlmo.NackBackoffDur is the duration of the backoff, in units of 0,25 s, after receiving a NAK 10422
(see 9.1.9.4.4). 10423

9.4.2.11 dlmo.LinkPriorityXmit and dlmo.LinkPriorityRcv 10424

dlmo.LinkPriorityXmit and dlmo.LinkPriorityRcv are the default priorities to be used when 10425
selecting links. If no priority is specified in dlmo.Link[].Priority, use these priorities. For T/R 10426
links, use dlmo.LinkPriorityRcv as the priority for the receive side of the link. Link priorities are 10427
functionally described in 9.1.8.5. 10428

9.4.2.12 dlmo.IdleChannels 10429

dlmo.IdleChannels provides a list of channels that shall be idle, as a quick way for the system 10430
manager to block the usage of certain channels on a particular DLE without requiring a 10431
coordinated change of channel-hopping schedules. A link occurring on any of the channels 10432
designated as idle (value 1) by dlmo.ActiveChannels shall be treated as idle. Values of 1 in 10433
dlmo.IdleChannels shall not cause hop sequences to be shortened, but rather leaves the hop 10434
sequences intact and simply causes all links on designated channels to be treated as idle. 10435
(Shortening of the hop sequences themselves is accomplished through a different attribute, 10436
dlmo.Superframe[].ChMap.) Bit positions 0..15 correspond to channels 0..15. A bit value of 1 10437
indicates that links using the channel shall be treated as idle. dlmo.IdleChannels is 10438
complimentary with dlmo.DeviceCapability.ChannelMap; in operation of the DLE, the two are 10439
logically combined as follows, resulting in a set of channels that are treated as active by the 10440
DLE: 10441

 – 392 – 62734/2CDV © IEC(E)

ActiveChannels = ((NOT dlmo.IdleChannels) AND (dlmo.DeviceCapability.ChannelMap)) 10442

9.4.2.13 dlmo.ClockExpire 10443

dlmo.ClockExpire is the maximum number of seconds that the DLE can safely operate without 10444
a clock update. The default is (1 000 s / DeviceCapability.ClockStability), which is intended to 10445
keep the DLE synchronized to within 1 ms during the join process and thereafter when 10446
participating in a D-subnet that provides only slotted-hopping. In other cases, the needed 10447
value scales linearly with the needed tighter or looser clock accuracy. See 9.1.9.2.2. 10448

NOTE A device that requires use of slow-hopping is likely to have a longer ClockExpire duration than the above 10449
default. 10450

9.4.2.14 dlmo.ClockStale 10451

dlmo.ClockStale determines when the DLE should start accepting time updates from 10452
secondary DL clock sources. For example, if dlmo.ClockTimeout is set to the default of 45 s, 10453
then a DL clock recipient should not accept clock updates from a secondary DL clock source 10454
until at least 45 s has elapsed since it last received a clock update from a primary DL clock 10455
source. The default value is 0,5 × ClockExpire. See 9.1.9.2.3 for more information. 10456

9.4.2.15 dlmo.ClockTimeout 10457

dlmo.ClockTimeout is the maximum number of seconds that the DLE can reasonably operate 10458
in a D-subnet before resetting itself to the provisioned state. The default value is 10459
2,0 × ClockExpire. See 9.1.9.2.2. 10460

9.4.2.16 dlmo.RadioSilence 10461

dlmo.RadioSilence designates when a DLE shall disable its transmitter after losing its 10462
D-subnet connection. See 9.1.15.4 for more information. 10463

9.4.2.17 dlmo.RadioSleep 10464

dlmo.RadioSleep is used to disable the DLE’s radio for a period of time. See 9.1.15.4 for more 10465
information. Activation of this attribute shall be slightly delayed to allow for transmitting an 10466
application layer acknowledgment of the DMAP TPDU that causes the attribute to be set. 10467

9.4.2.18 dlmo.RadioTransmitPower 10468

dlmo.RadioTransmitPower is used to control the DLE’s radio transmit power level, in dBm 10469
EIRP. It defaults to the device’s maximum permitted transmit power level under the regulatory 10470
regime specified by dlmo.CountryCode (9.1.15.6), and is reported during the join process 10471
through dlmo.DeviceCapability.RadioTransmitPower. See 9.1.15.5. 10472

9.4.2.19 dlmo.CountryCode 10473

dlmo.CountryCode provides constraints on a device based on the applicable regulatory 10474
regime. When set during DLE provisioning, use of the supported content-locking functionality 10475
can constrain operation of the device until it is next provisioned (e.g., perhaps after repair and 10476
deployment to a different regulatory jurisdiction). See 9.1.15.6 and Annex V. 10477

9.4.2.20 Subnet filters 10478

A D-subnet filter attribute is a string of 4 octets that specifies how a DLE shall filter incoming 10479
advertisements or solicitations. AdvFilter is used to filter incoming advertisements, and 10480
SolicFilter is used to filter incoming solicitations. 10481

AdvFilter and SolicFilter each include two fields, a 16-bit BitMask field and a 16-bit TargetID 10482
field. Table 142 shows the structure of each D-subnet filter. 10483

62734/2CDV © IEC(E) – 393 –

Table 142 – D-subnet filter octets 10484

Number
of octets

Bits

7 6 5 4 3 2 1 0

2 BitMask

2 TargetID

 10485
Unlike most DLMO attributes, D-subnet filters use LSB octet ordering conventions. This 10486
reflects their use, which is to perform bit comparison operations with DPDU header elements 10487
that are transmitted in LSB order. 10488

When a DLE receives an advertisement, it shall check the incoming DPDU’s SubnetID. The 10489
advertisement shall be ignored unless: 10490

(DPDU.SubnetID AND AdvFilter.BitMask) equals (AdvFilter.TargetID AND AdvFilter.BitMask) 10491

AdvFilter.BitMask shall default to 0xFFFF, and AdvFilter.TargetID shall default to 0x0001, with 10492
the result that an unprovisioned DLE in the default state will filter all advertisements except 10493
those received from a provisioning D-subnet with SubnetID=1. 10494

When a DLE receives a solicitation, it shall check the incoming DPDU’s SubnetID. The 10495
solicitation shall be ignored unless: 10496

(DPDU.DauxSubnetID AND SolicFilter.BitMask) == 10497
 (SolicFilter.TargetID AND SolicFilter.BitMask) 10498

SolicFilter.BitMask shall default to 0x0000, with the result that solicitations are not f iltered by 10499
default. 10500

9.4.2.21 Time adjustments 10501

The dlmo.TaiAdjust attribute includes fields that are used to adjust dlmo.TaiTime at an instant 10502
that is scheduled by the system manager. This attribute is normally null, unless a time 10503
correction is pending. Its use is described in 9.1.9.3.6. The OctetString comprises a series of 10504
fields that are described in Table 143. 10505

Table 143 – dlmo.TaiAdjust OctetString fields 10506

Field name Field encoding

TaiCorrection (indicates the magnitude and direction of a TAI clock correction) Type: Integer32

Units: 2-15 s

TaiTimeToApply (indicates the time at which the correction shall be applied) Type: TAITimeRounded

Units: 1 s

 10507
NOTE The TaiCorrection unit of 2-15 s was chosen to match the 32 KiHz very-precise very-low-power “watch” 10508
crystals commonly used for the continuous clock hardware of WISN devices. 10509

Table 144 illustrates the structure of the OctetString. 10510

 – 394 – 62734/2CDV © IEC(E)

Table 144 – dlmo.TaiAdjust OctetString structure 10511

Number
of octets

Bits

7 6 5 4 3 2 1 0

4 TaiCorrection

4 TaiTimeToApply

 10512
9.4.2.22 DLE energy capacity 10513

The dlmo.EnergyDesign attribute, as shown in Table 145, includes various elements that 10514
indicate the energy capacity of the device. The fields within this attribute are described in 10515
9.1.17. 10516

Table 145 – dlmo.EnergyDesign OctetString fields 10517

Field name Field encoding

EnergyLife (DLE energy life by design; positive for months, negative for days) Type: Integer16 (constant)

ListenRate (DLE’s energy capacity to operate its receiver, in seconds per
hour)

Type: ExtDLUint (constant)

TransmitRate (DLE’s energy capacity to transmit DPDUs, in DPDUs per
minute

Type: ExtDLUint (constant)

AdvRate (DLE’s energy capacity to transmit advertisements, in DPDUs per
minute)

Type: ExtDLUint (constant)

 10518
Table 146 illustrates the structure of the OctetString. 10519

Table 146 – dlmo.EnergyDesign OctetString structure 10520

Number
of octets

Bits

7 6 5 4 3 2 1 0

2 EnergyLife

1..2 ListenRate

1..2 TransmitRate

1..2 AdvRate

 10521
9.4.2.23 DLMO device capabilities 10522

The dlmo.DeviceCapability attribute includes various elements that indicate the capabilities of 10523
the device. This is a read-only attribute, most of whose component values do not change 10524
during normal operation. (They may be changed due to remote system management, 10525
including by the download of new firmware.) dlmo.DeviceCapability shall be reported to the 10526
system manager as part of the join process. 10527

The OctetString comprises a series of fields that are described in Table 147. Some of these 10528
fields, listed as static, do not change during operation and are reported only on joining. Other 10529
fields, listed as dynamic, may change during operation and are also available after joining 10530
through identically-named DLMO attributes. 10531

62734/2CDV © IEC(E) – 395 –

Table 147 – dlmo.DeviceCapability OctetString fields 10532

Field name Field encoding

QueueCapacity (capacity of the queue that is available for forwarding
operations)

Type: ExtDLUint (constant)

ClockStability (nominal clock stability of this device, as a multiple of 1×10-6) Type: Unsigned8 (constant)

ChannelMap (map of radio channels supported by the device Type: Unsigned16 (constant)

DLE_roles (DLE roles supported by the DLE) Type: BooleanArray8 (constant)

EnergyDesign (copy of attribute dlmo.EnergyDesign) Type: OctetString (constant)

EnergyLeft (copy of attribute dlmo.EnergyLeft) Type: Integer16

Ack_Turnaround (see Table 161) (Note 1) Type: ExtDLUint (constant)

NeighborDiagCapacity (memory capacity for dlmo.NeighborDiag) Type: ExtDLUint (constant)

RadioTransmitPower (copy of attribute RadioTransmitPower, see 9.1.15.5) Type: Integer8

SupportedCCAmodes (bitmap description of CCA modes supported by the
device)

Type: BooleanArray8 (constant)

ConstructionOptions (i.e., optional features supported by DLE) Type: BooleanArray8 (constant)

NOTE 1 This is the greater of the time required to switch from transmit to receive or from receive to transmit,
both of which occur (in different DLEs) at the end of a Data DPDU before the following ACK/NAK DPDU

 10533
Table 148 illustrates the structure of the OctetString. Size of EnergyDesign includes a one-10534
octet size field prepended within the unspecified-length OctetString. 10535

Table 148 – dlmo.DeviceCapability OctetString structure 10536

Number of
octets

Bits

7 6 5 4 3 2 1 0

1..2 QueueCapacity

1 ClockStability

2 ChannelMap

1 DLERoles

6..9 EnergyDesign (OctetString size, plus 5..8 octet content)

2 EnergyLeft

1..2 AckTurnaround

1..2 NeighborDiagCapacity

1 RadioTransmitPower

1 SupportedCCAmodes

1 ConstructionOptions

 10537
Fields include: 10538

• dlmo.DeviceCapability.QueueCapacity is the number of buffers in the queue that are 10539
available for forwarding operations. This capacity shall not include internal buffers that 10540
may be used for messages that flow through the NLE. This value shall be based on the 10541
worst case, wherein all DPDUs are of maximum size. In operation, the actual queue 10542
capacity may be larger than this reported value. See 9.1.8.5. 10543

• dlmo.DeviceCapability.ClockStability is the nominal short-term clock stability of the device, 10544
as a multiple of 1×10-6, in the absence of a time correction from the D-subnet. See 10545
9.1.9.2.2. 10546

• dlmo.DeviceCapability.ChannelMap is a list of channels that the device can legally support 10547
in the device’s regulatory domain (as determined by dlmo.CountryCode, 9.1.15.6), where 10548

 – 396 – 62734/2CDV © IEC(E)

a value of zero indicates that the device is not permitted to use the channel. Bit positions 10549
0..15 correspond to channels 0..15 of this standard, which in turn correspond to 2,4 GHz 10550
DSSS channels 11..26 of IEEE 802.15.4:2011. If the DLE is configured with links that refer 10551
to such blocked channels, the DLE shall treat those links as idle. See 9.1.7.2.3, 9.1.15.6, 10552
9.4.2.19 and Annex V. 10553

• dlmo.DeviceCapability.DLERoles enumerates the DL role profiles supported by the DLE, 10554
where a value of TRUE indicates that the DLE supports the DL role profile. See 9.1.16 for a 10555
discussion of DLE roles. 10556
– Index 0 indicates whether the DLE supports the I/O role profile. 10557
– Index 1 indicates whether the DLE supports the router role profile. 10558
– Index 2 indicates whether the DLE supports the backbone router role profile. 10559
– Index 3 indicates whether the DLE supports the radio silence role profile. See 9.1.15.4. 10560
– Indices 4..7 are reserved and shall be set to FALSE. 10561

• dlmo.DeviceCapability.EnergyDesign and EnergyLeft are described in 9.1.17 and 9.4.2.22. 10562

• dlmo.DeviceCapability.DAckTurnaround indicates the time needed by the DLE to process 10563
a received data DPDU and respond with an ACK or NAK DPDU, in units of 2-15 s. All DLEs 10564
shall be capable of using the default timeslot templates (see Table 165, Table 166, and 10565
Table 167). 10566
The DAckTurnaround value is an upper bound on the externally-measured time interval 10567
required by the device to respond to a signal from its associated PHY that DPDU reception 10568
has completed and to initiate PHY transmission of any immediately following ACK/NAK 10569
DPDU. This measurement involves noting the time when the last symbol of a PhPDU 10570
corresponding to the initial DPDU of a transaction is presented to the receiving device and 10571
the first PhPDU signaling from that device is detected, where the transaction template 10572
used is a unicast receive template with the ACK/NAK DPDU timing referenced to the end 10573
of the just-received Data DPDU. 10574

• dlmo.DeviceCapability.NeighborDiagCapacity indicates the capacity, in octets, of the 10575
NeighborDiag attribute. Only octets shown in Table 187 are included in 10576
NeighborDiagCapacity. The system manager indirectly creates OctetStrings in 10577
NeighborDiag by setting DiagLevel fields in the Neighbor attribute. The system manager 10578
should not configure a DLE to fill NeighborDiag in excess of its stated capacity, and a DLE 10579
may fail to accumulate data if the system manager exceeds this stated capacity. A value 10580
of 0x7FFF indicates that the capacity is sufficient to collect all available diagnostics for 10581
each dlmo.Neighbor. 10582

• dlmo.DeviceCapability.RadioTransmitPower is the DLE’s maximum supported power level, 10583
in dBm EIRP, that the DLE can legally support in the DLE’s regulatory domain, as 10584
determined by dlmo.CountryCode. See 9.1.15.5, 9.1.15.6, 9.4.2.19 and Annex V. 10585

• dlmo.DeviceCapability.SupportedCCAmodes is a list of CCA modes that the device 10586
supports (see 9.1.9.4.3): 10587
– Index 0 (Bit0) indicates whether CCA Mode 1 is supported. 10588
– Index 1 (Bit1) indicates whether CCA Mode 2 is supported. 10589
– Index 2 (Bit2) indicates whether CCA Mode 3 is supported. 10590
– Index 3 (Bit3) indicates whether CCA Mode 4 is supported. 10591
– Indices 4..7 (Bits4..7) are reserved and shall be set to FALSE. 10592

• dlmo.DeviceCapability.ConstructionOptions indicates optional features that the device 10593
supports by construction: 10594
– Index 0 (Bit0) indicates whether group codes are supported in dlmo.Neighbor. 10595
– Index 1 (Bit1) indicates whether graph extensions are supported in dlmo.Neighbor. 10596
– Index 2 (Bit2) indicates whether the device is capable of receiving duocast or N-cast 10597

ACK/NAK DPDUs. 10598

62734/2CDV © IEC(E) – 397 –

– Index 3 (Bit3) indicates whether the device is capable of supporting 10599
dlmo.Superframe.SfType=1, which may be needed in some regions for regulatory 10600
compliance. 10601

– Index 4 (Bit4) indicates whether the device is capable of supporting the 10602
dlmo.Graph.Queue field which, when set to a non-zero value, reserves queue buffer 10603
capacity. 10604
Such queue capacity should not be so reserved unless 10605
dlmo.DeviceCapability.QueueCapacity exceeds the minimum requirement for a DLE’s 10606
role profile (see Table B.8). 10607

– Indices 5..7 (Bits5..7) are reserved and shall be set to FALSE. 10608

9.4.2.24 Candidate neighbors 10609

The dlmo.Candidates attribute is used to provide the system manager with a list of candidate 10610
neighbors. The DLE autonomously populates this attribute as it receives advertisements from 10611
a number of candidate neighbors. This attribute is then forwarded to the system manager so 10612
that routing decisions can be made. The system manager may reset dlmo.Candidates.N=0, 10613
thus signaling to the DLE to clear its history of received advertisements and resume the 10614
neighbor discovery process. 10615

The attribute dlmo.DiscoveryAlert (Table 149) provides the system manager with control over 10616
neighbor discovery and reporting. The system manager sets dlmo.DiscoveryAlert, and later 10617
receives a copy of the dlmo.Candidates attribute through the dlmo.NeighborDiscovery alert. 10618
Alternatively, the system manager can read the dlmo.Candidates attribute on its own 10619
schedule, or arrange to report it periodically through the HRCO. 10620

Table 149 – dlmo.DiscoveryAlert fields 10621

Field name Field encoding

Descriptor Type: Alert report descriptor (see Table 269)

Default: [FALSE, 0]

Duration Type: Unsigned16

Units: 1 s

Default: 60

 10622
Table 150 illustrates the structure of DiscoveryAlert. 10623

Table 150 – dlmo.DiscoveryAlert structure 10624

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Alert report disabled

1 Alert report priority

2 Duration

 10625
When dlmo.DiscoveryAlert is enabled (Descriptor.Disabled=FALSE), the DLE shall report the 10626
contents of dlmo.Candidates.Duration seconds later using the dlmo.NeighborDiscovery alert. 10627
Once the DLE completes the alert, the DLE resets dlmo.DiscoveryAlert to zero. 10628

When the NeighborDiscovery alert is triggered by the state of Duration 10629
(dlmo.DiscoveryAlert.Duration), the DLE shall automatically set Duration to zero, thereby 10630
resulting in a single NeighborDiscovery alert each time Duration is set to a non-zero value. 10631

 – 398 – 62734/2CDV © IEC(E)

dlmo.DiscoveryAlert shall be enabled and default to Duration=60 when the DLE enters the 10632
joined state. This default indicates that the DLE shall, when it enters the joined state, 10633
accumulate information from advertisements in dlmo.Candidates for a period of 60 s, and then 10634
report the results using the dlmo.NeighborDiscovery alert. See 9.1.14.6. The system manager 10635
may override this default by writing to dlmo.DiscoveryAlert in conjunction with the join 10636
response. 10637

Advertisements from neighboring routers include links that can be used to communicate with 10638
that router. When DiscoveryAlert is enabled, the DLE may use these links to interrogate, with 10639
a Data DPDU carrying a null DSDU, each candidate router, on multiple channels, and receive 10640
signal quality metric in the DAUX. This information enables the DEL to build a more accurate 10641
picture of signal quality in dlmo.Candidates. 10642

When dlmo.DiscoveryAlert is disabled, the DLE should nonetheless passively build a 10643
dlmo.Candidates list as a background process after it joins the D-subnet, based on whatever 10644
advertisements it happens to receive in the course of operating the DLE’s state machine. 10645

If there is a dlmo.DL_Connectivity alert and DiscoveryAlert is enabled, the DLE shall also 10646
send a dlmo.NeighborDiscovery alert at the same time. 10647

When dlmo.DiscoveryAlert.Duration is set to 0, the DLE shall not send 10648
dlmo.NeighborDiscovery alerts on a timed basis. The DLE should continue to maintain the 10649
Candidates attribute so that it can be read as needed by the system manager by reading the 10650
dlmo.Candidates attribute directly or by configuring the DLE to report it periodically through 10651
the HRCO. 10652

The process of scanning for advertisements is described in 9.1.13. 10653

dlmo.Candidates comprises a series of fields that are described in Table 151. In essence, the 10654
<Candidate>,<RSQI> tuple is repeated N times, providing an indication of signal quality to 10655
multiple neighbors. 10656

dlmo.Candidates may reasonably exclude current entries in the dlmo.Neighbor table, when 10657
the same information for those neighbors is available through the neighbor diagnostics. 10658

Table 151 – dlmo.Candidates OctetString fields 10659

Field name Field encoding

N (count of discovered neighbors) Type: Unsigned8

Neighbor1 (16-bit address of first candidate) Type: ExtDLUint

RSSI1 (radio signal strength of first candidate) Type: Integer8

RSQI1 (radio signal quality of first candidate) Type: Unsigned8

… …

NeighborN (16-bit address of Nth candidate) Type: ExtDLUint

RSSIN (radio signal strength of Nth candidate) Type: Integer8

RSQIN (radio signal quality of Nth candidate) Type: Unsigned8

 10660
Table 152 illustrates the structure of Candidates. 10661

62734/2CDV © IEC(E) – 399 –

Table 152 – dlmo.Candidates structure 10662

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 N

1..2 Neighbor1

1 RSSI1

1 RSQI1

… …

1..2 NeighborN

1 RSSIN

1 RSQIN

 10663
Fields include: 10664

• dlmo.Candidates.N is the number of neighbors that have been discovered. A DLE shall 10665
support at least five (5) candidate entries. If many neighbors are discovered, the DLE may 10666
report only the best candidates based on the quality of the radio link. 10667

• dlmo.Candidates.NeighborN is the 16-bit address of each candidate neighbor in the 10668
D-subnet. 10669

• dlmo.RSSIN indicates the strength of the radio signal in dBm from each candidate 10670
neighbor, based on received advertisements and possibly other DPDUs. See 9.1.15.2 for 10671
description of RSSI, including the fixed dBm bias within the reported measurement values. 10672

• dlmo.RSQIN indicates the quality of the radio signal from each candidate neighbor, based 10673
on received advertisements and possibly other considerations. A higher number indicates 10674
a better radio signal. See 9.1.15.2. for description of RSQI. 10675

9.4.2.25 Smoothing factors 10676

The dlmo.SmoothFactors provides the smoothing factors for the dlmo.NeighborDiag attribute. 10677
The use of these factors is described in 9.1.15.3. 10678

Three fields in dlmo.NeighborDiag involve exponential smoothing: RSSI, RSQI, and 10679
ClockBias. The smoothing factor α (alpha) for each of these values is individually 10680
configurable. Alpha is expressed as an integer percentage in the range of 0..100. RSSI and 10681
RSQI default to 10%, so the values tend to reflect recent history. ClockBias defaults to 1%, 10682
since that value is intended to show clock bias over an extended period of time. 10683

Each smoothing factor involves three values: x_AlphaHigh, x_AlphaLow, and x_Threshold, for 10684
differing x. If the new data is below the threshold, use x_AlphaLow as the smoothing factor; 10685
otherwise use x_AlphaHigh. 10686

The fields in dlmo.SmoothFactors are described in Table 153. 10687

 – 400 – 62734/2CDV © IEC(E)

Table 153 – dlmo.SmoothFactors OctetString fields 10688

Field name Field encoding Default

RSSI_Threshold (threshold for RSSI) Type: Integer16 0

RSSI_AlphaLow (AlphaLow for RSSI) Type: Unsigned8 10

RSSI_AlphaHigh (AlphaHigh for RSSI) Type: Unsigned8 10

RSQI_Threshold (threshold for RSQI) Type: Integer16 0

RSQI_AlphaLow (AlphaLow for RSQI) Type: Unsigned8 10

RSQI_AlphaHigh (AlphaHigh for RSQI) Type: Unsigned8 10

ClockBias_Threshold (threshold for ClockBias) Type: Integer16 0

ClockBias_AlphaLow (AlphaLow for ClockBias) Type: Unsigned8 1

ClockBias_AlphaHigh (AlphaHigh for ClockBias) Type: Unsigned8 1

 10689
Table 154 illustrates the structure of SmoothFactors. 10690

Table 154 – dlmo.SmoothFactors structure 10691

Number
of octets

Bits

7 6 5 4 3 2 1 0

2 RSSI_Threshold

1 RSSI_AlphaLow

1 RSSI_AlphaHigh

2 RSQI_Threshold

1 RSQI_AlphaLow

1 RSQI_AlphaHigh

2 ClockBias_Threshold

1 ClockBias_AlphaLow

1 ClockBias_AlphaHigh

 10692
9.4.2.26 dlmo.QueuePriority 10693

9.4.2.26.1 General 10694

dlmo.QueuePriority is an attribute that enables the system manager to specify the nominal 10695
buffer capacity in the DLE’s forwarding queue for specific priority levels. As described in 10696
9.1.8.5, the system manager may configure a DLE’s nominal buffer capacity to limit the 10697
number of buffers that can be used to forward low-priority Data DPDUs. For example, the 10698
system manager may configure dlmo.QueuePriority so that no more than 3 buffers shall be 10699
used to forward Data DPDUs with priority ≤2. 10700

The nominal capacity of the forwarding queue can be found in 10701
dlmo.DeviceCapability.QueueCapacity (see 9.4.2.23). 10702

9.4.2.26.2 Semantics 10703

Table 155 specifies the fields for dlmo.QueuePriority. 10704

62734/2CDV © IEC(E) – 401 –

Table 155 – dlmo.QueuePriority fields 10705

Field name Field encoding

N (count of priorities specified, 0..15, default N=0) Type Unsigned8

Priority1 (first priority) Type: Unsigned8

QMax1 (first buffer capacity) Type: Unsigned8

…

PriorityN (Nth priority) Type: Unsigned8

QMaxN (Nth buffer capacity) Type: Unsigned8

 10706
For example, if Priority is 2 and QMax is 3, then no more than 3 queue buffers shall be used 10707
to forward Data DPDUs with priority ≤ 2. This count shall not include Data DPDUs that are 10708
using queue capacity that was set aside for Data DPDUs being forwarded along a particular 10709
graph, based on dlmo.Graph[].Queue. Priority shall be enumerated in increasing order, so 10710
that PriorityX shall be less than PriorityX+1. Similarly, QMaxX shall be less than QMaxX+1. 10711

The count QMaxX sets the maximum available slots available for low-priority messages, not 10712
reserved slots for low-priority messages. In effect, QMaxX ensures that the remainder of the 10713
queue is available for DPDUs of priority 1+PriorityX. 10714

As described in 9.2.2, the DE indicator in a Data DPDU header indicates whether a Data 10715
DPDU on the queue is eligible to be discarded in favor of an incoming DPDU of higher 10716
priority. 10717

The default, where N=0, indicates that the system manager has not configured a limit on the 10718
number of forwarding buffers that can be used for low priority DPDUs. 10719

Table 156 illustrates the structure of dlmo.QueuePriority. 10720

Table 156 – dlmo.QueuePriority structure 10721

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 N

2 (opt) Priority1

3 (opt) QMax1

… …

2N (opt) PriorityN

2N+1 (opt) QMaxN

 10722
9.4.2.27 dlmo.ChannelDiag 10723

9.4.2.27.1 General 10724

dlmo.ChannelDiag is a read-only dynamic attribute that reports DPDU transmit failure rates on 10725
each radio channel supported by this standard. This enables the system manager to be aware 10726
of consistent connectivity problems on a per-channel basis, as a diagnostic for spectrum 10727
management in a D-subnet. 10728

Two diagnostics are reported for each channel, each indicating a different type of failure. 10729
NoACKN indicates the percentage of time that unicast DPDU transmissions on channel N did 10730
not result in reception of an ACK/NAK DPDU. CCABackoffN indicates the percentage of time 10731
that the device aborted a transaction-initiating transmission on channel N due to CCA. 10732

 – 402 – 62734/2CDV © IEC(E)

Under some situations, CCA backoff is part of normal D-subnet operation and is not indicative 10733
of poor channel quality. In particular, contention for shared links will lead to CCA backoff. 10734
Therefore, the DLE may be selective in its counting of CCA backoff. It is recommended that 10735
CCA backoff should not normally be counted when it occurs in shared links within slotted-10736
channel-hopping superframes. Shared links are described in 9.1.8.2 10737

ChannelDiag values are 8-bit signed integers. 10738

• A value of 0 indicates that no transmission has been attempted on the channel. 10739

• Positive values in the range of 1..101 indicate the percentage failure rate plus one. For 10740
example, a CCABackoff6 value of 26 indicates that 25% of transaction-initiating 10741
transmissions on channel 6 were aborted due to CCA. 10742

• Negative values in the range of -1 to -101 indicate the percentage failure rate as a 10743
negative number minus one. Failure rates are reported as negative numbers if they are 10744
based on 5 or fewer attempted transmissions. For example, a NoACK8 value of -34 10745
indicates that 33% of unicast transmissions on a particular channel did not receive an 10746
acknowledgment, and that 5 or fewer transmissions have been attempted on that channel. 10747

The DLE may selectively skip transmission links in anticipation of a failed transmission, as 10748
described in 9.1.7.2.4. Such skipped links should be treated as equivalent to NAK for the 10749
applicable channel. 10750

Each time ChannelDiag is read by the system manager or reported periodically through the 10751
HRCO, its underlying accumulators shall be reset to zero. 10752

9.4.2.27.2 Semantics 10753

Table 157 specifies the fields for dlmo.ChannelDiag. 10754

Table 157 – dlmo.ChannelDiag fields 10755

Field name Field encoding

Count (number of attempted unicast transmissions for all channels) Type: Unsigned16

NoACK0 (percentage of time transmissions on channel 0 did not receive an ACK DPDU) Type: Integer8

CCABackoff0 (percentage of time transmissions on channel 0 aborted due to CCA) Type: Integer8

… …

NoACK15 (percentage of time transmissions on channel 15 did not receive an ACK DPDU) Type: Integer8

CCABackoff15 (percentage of time transmissions on channel 15 aborted due to CCA) Type: Integer8

 10756
Table 158 illustrates the structure of dlmo.ChannelDiag. 10757

Table 158 – dlmo.ChannelDiag structure 10758

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Count

1 NoACK0

1 CCABackoff0

… …

1 NoACK15

1 CCABackoff15

 10759

62734/2CDV © IEC(E) – 403 –

 DLMO attributes (indexed OctetStrings) 9.4.310760

9.4.3.1 General 10761

Indexed OctetString management object attributes are structured collections of data, similar in 10762
concept to SQL tables. For example, the DLE maintains a list of neighbors in an indexed 10763
OctetString attribute called dlmo.Neighbor, where each neighbor can be visualized as a row in 10764
a table, with the structure of each row as shown in Table 168 and Table 169. A 15-bit index 10765
for each row, in this case corresponding to the 16-bit address of the neighbor, is provided for 10766
each indexed OctetString attribute in the DLMO. 10767

For consistency of processing, all indexed OctetString attributes in the DL include an index in 10768
the first field that is type ExtDLUint. However, in the case of dlmo.Ch, dlmo.TsTemplate, and 10769
dlmo.Superframe, the index is limited to a range of 1..127, thus guaranteeing that the index 10770
can be represented in a single octet. References to these structures can also be compressed 10771
to a single octet. 10772

Indexed OctetString index of zero shall not be used in the DLMO, except to indicate a null 10773
entry. 10774

Figure 90 illustrates the relationship among some of the indexed OctetString DLMO attributes. 10775
Referential relationships are shown with arrows. For example, dlmo.Link refers to 10776
dlmo.TsTemplate, so an arrow is shown pointing in the direction of the reference. This roughly 10777
corresponds to a one-to-many relationship, where one template can be referenced by multiple 10778
links. 10779

dlmo11a.TsTemplate

dlmo11a.Route

dlmo11a.Graph

dlmo11a.Neighbor

dlmo11a.Link

dlmo11a.Superframe

dlmo11a.Ch

 10780

Figure 90 – Relationship among DLMO indexed attributes 10781

As shown in Figure 90, dlmo.TsTemplate is referenced by dlmo.Link. Timeslot templates 10782
specify transaction structure and timing when a link is used. 10783

dlmo.Link, dlmo.Superframe, and dlmo.Ch are related. Superframes select a channel-hopping 10784
pattern and a cyclic schedule. Links describe the various actions that are taken during each 10785
superframe cycle. Each link refers to one superframe. 10786

For unicast (and duocast) transactions, dlmo.Link refers to dlmo.Neighbor. A single reference 10787
may encompass a group of neighbors. If a link is reserved for use of a certain graph, or gives 10788
preferential access to a certain graph, then dlmo.Link will also refer to dlmo.Graph. Since it is 10789
possible to configure a link without a reference to a graph, this reference is shown as a dotted 10790
line in Figure 90. 10791

 – 404 – 62734/2CDV © IEC(E)

dlmo.Route and dlmo.Graph are related in that routes usually refer to graphs. dlmo.Graph and 10792
dlmo.Neighbor are related in that graphs refer to neighbors. dlmo.Route and dlmo.Neighbor 10793
are loosely related (indicated by a dotted line in Figure 90) in that source routing may 10794
implicitly refer to a neighbor. 10795

An additional relationship, not shown in Figure 90, exists between dlmo.Neighbor and 10796
dlmo.NeighborDiag. Both are indexed by the 16-bit address of the DLE’s neighbors, but with 10797
different purposes. 10798

• dlmo.Neighbor: The system manager provides this static indexed OctetString attribute to 10799
enable the DLE to communicate with its immediate neighbors. 10800

• dlmo.NeighborDiag: The system manager configures this dynamic indexed OctetString 10801
attribute to enable the DLE to collect and periodically report diagnostics for its immediate 10802
neighbors. 10803

9.4.3.2 dlmo.Ch 10804

9.4.3.2.1 General 10805

dlmo.Ch is an indexed OctetString collection that contains available channel-hopping 10806
patterns. 10807

Channel-hopping patterns 1 through 5 are reserved as standard defaults, as described in 10808
9.1.7.2.5. Additional channel-hopping patterns may be added. 10809

Each DLE can store multiple channel-hopping patterns, with a unique index for each pattern. 10810
Advertisements assume that channel-hopping patterns for the join process are configured in 10811
the DLE when the advertisement is received. Thus any channel-hopping pattern referenced in 10812
an advertisement shall match one of the defaults. 10813

The system manager inserts, updates, or deletes channel-hopping patterns by sending the 10814
DMAP a channel-hopping pattern, along with a unique index and (if selected) a TAI cutover 10815
time. 10816

For a given channel-hopping pattern, the standard provides a mapping between the DL 10817
channel numbers and the more general IEEE 802.15.4:2011 MAC channel numbers. As 10818
applied to the 2,4 GHz DSSS IEEE 802.15.4:2011 radio, channel numbers shall be limited to 10819
the range of 0..15, corresponding to IEEE 802.15.4:2011 channel numbers 11..26 (channel 10820
page 0), in the same order. Channel-hopping patterns for this radio shall not exceed a size of 10821
16. 10822

NOTE dlmo.Ch data types are limited to radios with 16 or fewer channels. Future radios with more channels 10823
would involve providing support for a less compressed representation. 10824

Five default channel-hopping patterns are reserved and defined by this standard. Default 10825
channel-hopping patterns are enumerated and described in 9.1.7.2.5. 10826

9.4.3.2.2 Semantics 10827

Table 159 specifies the fields for dlmo.Ch. An index, used to identify each channel-hopping 10828
pattern, is consistent with DL conventions for indexed OctetStrings. 10829

62734/2CDV © IEC(E) – 405 –

Table 159 – dlmo.Ch fields 10830

Field name Field encoding

* Index Type: ExtDLUint (used as an index)

Valid range: 1..127

Size Type: Unsigned8

Valid range: 1..16

Seq (channel-hopping pattern, with Size entries) Type: SEQUENCE OF Unsigned4 (SIZE (Size))

 10831
Table 160 illustrates the structure of dlmo.Ch. 10832

Table 160 – dlmo.Ch structure 10833

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 Index (1..127)

1 Size

(Size+1)/2

Seq1 Seq0

Seq3 Seq2

… …

0x0000 when Size is an odd number;
SeqSize-1 when Size is an even number

Seq2(n-2)

 10834
9.4.3.3 dlmo.TsTemplate 10835

9.4.3.3.1 General 10836

dlmo.TsTemplate is an indexed OctetString collection that contains timeslot templates. 10837
Timeslot templates describe D-transaction timing. 10838

Timeslot templates 1, 2, and 3 shall be reserved as standard defaults, as enumerated in 10839
Table 165, Table 166, and Table 167. Additional timeslot templates may be added by the 10840
system manager. 10841

The system manager inserts, updates, or deletes timeslot templates by sending the DMAP a 10842
template, along with a unique index and (if selected) a TAI cutover time. 10843

Template time offsets are specified in units of 2-20 s, which is approximately 1 µs. Timeslot 10844
duration is set by the superframes that use the template. 10845

Template types include receive and transaction initiator templates. Both template types 10846
include acknowledgments for unicast transactions. The same templates can also be used for 10847
broadcast links, such as solicitations, that don’t need acknowledgments and don’t use the 10848
ACK/NAK DPDU timings. 10849

Templates can be defined on three levels: 10850

• Default templates are defined in the standard. These are the timeslot templates needed 10851
for joining (Table 165, Table 166, and Table 167). Template index=1 describes a generic 10852
receive transaction, and is used for receiving join responses. Template index=2 describes 10853
a generic transmit transaction, and is used for transmitting join requests. Template 10854
index=3 describes a transaction that operates its receiver for an entire timeslot, intended 10855
for operations such as scanning for advertisements or receiving loosely-timed slow-10856

 – 406 – 62734/2CDV © IEC(E)

channel-hopping DPDUs. These generic templates shall be used during provisioning and 10857
joining, and may also be used for other purposes. 10858

• Provisioned templates may be added during the provisioning process, with a lifetime that 10859
lasts until the DLE has joined the D-subnet. See 9.1.14.4. 10860

• Subnet-specific templates may be provided to the DLE after the join process is completed. 10861

Data DPDU transmission timing is based on the transaction initiator’s internal clock. ACK/NAK 10862
DPDU timing is specified as a time offset from a reference point that is indicated in the 10863
template. Usually, the configured time range for a transaction initiator is narrower than the 10864
time range for the transaction receivers, to account for guard times. 10865

Timeslot templates shall always provide a reception window of at least 192 µs, which implies 10866
that DLEs shall be capable of controlling transmission timing with an accuracy of at least 10867
±96 µs, i.e., ±6 PHY symbol periods. 10868

By convention, timeslot template timing is specified based on the start and end times of 10869
DPDUs. PhPDU timing, dependent on the details of the physical layer that contains the 10870
DPDU, can be inferred from DPDU times. DPDU start time, as specified in timeslot templates, 10871
uses a convention that the DPDU begins at the instant just before the first octet in the DPDU 10872
header is transmitted. This convention applies to Data DPDU transmissions as well as 10873
ACK/NAK DPDUs. 10874

NOTE In actual implementations based on IEEE 802.15.4:2011 (2,4 GHz), PhL timing signals sometimes are 10875
triggered when an SFD (start frame delimiter) is completely transmitted or received. In such cases, the start time of 10876
the DPDU is 1 octet, or 32 µs, after that reference point. 10877

ACK/NAK DPDU response time is commonly specified in relation to the end of the 10878
immediately preceding and triggering Data DPDU, with the ACK/NAK DPDU starting 10879
approximately 1 ms thereafter. 10880

Alternatively, ACK/NAK DPDUs may be timed in relation to the scheduled end of the timeslot. 10881
By placing ACK/NAK DPDUs at a fixed offset within the timeslot, it is possible to meet 10882
regulatory requirements that would prohibit transmission of an ACK/NAK DPDU after a very 10883
short Data DPDU, where the sender of the ACK/NAK DPDU had also transmitted near the end 10884
of the prior timeslot. 10885

Such timeslot-end-relative placement also supports routers that operate on multiple channels 10886
at the same time, sharing a common antenna, or devices whose antennas are in close 10887
proximity to each other. In both cases, without such scheduled alignment, Data DPDUs and/or 10888
ACK/NAK DPDUs transmitted on one channel might unintentionally jam time-overlapping 10889
reception whose reception is being attempted on another channel. 10890

When ACK/NAK DPDU times are defined as offsets from the end of the timeslot, the time 10891
offsets, which are unsigned integers, shall be interpreted as referring to a time prior to the 10892
end of the timeslot. 10893

Transaction receiver templates specify: 10894

• The time range when the first octet of a Data DPDU can be received, indicating a time 10895
range to enable and disable the radio’s receiver. A time range that exceeds the timeslot’s 10896
duration indicates that the range extends only to the scheduled end of the timeslot. 10897

• ACK/NAK DPDU delay time range. 10898
A transaction responder for a unicast transaction should respond with an ACK/NAK DPDU 10899
as early as possible within this range, with the exception of intentionally staggered n -cast 10900
ACK/NAK DPDUs. ACK/NAK DPDU delay time may be specified in reference to the end of 10901
the received DPDU or as a backward offset from the scheduled end of the timeslot. 10902

• Whether it is acceptable to operate past the timeslot boundary once reception of a DPDU 10903
begins, essentially extending timeslot duration. 10904

62734/2CDV © IEC(E) – 407 –

Overrun of a slot boundary can be used to accommodate slow-channel-hopping, where 10905
transaction-originating DLEs may have a time-skewed sense of the slot boundaries. 10906
Support of such transactions originated by such DLEs involves allowing reception even 10907
when the transaction overruns a slot boundary. 10908

Transaction initiator templates specify: 10909

• Time range to begin transmission. A compliant DLE may begin its transmission at any time 10910
within the time range, based on its internal DLE clock. The time range is based on the 10911
start time of the Data DPDU. The CCA operation, if any, and the PhPDU’s SHR and PHR 10912
precede that event and therefore may occur prior to the earliest permitted time to begin 10913
transmission. 10914

• ACK/NAK DPDU delay time range. A transaction responder usually will respond as early 10915
as possible within this range, per its timeslot template but subject to regulatory constraints 10916
on the minimal required delay since the last prior transmission by the same device. 10917
ACK/NAK DPDU delay time may be specified in relation to the end of reception of the 10918
Data DPDU or the scheduled end of the timeslot. 10919

• Indication of the CCA mode to be used before transmission to check for competing or 10920
ongoing transmissions. 10921

• Indication of whether the DLE should periodically continue operating its receiver for the 10922
entire ACK/NAK DPDU delay time range, even after receiving an ACK/NAK DPDU 10923
(intended for duocast coverage testing; see 9.1.9.4.7). 10924

9.4.3.3.2 Semantics 10925

There are two variations of dlmo.TsTemplate, one for a transaction receiver template and 10926
another for a transaction initiator template. The variations are distinguished by a 2-bit type 10927
that is the first element. Type=0 indicates a transaction receiver template, and type=1 10928
indicates a transaction initiator template. Types 2 and 3 are reserved for future use. 10929

Table 161 specifies the fields for the transaction receiver template. 10930

 – 408 – 62734/2CDV © IEC(E)

Table 161 – Transaction receiver template fields 10931

Field name Field encoding

* Index Type: ExtDLUint (used as an index)
Valid range: 1..127

Type (indicates that this is a transaction receiver template) Type: Unsigned2:
Named values:
0: transaction receiver template
1: see Table 163;
other choices are reserved

AckRef (indicates reference for ACK/NAK DPDU time range) Type: Unsigned1:
Named values:
0: offset from end of incoming DPDU;
1: negative offset from end of timeslot

RespectBoundary (specifies whether or not slot boundaries shall be
respected, i.e., whether a D-transaction may extend past a slot
boundary)

Type: Boolean1:
FALSE: slot boundaries do not need to
be respected;
TRUE: slot boundaries shall be
respected

Reserved (octet alignment) Type: Unsigned4=0

WakeupDPDU (earliest time when DPDU reception can be expected to
begin, indicating when to enable radio’s receiver; offset from timeslot’s
scheduled start time)

Type: Unsigned16

Units: 2-20 s

TimeoutDPDU (latest time when DPDU reception can be expected to
begin, indicating when to disable receiver if no incoming DPDU is
detected; offset from timeslot’s scheduled start time)

Type: Unsigned16

Units: 2-20 s

AckEarliest (start of ACK/NAK DPDU delay time range, with start of
that DPDU (PhSDU) being the time reference. Semantics depend on
AckRef: if AckRef=1, subtract value from scheduled end time of
timeslot to determine AckEarliest)

Type: Unsigned16

Units: 2-20 s

AckLatest (end of ACK/NAK DPDU delay time range, with start of that
DPDU (PhSDU) being the time reference. Semantics depend on
AckRef: if AckRef=1, subtract value from scheduled end time of
timeslot to determine AckLatest)

Type: Unsigned16

Units: 2-20 s

 10932
Table 162 specifies the transaction receiver template structure. 10933

Table 162 – Transaction receiver template structure 10934

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 * Index (range 1..127)

1 Type=0 AckRef RespectBoundary Reserved=0

2 WakeupDPDU

2 TimeoutDPDU

2 AckEarliest

2 AckLatest

 10935
Table 163 specifies the fields for the transaction initiator template. 10936

62734/2CDV © IEC(E) – 409 –

Table 163 – Transaction initiator template fields 10937

Field name Field encoding

* Index Type: ExtDLUint (used as an index)
Valid range: 1..127

Type (indicates that this is a transaction initiator template) Type: Unsigned2:
Named values:
0: see Table 161;
1: transaction initiator template;
remaining elements are reserved

AckRef (indicates reference for ACK/NAK DPDU delay time range) Type: Unsigned1:
Named values:
0: positive offset from end of
transmitted/received DPDU
1: negative offset from end of timeslot

CCAmode (indicates whether to check CCA before transmission) Type: unsigned2 (see 9.1.9.4.3):
Named values:
0: CCA mode 4;
1: CCA mode 1;
2: CCA mode 2;
3: CCA mode 3.

KeepListening (indicates whether the DLE should periodically
continue operating its receiver until the end of the timeslot, even after
reception of an ACK/NAK DPDU; see 9.1.9.4.7)

Type: Boolean1

Reserved (octet alignment) Type: Unsigned2=0

XmitEarliest (earliest time to start DPDU transmission; offset from
timeslot’s scheduled start time)

Type: Unsigned16

Units: 2-20 s

XmitLatest (latest time to start DPDU transmission; offset from
timeslot’s scheduled start time)

Type: Unsigned16

Units: 2-20 s

WakeupAck (earliest time when reception of an ACK/NAK DPDU can
be expected to begin; enable receiver early enough to receive an
ACK/NAK DPDU beginning at this time. Semantics depend on
ACKref; if AckRef=1, subtract value from scheduled end of timeslot to
determine WakeupAck.)

Type: Unsigned16

Units: 2-20 s

TimeoutAck (latest time when reception of an ACK/NAK DPDU can be
expected to begin. DLE may disable receiver if ACK/NAK DPDU
reception has not started by this time. Semantics depend on ACKref;
if AckRef=1, subtract value from scheduled end of timeslot to
determine TimeoutAck.)

Type: Unsigned16

Units: 2-20 s

NOTE An AckEarliest value of 402 (384 µs) accommodates the IEEE 802.15.4:2011 SIFS requirement of 6
octets, plus 6 octets for a PhPDU’s SHR and PHR prior to the start of the ACK/NAK DPDU’s PhSDU.

 10938
Table 164 specifies the transaction initiator template structure. 10939

Table 164 – Transaction initiator template structure 10940

Number
of octets

bits

7 6 5 4 3 2 1 0

1 * Index (range 1..127)

1 Type AckRef CheckCCAmode KeepListening Reserved=0

2 XmitEarliest

2 XmitLatest

2 WakeupAck

2 TimeoutAck

 10941
Table 165, Table 166, and Table 167 specify the values for the three default DLE timeslot 10942
templates. These read-only timeslot templates use indexes 1, 2, and 3, and shall be used for 10943

 – 410 – 62734/2CDV © IEC(E)

links that are specified in advertisements. Their structure is general purpose, and they may be 10944
referenced by other links as well. 10945

The DLE shall be capable of transmitting and receiving ACK/NAK DPDUs in the 1 032 µs ± 10946
100 µs timing specified in these default templates, or more slowly if so specified in an 10947
alternative timeslot template. The attribute dlmo.DeviceCapability.DAckTurnaround informs 10948
the system manager if a device is capable of handling ACK/NAK DPDUs more quickly. 10949

NOTE These default templates are required for the initial device provisioning and join prcesses. There is no 10950
requirement for any non-join use in an operational system. 10951

Table 165 – Default transaction responder template, used during join process 10952

Field Default
value

Explanation

* Index 1 —

Type 0 —

AckRef 0 —

RespectBoundary 1 —

WakeupDPDU 1 271 1 212 µs

TimeoutDPDU 3 578 3 412 µs

AckEarliest 977 932 µs

AckLatest 1 187 1 132 µs

 10953
Table 166 – Default transaction initiator template, used during join process 10954

Field Default
value

Explanation

* Index 2 —

Type 1 —

AckRef 0 —

CCAmode 1 —

KeepListening 0 —

XmitEarliest 2 319 2 212 µs

XmitLatest 2 529 2 412 µs

WakeupAck 977 932 µs

TimeoutAck 1 187 1 132 µs

 10955

62734/2CDV © IEC(E) – 411 –

Table 167 – Default transaction responder template, used during join process 10956

Field Default value Explanation

* Index 3 —

Type 0 —

AckRef 0 —

RespectBoundary 0 If DPDU reception commences within the timeslot boundaries,
complete processing of transaction

WakeupDPDU 0 Start of timeslot; allowing for timeslots that are contiguous. In the first
timeslot of a contiguous series, a device may insert setup time at the
start of the first timeslot not to exceed 1 271 µs

TimeoutDPDU 0xFFFF End of timeslot

AckEarliest 977 Same as default transaction responder template

AckLatest 1 187 Same as default transaction responder template

 10957

9.4.3.3.3 Default template timings 10958

Default timeslot templates are intended to match the timeslot structure of IEC 62591. 10959

The default data DPDU transmission time is based on an offset of 2 312 µs from the start of 10960
the timeslot to the start of the data DPDU. The default transaction initiator template accounts 10961
for ±100 µs of transaction initiator jitter, resulting in a default range of 2 312 µs ± 100 µs. The 10962
default transaction receiver template accounts for the same ± 100 µs of transmit jitter, plus 10963
clock drift of ±1 000 µs, resulting in a receive range for the data DPDU of 2 312 µs ± 1 100 µs. 10964

The default ACK/NAK DPDU transmission time is based on an offset of 1 032 µs from the end 10965
of the data DPDU to the start of the ACK/NAK’s DPDU. The default slot transaction templates 10966
allow for ± 100 µs of transmit jitter, for a default template of 1 032 µs ± 100 µs. Clock drift is 10967
considered inconsequential in the short time span from the end of a data DPDU to the start of 10968
an immediately-following ACK/NAK DPDU. 10969

In the IEEE 802.15.4:2011 radio used in this standard, the physical layer header is 6 octets, 10970
or 192 µs, in duration. Thus, radio transmission or reception begins 192 µs earlier than the 10971
times specified in the templates. CCA, if required, precedes the radio startup. 10972

Templates do not account for the internals of radio operation, leaving that as an internal 10973
device matter. For example, the value of 932 µs for WakeupACK means that the physical 10974
layer header is allowed to begin transmission 192 µs sooner, or as early as 932-192=740 µs 10975
following the end of the DPDU. The receiver of the ACK/NAK DPDU, also with a nominal 10976
WakeupAck of 932 µs, therefore needs its radio to be running at 740 µs following the end of 10977
the DPDU and ready to start receiving the ACK/NAK DPDU at that time. If the receiver needs 10978
additional time to account for radio startup and receiver jitter, then the radio needs to be 10979
enabled sufficiently in advance of 740 µs to ensure that it can receive the full physical layer 10980
header. 10981

9.4.3.3.4 Considerations for required minimum inter-transmission gap 10982

Some regulatory regimes require that there be a minimum time period after one transmission 10983
ceases before the device is again permitted to transmit. It is the responsibility of each DLE to 10984
note the time that the most recent transmission ceased, to use that information to determine 10985
the earlierst moment that the device may again transmit, and to refrain from activating its 10986
transmitter before that moment. 10987

NOTE This can be achieved by recording separately the ending time of the most recent transmission, adding a 10988
claimed-operating-mode-dependent Tx-gap-time constant, then comparing that resultant time with the projected 10989

 – 412 – 62734/2CDV © IEC(E)

time of the next transmission to determine whether the transmission is permitted under the applicable regulations. 10990
See V.4. 10991

While the system manager can configure the various dlmo.TsTemplates to provide behavior in 10992
accordance with these regulatory requirements, it is the responsibility of the individual device 10993
to ensure that the requirements are observed no matter the configuration. dlmo.CountryCode 10994
(9.1.15.6, 9.4.2.19) provides the configuration information necessary to determine which 10995
regulatory aspects are in force. 10996

9.4.3.4 dlmo.Neighbor 10997

9.4.3.4.1 General 10998

dlmo.Neighbor is an indexed OctetString collection that contains information about immediate 10999
unicast neighbors. dlmo.Neighbor entries are referenced by graphs and links. 11000

The system manager inserts, updates, or deletes dlmo.Neighbor entries by sending the DMAP 11001
neighbor entries, along with a unique index and (if selected) a TAI cutover time. The 11002
neighbor’s 16-bit address is used as an index. 11003

The neighbors in the dlmo.Neighbor attribute are set by the system manager, not by the DLE 11004
itself. The DLE autonomously builds a list of candidate neighbors in the dlmo.Candidates 11005
attribute, as described in 9.4.2.24. This list is then forwarded to the system manager. The 11006
system manager considers the radio connectivity that is reported in dlmo.Candidates, but may 11007
also consider other criteria such as resource constraints, historical performance, or D-subnet 11008
topology. 11009

When the DLE processes an advertisement during the join procedure, the DLE automatically 11010
adds the advertising router as an entry in the dlmo.Neighbor table, thereby enabling 11011
communication through the proxy. This entry persists after the DLE successfully joins the 11012
D-subnet, unless it is deleted or updated by the system manager. The system manager infers 11013
the existence and content of this entry based on the identity of the proxy that the DLE uses to 11014
join the D-subnet. See 9.3.5.2.1. 11015

This standard follows the IETF RFC 4944 convention, whereby 16-bit unicast addresses are 11016
limited to the range of 0x 0xxx xxxx xxxx xxxx. See 9.3.3.6. 11017

Diagnostic information related to neighbors can be found in the attribute dlmo.NeighborDiag 11018
(see 9.4.3.9). 11019

9.4.3.4.2 Semantics 11020

Table 168 specifies the fields for dlmo.Neighbor. 11021

62734/2CDV © IEC(E) – 413 –

Table 168 – dlmo.Neighbor fields 11022

Field name Field encoding

* Index (DL16Address of the neighbor) Type: ExtDLUint (used as an index)
Valid range: 1..32 767

EUI64 (EUI64Address of the neighbor) Type: EUI64Address

GroupCode1 (associate a group code with a set of neighbors; used by
dlmo.Link)

Type: Unsigned8

GroupCode2 (associate a group code with a set of neighbors; used by
dlmo.Link)

Type: Unsigned8

ClockSource (indicates whether neighbor is a DL clock source) Type: Unsigned2:
Named values:
0: not a clock source
1: secondary
2: preferred
3: reserved

ExtGrCnt (count of graphs virtually extended for this neighbor) Type: Unsigned2

DiagLevel (selection of neighbor diagnostics to collect) Type: BooleanArray2
Named indices:
0: collect link diagnostics
1: collect clock diagnostics

LinkBacklog (indicates that link information is provided to facilitate
clearing message queue backlog to the neighbor)

Type: Unsigned1;
Named values:
0: no extra link information
1: extra link information is provided

Reserved (octet alignment) Type: Unsigned1=0

ExtendGraph Type: SEQUENCE OF Octet2
 (SIZE ExtGrCnt) -- octet pairs

Valid range: See Table 170

LinkBacklogIndex (Activate this link to clear queue backlog) Type: ExtDLUint

Valid range: 1..127

Null and not transmitted if
LinkBacklog=0

Link index if LinkBacklog=1

LinkBacklogDur (duration of link activation) Type: Unsigned8

Units: Link occurrences

Null and not transmitted if
LinkBacklog=0

1..255 if LinkBacklog=1

LinkBacklogActivate (link activation criterion) Type: Unsigned8

Units: DPDUs on queue

Null and not transmitted if
LinkBacklog=0

1..255 if LinkBacklog=1

 11023
Table 169 illustrates the structure of dlmo.Neighbor. 11024

 – 414 – 62734/2CDV © IEC(E)

Table 169 – dlmo.Neighbor structure 11025

Number of
octets

Bits

7 6 5 4 3 2 1 0

1–2 * Index

8 EUI64

1 GroupCode1

1 GroupCode2

1 ClockSource ExtGrCnt DiagLevel LinkBacklog Reserved

2 × ExtGrCnt

ExtendGraph1

…

ExtendGraphExtGrCnt

0..1 LinkBacklogIndex

0..1 LinkBacklogDur

0..1 LinkBacklogActivate

 11026
Fields include: 11027

• EUI64. In order to communicate with a neighbor, the DSC needs the EUI64Address of that 11028
neighbor. This information is stored in the Neighbor table. It is populated by the system 11029
manager, with one exception. During the join process and provisioning process, where the 11030
neighbor entry is created automatically from the advertisement, the EUI64Address shall be 11031
acquired by the DLE through the ACK/NAK DPDU as described in 9.1.10.1. 11032

• GroupCode1, GroupCode2. Links with a matching group code may be used to address this 11033
neighbor. The scope of the group code is within a single DLE. When a link has a group 11034
NeighborType=2, the link designates a group code instead of a neighbor, and the link 11035
applies to any queued DPDU where the neighbor has a matching group code. This 11036
enables a single transmit link to be shared by a group of neighbors. A value of zero 11037
indicates that no group code applies. Support for group codes is mandatory in routers but 11038
is a construction option in I/O devices. The presence or absence of this capability is 11039
reported to the system manager when the DLE joins the D-subnet through the field 11040
dlmo.DeviceCapability.ConstructionOptions (see 9.4.2.23). 11041

• ClockSource. If this indicator is >0, then the neighbor shall be a DL clock source for this 11042
DLE. A value of 1 indicates a secondary DL clock source, and a value of 2 indicates a 11043
preferred DL clock source. See 9.1.9.2.3. 11044

• ExtGrCnt and ExtendGraph. See 9.1.6.3 for a discussion of graph extensions. See Table 11045
170 for the fields in each graph extension entry in ExtendGraph. If the neighbor’s address 11046
matches the destination address encoded in the DADDR subheader, and the Graph_ID 11047
designated in ExtendGraph matches the DPDU’s DL route, extend the designated graph to 11048
that neighbor for that DPDU. For each neighbor, up to three such graphs may be 11049
extended. Support for ExtendGraph is a device construction option, and the presence or 11050
absence of this capability is reported to the system manager when the DLE joins the 11051
D-subnet through the field dlmo.DeviceCapability.ConstructionOptions (see 9.4.2.23). 11052
For each ExtendGraph entry, include: 11053
– Graph ID is the 12-bit graph ID that is being extended. See 9.4.3.6. 11054
– LastHop. If this indicator is 1, the DLE shall only use links to the neighbor for 11055

applicable DPDUs. In this case, the DLE shall treat the extended graph index as the 11056
single forwarding alternative. 11057

– PreferredBranch. If this indicator is 1, the DLE should treat this graph extension as the 11058
preferred branch for applicable DPDUs. (See PreferredBranch field in 9.4.3.6.2). 11059

Table 170 specifies the fields for each element in the ExtendGraph sequence. 11060

62734/2CDV © IEC(E) – 415 –

Table 170 – ExtendGraph fields 11061

Field name Field encoding

Graph_ID (*Index of dlmo.Graph attribute) Type: Unsigned12

LastHop (indicates whether the neighbor shall be the last hop) Type: Boolean1

PreferredBranch (indicates whether to treat the neighbor as the preferred branch) Type: Boolean1

Reserved (octet alignment) Type: Unsigned2=0

 11062
Graphs are extended implicitly whether ExtendGraph is designated or not. The optional 11063
explicit ExtendGraph feature is intended to support optimizations that seek to control the 11064
graph ID of this final hop, and/or designate it as the last hop or preferred branch. 11065

– DiagLevel. If this indicator has any non-zero bits, then the DLE shall collect link 11066
diagnostics for this neighbor in the read-only attribute dlmo.NeighborDiag. If Bit0=1, 11067
summary diagnostics shall be accumulated. If Bit1=1, clock diagnostics shall be 11068
accumulated. See 9.4.3.9. 11069

– LinkBacklog, LinkBacklogIndex, LinkBacklogDur, and LinkBacklogActivate provide an 11070
index to a link that may be activated through the DAUX subheader (type 2). See 9.3.5.4 11071
for a general description of link activation. The DLE, when transmitting a DPDU to this 11072
neighbor, may detect a backlog of applicable DPDUs on its message queue, and therefore 11073
signal the neighbor to activate the link Index=LinkBacklogIndex to receive DPDUs for the 11074
next LinkBacklogDur occurrences of the link (see 9.3.5.4). LinkBacklogActivate indicates 11075
the size of the applicable DPDU backlog on the queue, excluding the DPDU being 11076
transmitted, that should trigger sending the link activation DAUX, unless the link is already 11077
activated. 11078

The system manager, when it configures LinkBacklogIndex, LinkBacklogDur, and 11079
LinkBacklogActivate, should also configure a transmit link with the same index, so that a 11080
receive link on the neighbor has the same index as a corresponding transmit link in the DLE 11081
that originates the link activation message, with both being activated for the number of 11082
occurrences indicated by LinkBacklogDur. DPDUs queued to this neighbor should be given 11083
high priority for that link index during the period defined by LinkBacklogDur. When counting 11084
candidate DPDUs on the message queue, the DLE should account for all queued DPDUs that 11085
can be addressed to the neighbor. 11086

The transaction initiator (the DLE that initiates activation of the idle links) should activate its 11087
own idle link for a count of LinkBacklogDur transmission opportunities (link occurrences). The 11088
receiver (the DLE on which the receive idle link has been activated) should activate its idle 11089
link for LinkBacklogDur reception opportunities (link occurrences). Transmission and 11090
reception opportunities should be counted even if a higher priority link is actually used in a 11091
particular timeslot. Generally, the idle link should be configured with a high priority. 11092

Table 171 specifies the ExtGraph structure. 11093

Table 171 – ExtGraph structure 11094

Number
of

octets

bits

7 6 5 4 3 2 1 0

1 Graph_ID (bits 11..4)

1 Graph_ID (bits 3..0) LastHop PreferredBranch Reserved=0

 11095
9.4.3.4.3 dlmo.NeighborDiagReset 11096

dlmo.NeighborDiagReset provides read/write access to the field of the dlmo.Neighbor 11097
attribute that is used to set the neighbor diagnostic level. It is conceptually similar to a SQL 11098

 – 416 – 62734/2CDV © IEC(E)

view of dlmo.Neighbor. It can be used to read and write a specific field within dlmo.Neighbor, 11099
but it shall not be used to add or delete entries. 11100

Table 172 specifies the fields within a dlmo.NeighborDiagReset OctetString. 11101

Table 172 – dlmo.NeighborDiagReset fields 11102

Field name Field encoding

* Index Type: ExtDLUint (used as an index)

Valid range: 1..32 767

Reserved (octet alignment) Unsigned4 = 0

DiagLevel (selection of neighbor diagnostics to collect) Type: BooleanArray3;
Named indices:
0: collect summary information
1: collect clock information

Reserved (octet alignment) Type: Unsigned2 = 0

 11103
Table 173 illustrates the structure of dlmo.NeighborDiagReset. 11104

Table 173 – dlmo.NeighborDiagReset structure 11105

Number
of octets

Bits

7 6 5 4 3 2 1 0

1..2 * Index

1 Reserved=0 DiagLevel Reserved=0

 11106
Fields are exactly as specified for the identically named fields in dlmo.Neighbor attribute, and 11107
the instantaneous values of these fields are the same as in dlmo.Neighbor. 11108

9.4.3.5 dlmo.Superframe 11109

9.4.3.5.1 General 11110

dlmo.Superframe is an indexed OctetString collection that contains superframes. The 11111
superframe structure enables the system manager to connect a set of links (dlmo.Link) to a 11112
repeating schedule of timeslots (dlmo.Superframe) of fixed duration. The superframe also 11113
designates a baseline channel-hopping schedule for those links. 11114

The system manager inserts, updates, or deletes dlmo.Superframe entries by sending the 11115
DMAP a superframe, along with a unique index and, if selected, a TAI cutover time. 11116

Each superframe describes a schedule that is specified in reference to TAI time zero. 11117
Derivation of current timeslot state from the superframe definition is described in 9.4.3.5.3. 11118

A superframe may be configured with randomized timings, intended exclusively for links that 11119
transmit or receive solicitations and/or advertisements. Since a randomized superframe 11120
schedule is not synchronized to its neighbors, such a superframe shall not be used to transmit 11121
payload in DSDUs. 11122

9.4.3.5.2 Semantics 11123

Table 174 specifies the fields for dlmo.Superframe. 11124

62734/2CDV © IEC(E) – 417 –

Table 174 – dlmo.Superframe fields 11125

Field name Field encoding

* Index Type: ExtDLUint (used as an index)

Valid range: 1..127

TsDur (duration of timeslots within superframe; timeslots are realigned
with TAI time reference every 250 ms)

Type: Unsigned16

Units: 2-20 s

ChIndex (selects channel-hopping pattern from dlmo.Ch) Type: ExtDLUint

ChBirth (absolute slot number where channel channel-hopping pattern
nominally started)

Type: Unsigned8

SfType (type of superframe) Type: Unsigned2;
Named values:
0: baseline
1: hop on link only
2: randomize slow-hop duration
3: randomize superframe period

Priority (priority to select among multiple available links) Type: Unsigned4

ChMapOv (indicates whether to override ChMap default) Type: Boolean1;
Valid range:
FALSE: ChMapOv not transmitted, so
defaults to 0x7FFF;
TRUE: ChMapOv transmitted and
used

IdleUsed Type: Boolean1;
Valid range:
FALSE: IdleTimer not transmitted, so
defaults to -1;
TRUE: IdleTimer transmitted and
used

SfPeriod (base number of timeslots in each superframe cycle) Type: Unsigned16

Valid range: >0

SfBirth (absolute slot number where the first superframe cycle nominally
started)

Type: Unsigned16

ChRate (indicates the number of timeslots per hop) Type: ExtDLUint

Valid range:
0 = invalid
1 = slotted-channel-hopping
>1 = slow-channel-hopping a)

ChMap (channel map used to eliminate certain channels from the
channel-hopping pattern, to limit the frequency spectrum in use)

Type: Unsigned16 or null

IdleTimer (idle/wakeup timer for superframe) Type: Integer32 or null

See text

RndSlots (indicates extent of randomization, in number of slots) Type: Unsigned8 or null

a) In some regulatory regimes, as specified via dlmo.CountryCode (9.4.2.19), the maximum value of ChRate is
constrained to be no greater than (400 ms / TsDur).

 11126
Table 175 illustrates the structure of dlmo.Superframe. 11127

 – 418 – 62734/2CDV © IEC(E)

Table 175 – dlmo.Superframe structure 11128

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 * Index

2 TsDur

1 ChIndex (range 1..127)

1 ChBirth

1 SfType Priority ChMapOv IdleUsed

2 SfPeriod

2 SfBirth

1..2 ChRate

0 or 2 ChMap

0 or 4 IdleTimer

0 or 1 RndSlots

 11129
Fields include: 11130

• Timeslot duration (dlmo.Superframe[].TsDur). All timeslots within a superframe have the 11131
same duration, and a DLE is not required to handle multiple timeslot durations at the same 11132
time. Timeslots shall be realigned to the TAI clock every 250 ms. See 9.1.9.1 for 11133
information on timeslot alignment. 11134

• Channel-hopping pattern identifier (dlmo.Superframe[].ChIndex). Select an available 11135
pattern from dlmo.Ch (see 9.4.3.2.2). 11136

• Channel-hopping birthday (dlmo.Superframe[].ChBirth). Specifies the starting point of the 11137
channel-hopping pattern, as a timeslot offset from TAI=0. Calculation of current position in 11138
hop sequence is described in 9.4.3.5.3. 11139

• Superframe type (dlmo.Superframe[].SfType) indicates the type of superframe. Handling 11140
of each superframe type is described in 9.4.3.5.3. 11141

• Superframe priority (dlmo.Superframe[].Priority) indicates the priority of the superframe. A 11142
higher Priority value will give that superframe link a higher priority. See 9.1.8.5 11143
(pseudocode) for additional information on priority levels. 11144

• Channel map override default (dlmo.Superframe[].ChMapOv). Indicates whether to 11145
override ChMap default of 0x7FFF. If ChMapOv=1, change the default based on ChMap. 11146

• Superframe period (dlmo.Superframe[].SfPeriod) indicates the number of timeslots in 11147
each base cycle of the superframe. With 10 ms timeslots, a 16-bit superframe period 11148
supports superframes up to about 10 minutes long. 11149

• Superframe birthday (dlmo.Superframe[].SfBirth) indicates the nominal starting point for 11150
the “first” superframe that began its first cycle soon after TAI=0. It provides the slot offset 11151
from absolute timeslot 0, which occurred at nominal time TAI=0. SfBirth shall equal 11152
ChBirth when SfType= 1. See 9.4.3.5.3. 11153

• Channel-hopping rate (dlmo.Superframe[].ChRate) indicates the number of timeslots per 11154
hop. A channel-hopping rate of 1 indicates slotted-channel-hopping; a channel-hopping 11155
rate greater than 1 indicates some degree of slow-channel-hopping. ChRate shall =1 when 11156
SfType= 1. 11157

• Channel map (dlmo.Superframe[].ChMap) is used to eliminate certain channels from the 11158
channel-hopping pattern, thus shortening the channel-hopping pattern in use. Bit positions 11159
0..15 correspond to channels 0..15, where a 0 bit in any position indicates that the 11160
corresponding channel shall not be used by the superframe, with the channel-hopping 11161
sequence shortened accordingly. This attribute shall not be transmitted and defaults to 11162
0x7FFF if ChMapOv=0 (i.e., optional channel 15 is excluded by default). 11163

62734/2CDV © IEC(E) – 419 –

• Idle superframe timer (dlmo.Superframe[].IdleUsed, dlmo.Superframe[].IdleTimer) 11164
provides the system manager with control over when a superframe is activated or idle, 11165
where an idle superframe treats all of its links as idle. The system manager may set 11166
IdleTimer through the dlmo.Superframe attribute or the dlmo.SuperframeIdle attribute. 11167
IdleTimer is not transmitted and defaults to a value of -1 if IdleUsed=0. 11168

• When IdleTimer is set to a positive number, the superframe shall be active and IdleTimer 11169
shall be decremented by the DLE each TAI second until it reaches a value of 0. When the 11170
value of IdleTimer is 0, the superframe shall be idle. 11171

• When IdleTimer is set to a negative number that is less than -1, the superframe shall be 11172
idle and IdleTimer shall be incremented by the DLE each TAI second until it reaches a 11173
value of -1. When the value of IdleTimer is -1, the superframe shall be active. 11174

Randomization of superframes is controlled by dlmo.Superframe[].RndSlots. RndSlots is 11175
meaningless and shall not be transmitted if dlmo.Superframe[].SfType<2. Randomized 11176
superframes are intended exclusively to enable randomized D-subnet discovery processes. 11177
For example, a DLE in the provisioned state may be configured with a randomized superframe 11178
that is used to search for advertisements from a target D-subnet. Such randomization can be 11179
used to guarantee that the scan’s sleep cycle is not synchronized with the advertisement 11180
schedule of the target D-subnet, thereby ensuring that an advertisement is eventually 11181
received. Only receive links, dedicated advertisements, and solicitations should be configured 11182
for use with a superframe where RndSlots>0. All other links for such randomized superframes 11183
shall be treated as idle. 11184

– When SfType=2, a randomized number of timeslots in the range of 0 to RndSlots shall be 11185
added to the end of each superframe cycle. 11186

– When SfType=3, a randomized number of timeslots in the range of 0 to RndSlots shall be 11187
added to the duration of each slow-channel-hopping period. If slotted-channel-hopping is 11188
used, each hop shall be treated as a slow-channel-hopping period extended by a 11189
randomized number of timeslots. 11190

9.4.3.5.3 Superframe current timeslot state 11191

The current superframe timeslot state shall be derived from the superframe fields as 11192
described herein. This description is not intended to constrain implementations, but only 11193
results. All features described herein shall be supported by all DLEs that comply with this 11194
standard, unless specifically designated as a construction option. 11195

These derivations of the current timeslot state use fields in dlmo.Superframe[], which are 11196
based on the state at TAI time of zero or soon thereafter. Implementations may reasonably 11197
use these formulas to establish a starting state when the superframe is initialized, and then 11198
update that state incrementally going forward. However, the incremental update approach will 11199
not work when there is a change in any field used in the base calculation, or in fields in other 11200
attributes (dlmo.Ch[] in general, and dlmo.Link[] for SfType=1) that are used in the base 11201
calculation. When those fields are changed, the current state needs to be derived again. 11202

NOTE The notion of an absolute timeslot is used here as a variable to calculate the current timeslot state. Other 11203
standards use an absolute timeslot to identify the timeslot. This standard uses an absolute timeslot only as an 11204
intermediate value in a calculation; it is not referenced elsewhere in this standard. 11205

Each TAI quarter-second period has a fixed number of timeslots that can be described by the 11206
formula: 11207

SlotsPer0_25s = floor((218 s) / TsDur) 11208

where floor(x) is the largest integer not greater than x. 11209

An absolute slot number (SlotNumAbs) can be derived from the scheduled start time of the 11210
current timeslot (ScheduledTaiTime), simplified by the fact that ScheduledTaiTime is required 11211
to be re-aligned to TAI time every quarter-second. The slot offset from TAI=0 can be derived 11212
accordingly: 11213

 – 420 – 62734/2CDV © IEC(E)

Tai0_25sStart = floor(ScheduledTaiTime / (0,25 s)) × (0,25 s) 11214
SlotWithin0_25s = (ScheduledTaiTime – Tai0_25sStart) / TsDur 11215

SlotNumAbs = ((Tai0_25sStart / (0,25 s)) × SlotsPer0_25s) + SlotWithin0_25s 11216

SfType=0 designates the baseline case, where all superframe cycles include a fixed number 11217
of timeslots and the channel-hopping schedule also has a fixed cycle. 11218

The superframe provides a fixed superframe period (SfPeriod) which is the number of 11219
timeslots in each superframe cycle. It also provides an absolute slot number (SfBirth), 11220
following TAI=0, as a reference starting time for the first superframe. The superframe offset of 11221
the current timeslot is: 11222

SfOffset = (SlotNumAbs – SfBirth) mod SfPeriod 11223

where (x mod y) equals (x - (floor(x / y) × y)) for positive y. 11224

The channel-hopping pattern nominally begins at absolute slot number ChBirth. The number 11225
of elements in the channel-hopping schedule (ChCount) can be determined from the size of 11226
the channel-hopping pattern selected by ChIndex, and by subtracting the number of entries 11227
that are removed from the sequence as indicated by ChMap. 11228

The number of timeslots in a cycle of the channel-hopping pattern depends on whether slow-11229
channel-hopping or slotted-channel-hopping is used, as indicated by ChRate. 11230

ChCycle = ChCount × ChRate 11231

The timeslot offset into that channel-hopping cycle is: 11232

ChOffset = (SlotNumAbs – ChBirth) mod ChCycle 11233

SfType=1 designates a variant of slotted-channel-hopping, where channel-hopping occurs 11234
only when there is a link. 11235

Device support for SfType=1 is a construction option, as reported to the system manager 11236
through the attribute dlmo.DeviceCapability.ConstructionOptions (bit 5). SfType=1 shall not be 11237
combined with slow-channel-hopping, i.e., ChRate=1. 11238

The superframe offset is as described in SfType=0. 11239

The number of channel hops per superframe cycle (ChPerSuperframe) is determined by 11240
counting the number of timeslots in each superframe cycle that are referenced by at least one 11241
link. This is not a simple count of links, because some links may refer to multiple timeslots, 11242
and some timeslots may be referenced by multiple links. 11243

Since the number of channel hops is a multiple of the number of superframes, the next step is 11244
to calculate the number of superframe cycles that have been completed since TAI=0. 11245

CurrentSfStartAbs = (SlotNumAbs – SfOffset) 11246
SfCyclesSinceBirth = (CurrentSfStartAbs – SfBirth) / SfPeriod 11247

For SfType=1, the superframe cycle and channel-hopping cycles are required to start at the 11248
same time (SfBirth=ChBirth). The channel offset at the start of the current superframe is a 11249
function of the number of mapped channels (see 9.4.2.12). It is determined by the formula: 11250

ChOffsetStartSf = (SfCyclesSinceBirth × ChPerSuperframe) mod NumMappedChannels 11251

where NumMappedChannels = ∑ dlmo. Superframe[]. ChMap𝑘 for the specific superframe. 11252

Starting from ChOffsetStartSf , the current channel-hopping-offset can be determined by 11253
stepping through the superframe from the start of the superframe cycle to the current timeslot. 11254

62734/2CDV © IEC(E) – 421 –

The channel-hopping-offset within each superframe cycle cannot be reduced to a simple 11255
linear formula since the links are not necessarily spread evenly through the cycle. 11256

SfType=2 extends each slow-channel-hopping interval by a randomized number of timeslots 11257
in the range of 0 to dlmo.Superframe[].RndSlots. The initial starting point of the channel-11258
hopping sequence may also be randomized when SfType=2, and superframe timing shall be a 11259
described for SfType=0. 11260

SfType=3 extends each superframe cycle by a randomized number of timeslots in the range 11261
of 0 to dlmo.Superframe[].RndSlots. The initial starting point of the superframe cycle should 11262
also be randomized when SfType=3, and the channel-hopping sequence shall be as 11263
described for SfType=0. 11264

9.4.3.5.4 Slow-channel-hopping 11265

Slow-channel-hopping is defined as a superframe where dlmo.Superframe[].ChRate>1, 11266
resulting in a set of contiguous links on the same channel. The channel-hopping rate, ChRate, 11267
may be configured as equal to the superframe period, SfPeriod, and in that case each 11268
channel-hopping period may reasonably be configured as a range of links using 11269
dlmo.Link[].Schedule=2. 11270

The receive side of a slow-channel-hopping configuration should use the default transaction 11271
receiver template for scanning as per Table 167, or a similar template. This template, when 11272
applied to contiguous timeslots on the same channel, should run its receiver continuously, 11273
and may run a transaction to completion even if that transaction runs across the edge of a 11274
timeslot. A receive link using that template may repeat frequently or continuously within a 11275
superframe, usually with a low priority to give precedence to slotted-channel-hopping 11276
operations. 11277

A set of slow-channel-hopping receive links on a given channel, using the default transaction 11278
receiver template for scanning, may be temporarily interrupted by higher-priority transactions, 11279
for example, as shown graphically in Figure 66. In the absence of such transactions, the 11280
receiver should run continuously across the timeslot boundaries in such configurations. 11281

The transmit side of a slow-channel-hopping configuration should use a template appropriate 11282
for a transmit transaction on the D-subnet, such as the default transaction initiator template as 11283
per Table 166. The transmit link configuration should be configured to account for clock drift. 11284
For example, in a D-subnet with 10 ms timeslots, a particular device in a slow-channel-11285
hopping configuration might be expected to experience clock drift of up to 15 ms between 11286
clock updates. In that example, the first and last two timeslots in each slow-channel-hopping 11287
period should not be designated as transmit links, thereby incorporating 20 ms guard times 11288
into the configuration. 11289

The transmit side in a slow-channel-hopping configuration may designate specific timeslots 11290
for transmission, or alternatively it may designate a range of timeslots. When a range of 11291
timeslots is designated, the channel-hopping rate should match the superframe period, and 11292
the transmit link should be designated as a range (dlmo.Link[].Schedule=2), shown 11293
graphically in Figure 72. In that configuration, the DLE should treat each range as a single 11294
transmit opportunity, and select the transmit link within the range on a randomized basis. 11295

9.4.3.5.5 dlmo.SuperframeIdle 11296

dlmo.SuperframeIdle provides read/write access to only the fields of the dlmo.Superframe 11297
attribute that relate to the idle superframe. It is conceptually similar to an SQL view of 11298
dlmo.Superframe. It can be used to read and write specific fields within superframe indexed 11299
OctetStrings, but cannot be used to add or delete entries. 11300

Table 176 specifies the fields within a dlmo.SuperframeIdle OctetString. 11301

 – 422 – 62734/2CDV © IEC(E)

Table 176 – dlmo.SuperframeIdle fields 11302

Field name Field encoding

* Index Type: ExtDLUint (used as an index)

Reserved (octet alignment) Type: Unsigned7=0

IdleUsed (indicates whether the superframe is idle
when the IdleTimer is zero)

Type: Boolean1

IdleTimer (idle/wakeup timer for superframe) Type: Integer32 or null

 11303
Table 177 illustrates the structure of dlmo.SuperframeIdle. 11304

Table 177 – dlmo.SuperframeIdle structure 11305

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 * Index

1 Reserved=0 IdleUsed

0 or 4 IdleTimer

 11306
Fields are exactly as specified for identically named fields in the dlmo.Superframe attribute, 11307
and the instantaneous values of these fields are identical to those in dlmo.Superframe. 11308

9.4.3.6 dlmo.Graph 11309

9.4.3.6.1 General 11310

dlmo.Graph is an indexed OctetString collection that contains graphs. On a particular DLE, a 11311
graph is simply a list of neighbors that can be used for the next hop when a graph is specified 11312
in the DROUT subheader. 11313

The system manager inserts, updates, or deletes dlmo.Graph entries by sending the DMAP a 11314
graph, along with a unique index and (if selected) a TAI cutover time. 11315

Graph ID = 0 shall not be used, because this value is reserved as an indicator in the DROUT 11316
subheader, as described in 9.3.3.6. 11317

Graph IDs are limited to a range of 12-bit values, with a range of 1..212. In source routing, 11318
these 12-bit graph IDs are encoded as 0x 1010 gggg gggg gggg. 11319

As described in 9.1.6.3, immediate neighbors are implicitly treated as covered by a graph, 11320
whether the neighbor is listed in the graph structure or not. When the DPDU’s destination 11321
address is in a DLE’s neighbor table, the graph is automatically extended to cover that 11322
neighbor. Thus, even though the structure of dlmo.Graph can support only a few neighbors, 11323
the graph can handle many more through such graph extensions. 11324

It is advisable for Graph IDs to be unique within the scope of a D-subnet. However, duplicated 11325
graph IDs are not prohibited. When two graphs with the same graph ID intersect in a single 11326
DLE, they unite to become a single graph. 11327

9.4.3.6.2 Semantics 11328

Table 178 specifies the fields for dlmo.Graph. 11329

62734/2CDV © IEC(E) – 423 –

Table 178 – dlmo.Graph 11330

Field name Field encoding

* Index Type: ExtDLUint (used as an index)
Valid range: 1..4095

PreferredBranch (indicates whether to treat the first
listed neighbor as the preferred branch)

Type: Boolean1

NeighborCount Type: Unsigned3
Valid range: 0..4

Queue (allocates buffers in the message queue for
DPDUs that are being forwarded using this graph)

Type: Unsigned4

MaxLifetime Type: ExtDLUint

Neighbors (index into dlmo.Neighbor; usually two or
three neighbors in list for next-hop diversity)

Type: SEQUENCE OF ExtDLUint (SIZE(NeighborCount))

 11331
Table 179 illustrates the structure of dlmo.Graph in the case where each ExtDLUint requires 11332
one octet. 11333

Table 179 – dlmo.Graph structure 11334

Number
of octets

Bits

7 6 5 4 3 2 1 0

1..2 * Index

1 PreferredBranch NeighborCount Queue

1..2 MaxLifetime

1..2 Neighbors0

1..2 Neighbors1

… …

1..2 NeighborsNeighborCount-1

 11335
Elements include: 11336

• dlmo.Graph[].PreferredBranch. If this indicator is 1, treat the first listed neighbor as the 11337
preferred branch, and the DLE should wait until there is an opportunity to try at least one 11338
transmission along the preferred branch before attempting other alternatives. If this 11339
indicator is 0, do not give such preferential treatment to the first listed neighbor. 11340

• dlmo.Queue allows the system manager to reserve up to 15 buffers of the message queue 11341
for DPDUs that are following the graph. 11342

• dlmo.Graph[].MaxLifetime (units ¼ s). If this element is non-zero, the value of 11343
dlmo.MaxLifetime shall be overridden for all DPDUs being forwarded following this graph. 11344

• List of neighbors (commonly two neighbors for next-hop link diversity). 11345

9.4.3.7 dlmo.Link 11346

9.4.3.7.1 General 11347

dlmo.Link is an indexed OctetString collection that contains links. Each link refers to exactly 11348
one dlmo.Superframe entry. 11349

The system manager inserts, updates, or deletes links by sending the DMAP a link, along with 11350
a unique index and (if selected) a TAI cutover time. 11351

 – 424 – 62734/2CDV © IEC(E)

When a neighbor is referenced in a transmit link, DPDUs that refer to that neighbor are 11352
considered as candidates for the link. DPDUs that refer to the neighbor through the first entry 11353
in the DROUT subheader, either directly by address or indirectly through a graph, shall be 11354
considered as candidates for the link. In addition, DPDUs that designate the neighbor as the 11355
destination address in the DADDR subheader shall also be considered as candidates for the 11356
link. The exception is that certain links are designated exclusively for DPDUs following 11357
specific graphs, and only DPDUs with matching GraphIDs shall be considered as candidates 11358
for such links. If multiple DPDUs on the message queue are candidates for a given link, the 11359
DPDU is selected by priority as described in 9.1.8.5. 11360

9.4.3.7.2 Semantics 11361

Table 180 specifies the fields for dlmo.Link. 11362

Table 180 – dlmo.Link fields 11363

Field name Field encoding

* Index Type: ExtDLUint (used as an index)

SuperframeIndex (reference to dlmo.Superframe
entry)

Type: ExtDLUint

Type (see Table 182 and associated text) Type: Unsigned8

Template1 (dlmo.TsTemplate reference to primary
template)

Type: ExtDLUint

Template2 (dlmo.TsTemplate reference to secondary
template)

Type: ExtDLUint or null

NeighborType Type: Unsigned2

Valid range: 0..2

GraphType Type: Unsigned2

Valid range: 0..2

SchedType Type: Unsigned2

ChType Type: Unsigned1

PriorityType Type: Unsigned1

Neighbor (identify neighbor or group) Type: ExtDLUint or null

GraphID (12-bit identity of graph with exclusive or
prioritized access to link)

Type: ExtDLUint or null

Schedule (link schedule; see Table 184) Type: See Table 184

ChOffset (select channel based on offset from
superframes hop pattern)

Type: Unsigned8 or null

Priority (link priority) Type: Unsigned8 or null

Valid range: 0x 0000 xxxx

 11364
Table 181 illustrates the structure of dlmo.Link. ExtDLUint fields are shown as single octets. 11365

62734/2CDV © IEC(E) – 425 –

Table 181 – dlmo.Link structure 11366

Number
of

octets

Bits

7 6 5 4 3 2 1 0

1..2 * Index

1 SuperframeIndex (range 1..127)

1 Type

1 Template1 (range 1..127)

0 or 1 Template2 (range 1..127)

1 NeighborType GraphType SchedType ChType PriorityType

0..2 Neighbor

0..2 GraphID

1..4 Schedule (see Table 184)

0 or 1 ChOffset

0 or 1 Priority

 11367
Elements include: 11368

• dlmo.SuperframeIndex. Indicates the superframe reference for the link. 11369

• dlmo.Link[].Type. Indicates how the link is configured for transmission and/or reception, 11370
and/or neighbor discovery. See Table 182. 11371

• dlmo.Link[].Template1. Primary timeslot template. See 9.4.3.3 for a discussion of 11372
templates. 11373

• dlmo.Link[].Template2. Secondary timeslot template, for transmit/receive (TR) slots only, 11374
in combination with other link selections. Use Template2 as the transaction receiver 11375
template, if there is no DPDU in the queue for the primary template. Template 2 is 11376
transmitted and meaningful only for TRx links, that is, links where Link[].Type bits 6 and 7 11377
both have a value of 1. See 9.1.8.5. 11378

• dlmo.Link[].NeighborType, and dlmo.Link[].Neighbor. A neighbor is designated for 11379
transmit links, and may be designated for duocast/N-cast receive links. See 9.4.3.4 for a 11380
discussion of neighbors. When a neighbor is designated in a link, it may reference either a 11381
dlmo.Neighbor index or a group (dlmo.Neighbor[].GroupCode). 11382
– If dlmo.Link[].NeighborType=0, dlmo.Link[].Neighbor is null, and not transmitted. 11383
– If dlmo.Link[].NeighborType=1, dlmo.Link[].Neighbor designates an index into the 11384

dlmo.Neighbor attribute. 11385
– If dlmo.Link[].NeighborType=2, dlmo.Link[].Neighbor designates a group. 11386

• dlmo.Link[].GraphType, dlmo.Link[].GraphID. DPDUs following a particular graph may be 11387
given exclusive or priority access to certain transmit links. These fields, when so 11388
configured, limit link access to certain graphs, thereby connecting the link to a particular 11389
communication flow through the D-subnet. When GraphType is left blank, the transmit link 11390
is available to any DPDU that is being routed through the link’s designated neighbor. 11391
When GraphType is used, a particular graph is given exclusive or priority access to the 11392
link. 11393
– If GraphType=0, the GraphID element is null and is not transmitted. 11394
– If GraphType=1, the link is designated for exclusive use by a particular graph. Access 11395

to the link shall be limited to DPDUs following that graph. 11396
– If GraphType=2, DPDUs with a matching graph ID are given priority access. DPDUs 11397

following that graph should be given priority over other DPDUs when the link is used. 11398

 – 426 – 62734/2CDV © IEC(E)

• dlmo.Link[].SchedType, dlmo.Link[].Schedule. Indicates the timeslot position(s) of the 11399
link within each superframe cycle. The schedule may designate a fixed offset, a repeating 11400
set with a fixed interval, a range, or a bitmap, as follows: 11401
0: offset only; 11402
1: offset and interval; 11403
2: range; 11404
3: bitmap. 11405

• dlmo.Link[].ChType, dlmo.Link[].ChOffset. Indicates how the link’s channel is selected. 11406
– If dlmo.Link[].ChType=0, dlmo.Link[].ChOffset is null and not transmitted. Simply 11407

follow the superframe’s baseline channel-hopping pattern. 11408
– If dlmo.Link[].ChType=1, add dlmo.Link[].ChOffset to the superframe’s current 11409

dlmo.Superframe[].ChOffset, modulo the effective channel-hopping pattern size (after 11410
accounting for excluded channels) and select the channel accordingly. 11411

• dlmo.Link[].PriorityType, dlmo.Link[].Priority. Indicates how the link’s priority is set. Link 11412
priorities are functionally described in 9.1.8.5. 11413
– If dlmo.Link[].PriorityType=FALSE, dlmo.Link[].Priority is null and not transmitted. For 11414

transmit links, use priority dlmo.LinkPriorityXmit. For receive links, use priority 11415
dlmo.LinkPriorityRcv. 11416

– If dlmo.Link[].PriorityType=TRUE, use the dlmo.Link[].Priority. If the link is both a 11417
transmit link and a receive link, use dlmo.Link[].Priority for transmissions, and 11418
dlmo.LinkPriorityRcv for reception. 11419

Table 182 illustrates the structure of the field dlmo.Link[].Type. 11420

Table 182 – dlmo.Link[].Type structure 11421

Octet Bits

7 6 5 4 3 2 1 0

1 Transmit Receive Exponential
backoff

Idle Discovery:
Named values:
0: none
1: advertisement
2: reserved
3: solicitation

JoinResponse:
link used to send
join response to

neighbor

SelectiveAllowed

 11422
The link types are defined as follows: 11423

• Bit 7: Transmit (T=TRUE). Indicates transmission of payload. 11424

• Bit 6: Receive (R=TRUE). 11425

• Bit 5: Exponential backoff (B=TRUE). Indicates whether the transaction originator should 11426
apply exponential backoff rules for retries (shared), versus using the timeslot without 11427
regard to exponential backoff (not shared). See 9.1.8.2. 11428

• Bit 4: Idle (I=TRUE). When TRUE, the link shall be idle unless temporarily activated in 11429
conjunction with transmission of an activate DAUX subheader; see 9.3.5.4. When FALSE, 11430
link activation does not apply to the link. A timeslot designated as idle may include a 11431
neighbor reference. Even without a neighbor reference, it needs transmit and receive 11432
Booleans set as needed to refer to the timeslot template it will need when activated. 11433

• Bits 3..2 Discovery (DD): Advertisement or solicitation configuration. DD=’01’ specifies a 11434
single advertisement transmitted with timing as defined in the timeslot template. If 11435
DD=’01’, the link should be used to transmit an advertisement or solicitation, even if there 11436
is no higher-order payload that needs to be sent. DD=’11’ distinguishes a solicitation from 11437
an advertisement. DD=’10” shall be ignored. 11438

NOTE DD=’10’ was used by ISA100.11a:2011 for an alternate form of advertisement, and is thus not 11439
available for future assignment. It’s use is not supported by this standard. 11440

62734/2CDV © IEC(E) – 427 –

• Bit 1: JoinResponse (J=TRUE). When a router proxies a join request for an immediate 11441
neighbor, it will eventually receive a message from the system manager to forward to the 11442
DLE that is joining. The router forwards these messages using links that are flagged with 11443
JoinResponse=TRUE. A join response on the message queue can be identified by a DPDU 11444
header with a destination EUI64Address. A timeslot designated as supporting a join 11445
response may include a neighbor reference, thereby enabling the link to also be used for 11446
regular D-subnet traffic. Even without a neighbor reference, it needs the Transmit boolean 11447
to be set. 11448

• Bit 0: SelectiveAllowed (S=TRUE). The DLE may, without system manager direction, 11449
autonomously and selectively treat transmit links as idle if they occur on certain radio 11450
channels with a history of poor connectivity. This is a form of selective channel utilization, 11451
and is described in 9.1.7.2.4. The DLE may skip links occurring on channels that it 11452
autonomously deems problematic due to a history of poor connectivity, potentially with the 11453
granularity of a specific channel used for communication with a specific neighbor. In this 11454
manner, the DLE can save energy and reduce unnecessary interference with other users 11455
of the spectrum. However, the DLE shall not skip links in this fashion when the link is 11456
flagged with SelectiveAllowed=0. 11457

Table 183 shows allowed combinations of bits in the representation of dlmo.Link[].Type. Bits 11458
shown as X indicate that a value of FALSE (0) or TRUE (1) is allowed. For example, several 11459
combinations involving Transmit=TRUE show an X for Exponential backoff, indicating that such 11460
links might be configured as shared or not. 11461

Table 183 – Allowed dlmo.Link[].Type combinations 11462

Combination TRBI DDJS Description

1X10 001X Join response

10XX 000X Transmit, no advertisement

11XX 000X Transmit/receive, no advertisement

10X0 010X Transmit, advertisement

0000 0100 Dedicated advertisement

0000 1100 Solicitation

010X 0000 Receive

 11463
A transmit/receive link combination is essentially a compressed representation of a transmit 11464
link and a separate receive link. If at least one outbound DPDU on the queue matches the 11465
link, it shall be treated as a transmit link using the primary timeslot template. Otherwise, it 11466
shall be treated as a receive link using the secondary timeslot template, with priority 11467
dlmo.LinkPriorityRcv. 11468

It is possible to configure channel-hopping patterns, superframe periods and link intervals so 11469
that the result is that only certain radio channels in the channel-hopping sequence are 11470
actually used. For example, if a link repeats every 20th timeslot, and the channel-hopping 11471
pattern includes 15 channels, then only three channels will actually be used by the link. To 11472
avoid such scenarios, the link interval and the channel-hopping pattern may be configured to 11473
have a greatest common divisor equal to one (1). 11474

Table 184 specifies the different types of schedules for a given link. Links in a superframe are 11475
indexed based on the timeslot offset in each cycle, with the first timeslot in each cycle having 11476
an offset of zero. 11477

 – 428 – 62734/2CDV © IEC(E)

Table 184 – Values for dlmo.Link[].Schedule 11478

Value for
dlmo.Link[].Schedule

Element
encoding Description

0=offset only ExtDLUint
(offset)

Link occurs once at a fixed timeslot position in each superframe
cycle

1=offset and interval ExtDLUint,
ExtDLUint
(offset, interval)

Link occurs multiple times in each cycle, first at the given offset
and then repeating at an interval until the end of the cycle. Values
are specified in number of timeslots

2=range ExtDLUint,
ExtDLUint
(first, last)

Link occurs at a range of slots in each superframe cycle, starting
with the offset given by the first value and continuing until the offset
given by the second value

3=bitmap BooleanArray32 Bitmap covers the first 32 timeslots in each superframe cycle. Link
occurs in timeslots with a corresponding TRUE value in the array.
Following LSB conventions, the array is transmitted in DMAP
messages with indices 7..0 transmitted first and indices 31..24
transmitted last

 11479
9.4.3.8 dlmo.Route 11480

9.4.3.8.1 General 11481

dlmo.Route is an indexed OctetString collection that contains routes. dlmo.Route describes 11482
available routes for DPDUs. When a DSDU comes down the protocol stack from the NL, it 11483
receives a final destination address, along with a contract ID and a priority class. The DLE 11484
maps the contract ID and destination address into a route, based on table lookups. The 11485
priority class from the NL is simply copied to the DPDU header without being considered in 11486
route selection. 11487

The system manager inserts, updates, or deletes routes by sending the DMAP a route, along 11488
with a unique index and (if selected) a TAI cutover time. 11489

For a description of route selection, see 9.1.6.5. 11490

9.4.3.8.2 Semantics 11491

Table 185 specifies the fields for dlmo.Route. 11492

Table 185 – dlmo.Route fields 11493

Field name Field encoding

* Index Type: ExtDLUint (used as an index)

Size (size (number of entries) of Route attribute) Type: Unsigned4

Valid range: 1..15

Alternative Type: Unsigned2

Reserved (octet alignment) Type: Unsigned2=0

ForwardLimit (initialization value for the forwarding
limit in DPDUs that use this route)

Type: Unsigned8

Route (series of routing destinations; if entry high-
order bit is 0, specifies a unicast address; if entry
high-order bits are 0x 1010, specifies a graph)

Type: SEQUENCE OF Unsigned16 (SIZE (size))

Selector (see text) Type: Unsigned16 or null

SrcAddr (see text) Type: ExtDLUint or null

 11494
Table 186 illustrates the structure of dlmo.Route. 11495

62734/2CDV © IEC(E) – 429 –

Table 186 – dlmo.Route structure 11496

Number of
octets

Bits

7 6 5 4 3 2 1 0

1..2 * Index

1 Size Alternative Reserved=0

1 ForwardLimit

2 Route0

… …

2 RouteSize-1

0 or 2 Selector

0..2 SrcAddr

 11497
The attribute dlmo.Route[].Selector depends on the setting of dlmo.Route[].Alternative: 11498

• When dlmo.Route[].Alternative=0, select this route if dlmo.Route[].Selector matches 11499
ContractID and dlmo.Route[].SrcAddr matches the SrcAddr (source address) field in the 11500
DADDR subheader. This alternative shall not be used unless the DLE is a backbone 11501
router. If dlmo.Route[].Alternative<>0, dlmo.Route[].SrcAddr is null and shall not be 11502
transmitted. 11503

• When dlmo.Route[].Alternative=1, select this route if dlmo.Route[].Selector matches 11504
ContractID. 11505

• When dlmo.Route[].Alternative=2, select this route if dlmo.Route[].Selector matches 11506
destination address. 11507

• When dlmo.Route[].Alternative=3, use this route as the default. dlmo.Route[].Selector is 11508
null and shall not be transmitted. 11509

dlmo.Route[].Alternative shall be applied in order, with lower numbered Alternatives given 11510
precedence over higher numbered alternatives. There should be no more than one 11511
dlmo.Route entry per ContractID/SrcAddr combination (Alternative=0), no more than one entry 11512
per ContractID (Alternative=1), no more than one entry per destination address 11513
(Alternative=2), and no more than one default (Alternative=3). If there are duplicates, the 11514
matching entry with the lowest index shall be selected. 11515

9.4.3.9 dlmo.NeighborDiag 11516

9.4.3.9.1 General 11517

dlmo.NeighborDiag is an indexed OctetString collection that contains diagnostics for a set of 11518
neighbors. The attribute is read-only, with rows created as needed by the DLE. 11519

Each NeighborDiag entry comprises an array of one or two OctetStrings, with each entry 11520
corresponding to a different neighbor. 11521

NeighborDiag entries are instantiated by the system manager, by setting 11522
dlmo.Neighbor[].DiagLevel bits to non-zero values. If and only if Bit0=1, then summary 11523
diagnostics shall be collected for the neighbor, consolidated across all channels. If and only if 11524
it1=1, then detailed clock diagnostics shall be collected for the neighbor, consolidated across 11525
all radio channels. 11526

NOTE Individual channel diagnostics are collected through the attribute dlmo.ChannelDiag. 11527

Diagnostics include counters and levels, that are accumulated as described in 9.1.15.3. 11528
Generally, counters are incremented by one in the course of successful or unsuccessful 11529

 – 430 – 62734/2CDV © IEC(E)

transactions, while RSSI (signal strength) and RSQI (signal quality) are levels that are 11530
accumulated as exponential moving averages. 11531

NeighborDiag is reported in three general ways: 11532

• Through the HRCO, the system manager can configure the DLE to report NeighborDiag 11533
periodically, such as every 30 min. Following each such report, on a per-entry basis, 11534
NeighborDiag counts shall be reset to zero. Levels shall use the current value as a 11535
starting point for the next period. 11536

• The system manager can read (poll) NeighborDiag as a read-only attribute on a per-entry 11537
basis. As in an HRCO report, counts shall be reset to zero when read. 11538

• The DLE can additionally be configured, through the dlmo.AlertPolicy attribute, to report 11539
NeighborDiag information when diagnostic values exceed a threshold. Only the row 11540
triggering the alert is reported. No values are reset. 11541

Generally in this standard, an indexed OctetString’s metadata capacity is reported as the 11542
number of rows. Since rows in NeighborDiag can have substantially variable sizes, metadata 11543
for NeighborDiag (DiagMeta) shall be reported in memory capacity in octets for the 11544
OctetStrings, with the convention that each ExtDLUint field is assumed to consume two 11545
octets. A DLE shall have the capacity for summary diagnostics 11546
(dlmo.NeighborDiag[].Summary) for at least half of its neighbor capacity as indicated by 11547
dlmo.NeighborMeta.Capacity, or for at least two neighbors, whichever is greater. 11548

9.4.3.9.2 Semantics 11549

Each NeighborDiag entry includes three OctetStrings, one each for Summary and ClockDetail 11550
diagnostics. A zero-length OctetString indicates that the diagnostic is not being accumulated. 11551
Table 187 specifies the fields for dlmo.NeighborDiag. 11552

Table 187 – dlmo.NeighborDiag fields 11553

Field name Field encoding

* Index Type: ExtDLUint (neighbor address, used as an index)

Summary Type: OctetString

ClockDetail Type: OctetString

 11554
Table 188 specifies the fields within the diagnostic summary OctetString. 11555

Table 188 – Diagnostic summary OctetString fields 11556

Field name Field encoding

RSSI (level) Type: Integer8

RSQI (level) Type: Unsigned8

RxDPDU (count) Type: ExtDLUint

TxSuccessful (count) Type: ExtDLUint

TxFailed (count) Type: ExtDLUint

TxCCA_Backoff (count) Type: ExtDLUint

TxNAK (count) Type: ExtDLUint

ClockSigma (level) Type: Integer16

 11557
Table 189 specifies the structure of the diagnostic summary OctetStrings. 11558

62734/2CDV © IEC(E) – 431 –

Table 189 – Diagnostic summary OctetString structure 11559

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 RSSI

1 RSQI

1 or 2 RxDPDU

1 or 2 TxSuccessful

1 or 2 TxFailed

1 or 2 TxCCA_Backoff

1 or 2 TxNAK

2 ClockSigma

 11560
Fields include: 11561

• RSSI (signal strength): See 9.1.15.2 for discussion of RSSI units. RSSI is accumulated as 11562
an exponential moving average; see 9.1.15.3. 11563

• RSQI (signal quality): See 9.3.5.5 and 9.1.15.2 for discussion of RSQI units. RSQI is 11564
accumulated as an exponential moving average; see 9.1.15.3. 11565

• RxDPDU: Count of valid Data DPDUs received from neighbor, excluding DPDUs with null 11566
DSDU payloads (as well as AKC/NAK DPDUs). 11567

• TxSuccessful: Count of successful unicast transmissions to the neighbor, where an ACK 11568
DPDU was received in response. 11569

• TxFailed: Count of DPDU unicast transmissions, where an ACK/NAK DPDU was expected 11570
but not received in response. 11571

• TxCCA_Backoff: Count of unicast transmissions that were aborted due to CCA. These 11572
aborted transmissions are not included in TxFailed. 11573

• TxNAK: Count of NAK DPDUs received, not included in TxFailed. 11574

• ClockSigma: A rough estimate, to within one standard deviation, of recent clock 11575
corrections, in units of 2-20 s. A one-sigma value accounts for approximately 68% of clock 11576
corrections. ClockSigma is reset to zero whenever counters are reset. 11577

NOTE 1 See 9.1.15.3 for the behavior of counters. 11578

If the DLE autonomously treats a transmit link as idle, as described in 9.1.7.2.4, such skipped 11579
links shall not be counted in the neighbor diagnostics. However, such skipped links are 11580
reflected in channel diagnostics, as described in 9.4.2.27. 11581

Table 190 specifies the fields within the diagnostic Clock OctetString. 11582

Table 190 – Diagnostic ClockDetail OctetString fields 11583

Field name Field encoding

ClockBias (level, signed) Type: Integer16

ClockCount (count) Type: ExtDLUint

ClockTimeout (count) Type: ExtDLUint

ClockOutliers (count) Type: ExtDLUint

 11584
Table 191 specifies the structure of the diagnostic ClockDetail OctetString, with ExtDLUint 11585
fields shown as a single octet. 11586

 – 432 – 62734/2CDV © IEC(E)

Table 191 – Diagnostic ClockDetail OctetString structure 11587

Octets Bits

7 6 5 4 3 2 1 0

2 ClockBias

1 or 2 ClockCount

1 or 2 ClockTimeout

1 or 2 ClockOutliers

 11588
If the neighbor is a preferred DL clock source, as indicated by IncludeClock=1, it is 11589
recommended that the DLE be configured to accumulate the ClockDetail fields. 11590

ClockSigma, ClockBias, and ClockOutliers all relate to clock corrections. If the neighbor is a 11591
DL clock source, these values relate to clock corrections received from the DL clock source. If 11592
the neighbor is not DL clock source, these values relate to clock corrections sent to the DLE’s 11593
neighbor through the ACK/NAK DPDU. 11594

Fields include: 11595

• ClockBias: An exponential moving average (EMA) of clock correction, in units of 2-20 s, 11596
including sign, with a 1% smoothing factor. See 9.1.15.3 for a discussion of EMA. 11597

NOTE 2 If this value is significantly non-zero it indicates that the clock is biased relative to the remote clock 11598
source. 11599

• ClockCount: Count of clock updates received from or transmitted to the neighbor. 11600

• ClockTimeout: Count of clock timeout events. 11601

• ClockOutliers: Estimated count of clock corrections in excess of three standard deviations 11602
as per ClockSigma. 11603

 DLE methods 9.511604

 Method for synchronized cutover of DLE attributes 9.5.111605

A Scheduled_Write method, with MethodID=1, is provided to set an attribute at a specific TAI 11606
time. It exactly follows the template found in Table J.1. 11607

 Methods to access indexed OctetString attributes 9.5.211608

Various methods in the DLE relate to writing, reading, and deleting indexed OctetString 11609
attributes. These methods are generally based on the templates provided in Annex J. 11610

All indexed OctetString attributes in the DL are indexed by a single integer encoded as an 11611
ExtDLUint (see 9.3.2.2). Following the convention of the template methods, these indexes are 11612
duplicated in the input arguments. For example, the Write_Row method includes an index as 11613
an input argument even though the index is also carried within the OctetString that constitutes 11614
the new entry. 11615

Table 192 specifies the Read_Row method. 11616

62734/2CDV © IEC(E) – 433 –

Table 192 – Read_Row method 11617

Method
name

Method
ID

Method description

Read_Row 2 Method to read the value of a single row of an indexed OctetString attribute whose
data is visualized as an information table

Input arguments

Argument
number

Argument
name

Argument type
(data type and

size)

Argument description

1 Attribute_ID Unsigned16 The attribute ID in the DLMO to which this
method is being applied

2 Index Unsigned16 The * Index field in the attribute to access a
particular row

Output arguments

Argument
number

Argument
name

Argument type
(data type and

size)

Argument description

1 Data_Value OctetString An octet string that contains the contents of the
row. If the row is empty, the OctetString shall
contain only the Index, encoded as ExtDLUint

 11618
Table 193 specifies the Write_Row method. 11619

Table 193 – Write_Row method 11620

Method
name

Method
ID

Method description

Write_Row 3 Method to set / modify the value of a single row of an indexed OctetString attribute
whose data is visualized as an information table

Input arguments

Argument
number

Argument
name

Argument
type

(data type
and size)

Argument description

1 Attribute_ID Unsigned16 The attribute ID in the DLMO to which this
method is being applied, as determined by the
ordinal index of the attribute in the DLMO
definition

2 Scheduled_TAI_
Time

Unsigned32 TAI time in seconds at which the value should be
written to the row of the structured attribute. If
the time is in the past, relative to the receiving
device’s time sense, the write shall be performed
immediately

3 Index Unsigned16 The * Index field in the attribute to access a
particular row

4 Data_Value OctetString An octet string that contains the new contents of
the row. If the DLMO row is unpopulated, a new
row is created containing the OctetString if
memory is available. If the DLMO row already
exists, its contents are replaced with the
OctetString. If the OctetString is null then the row
shall be deleted

 – 434 – 62734/2CDV © IEC(E)

Method
name

Method
ID

Method description

 Output arguments

Argument
number

Argument
name

Argument
type

(data type
and size)

Argument description

None

 11621
Table 194 specifies the Write_Row_Now method. It is identical to the Write_Row method, 11622
without the Scheduled_TAI_Time argument. It has the effect of writing an indexed OctetString 11623
row immediately on receipt. 11624

Table 194 – Write_Row_Now method 11625

Method name Method
ID

Method description

Write_Row_Now 4 Method to set / modify the value of a single row of an indexed OctetString
attribute whose data is visualized as an information table

Input arguments

Argument
number

Argument
name

Argument
type

(data type
and size)

Argument description

1 Attribute_ID Unsigned16 The attribute ID in the DLMO to which this
method is being applied, as determined by the
ordinal index of the attribute in the DLMO
definition

2 Index Unsigned16 The * Index field in the attribute to access a
particular row

3 Data_Value OctetString An octet string that contains the new contents of
the row. If the DLMO row is unpopulated, a new
row is created containing the OctetString if
memory is available. If the DLMO row already
exists, its contents are replaced with the
OctetString. If the OctetString is null then the
row shall be deleted

Output arguments

Argument
number

Argument
name

Argument
type

(data type
and size)

Argument description

None

 11626
 DL alerts 9.611627

 DL_Connectivity alert 9.6.111628

DLE performance diagnostics are accumulated in the attributes dlmo.NeighborDiag for per-11629
neighbor diagnostics, and dlmo.ChannelDiag for per-channel diagnostics. Normally the 11630
system manager configures the HRCO to report these diagnostics periodically, and the DLE 11631
automatically resets the diagnostic counters whenever these attributes are so reported. 11632
Between such reports, diagnostics may indicate a problem that needs to be reported to the 11633
system manager immediately. The DL_Connectivity alert provides the mechanism for the DLE 11634
to report such issues, and the dlmo.AlertPolicy attribute enables the system manager to set 11635
thresholds for such reporting. 11636

62734/2CDV © IEC(E) – 435 –

The attribute dlmo.AlertPolicy enables/disables the DL_Connectivity alert and provides 11637
thresholds to control whether alerts are reported. dlmo.AlertPolicy is an OctetString 11638
containing fields as shown in Table 195. 11639

Table 195 – dlmo.AlertPolicy fields 11640

Field name Field encoding

Descriptor (enables or disabled the DL_Connectivity alert) Type Alert report descriptor
Default: Disabled=TRUE
Default: Priority=0

NeiMinUnicast (minimum number of unicast transactions needed for a neighbor
report)

Type: ExtDLUint

NeiErrThresh (report neighbor diagnostic if the percentage error rate reaches
this threshold)

Type: Unsigned8

ChanMinUnicast (minimum number of unicast transactions on a channel needed
as a pre-condition for triggering an alert)

Type: ExtDLUint

NoAckThresh (report ChannelDiag if a NoAck value is greater than this
threshold)

Type: Unsigned8

CCABackoffThresh (report ChannelDiag if a CCABackoff value is greater than
this threshold)

Type: Unsigned8

 11641
Table 196 specifies the structure of the dlmo.AlertPolicy OctetString. 11642

Table 196 – dlmo.AlertPolicy OctetString structure 11643

Number
of octets

Bits

7 6 5 4 3 2 1 0

2 Descriptor

1 or 2 NeiMinUnicast

1 NeiErrThresh

1 or 2 ChanMinUnicast

1 NoAckThresh

1 CCABackoffThresh

 11644
Fields include: 11645

• dlmo.AlertPolicy.Descriptor determines whether or not the DL_Connectivity alert is 11646
enabled. By default, DL_Connectivity alert is disabled until the system manager enables it 11647
by populating this attribute with appropriate thresholds. When Disabled=TRUE, all other 11648
dlmo.AlertPolicy fields are meaningless and ignored. 11649

• dlmo.AlertPolicy.NeiMinUnicast sets a minimum number of attempted unicast transactions 11650
before an error rate is considered significant. The count of attempted unicast transactions 11651
for a neighbor is the sum of the dlmo.NeighborDiag fields 11652

 TxSuccessful+TxFailed+TxCCA_Backoff+TxNAK. 11653
If this sum is less than NeighborTxMinReport, do not send a DL_Connectivity alert for the 11654
neighbor. 11655

• dlmo.AlertPolicy.NeiErrThresh sets the threshold for reporting a DL_Connectivity alert for 11656
a neighbor. The percentage error rate is calculated as: 11657

(TxFailed + TxCCA_Backoff + TxNAK) x 100 / 11658
(TxSuccessful + TxFailed + TxCCA_Backoff + TxNAK) 11659

If this value is greater than NeiErrThresh, the diagnostics for the neighbor should be 11660
reported using the DL_Connectivity alert unless there is an insufficient number of unicast 11661
transactions to the neighbor or the same alert has been recently reported. 11662

 – 436 – 62734/2CDV © IEC(E)

• dlmo.AlertPolicy.ChanMinUnicast is similar to NeiMinUnicast. Counters underlying 11663
dlmo.ChannelDiag are not exposed, but a count of attempted unicast transactions is 11664
implicit in the reported ratios. 11665

• dlmo.AlertPolicy.NoAckThresh and dlmo.AlertPolicy.CCABackoffThresh provide thresholds 11666
for reporting. Since the values reported by dlmo.ChannelDiag are ratios, the reported 11667
values are simply compared to the thresholds. If the value exceeds the thresholds, 11668
dlmo.ChannelDiag should be reported through the DL_Connectivity alert unless the 11669
ChanMinUnicast requirement is not met or the same alert has been recently reported. 11670

The system manager may respond to the DL connectivity alert by collecting diagnostics to 11671
more fully characterize the situation. Alternatively, particularly if a modified topology is easily 11672
achieved, the system manager may simply reconfigure the D-subnet topology. 11673

Table 197 illustrates the structure of the DL_Connectivity alert. 11674

Table 197 – DL_Connectivity alert 11675

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Description of the alert: Poor neighbor connectivity

Alert class
(Enumerated:

alarm or event)

Alert category
(Enumerated: device

diagnostic, comm.
diagnostic, security,

or process)

Alert type

(Enumerated:
based on alert

category)

Alert
priority

Value data
type

Description of
value

included with
alert

Event Comm 0 =
DL_Connectivity

Medium Type:
DL16Address

See Table 187

 11676
The format of the OctetString transmitted with the DL_Connectivity alert is shown in Table 11677
198. It is simply the attribute number for either dlmo.ChannelDiag (48) or dlmo.NeighborDiag 11678
(46), followed by an OctetString containing the diagnostic data from that attribute. In the case 11679
of ChannelDiag, the entire attribute is transmitted. In the case of NeighborDiag, only the row 11680
that triggered the alert is transmitted, with the neighbor address specified within the row 11681
identifying the neighbor. 11682

Table 198 – DL_Connectivity alert OctetString 11683

Octets Bits

7 6 5 4 3 2 1 0

1 AttributeNumber (Unsigned8)

N Attribute (OctetString)

 11684
 NeighborDiscovery alert 9.6.211685

As described in 9.4.2.24, the NeighborDiscovery alert provides a mechanism for the DLE to 11686
report the contents of the OctetString in dlmo.Candidates attribute. 11687

Table 199 illustrates the structure of the NeighborDiscovery alert. 11688

62734/2CDV © IEC(E) – 437 –

Table 199 – NeighborDiscovery alert 11689

Standard object type name: DL management object (DLMO)

Standard object type identifier: 124

Description of the alert: Neighbor discovery alert

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated:

device diagnostic,
comm. diagnostic,

security, or
process)

Alert type

(Enumerated:
based on alert

category)

Alert
priority

Value data
type

Description of value
included with alert

Event Comm 1 =
NeighborDiscovery

Medium Type:
OctetString

An exact copy of the
OctetString in
dlmo.Candidates;
see 9.4.2.24

 11690

10 Network layer 11691

 General 10.111692

Clause 10 provides an overview of NL functionality. It also describes conceptual services that 11693
the NL offers to the layer above it (transport), the NL management object (NLMO), and the 11694
structure of NPDUs. 11695

NOTE NPDU header formats have been designed for compatibility with RFC 6282. 11696

The NL follows the big endian convention; multi-octet fields are documented and transmitted 11697
with the high-order octet first (since they are treated as a series of octets by the lower layer). 11698
Within an octet, bits are documented starting from the high-order bit (bit 7) on the left and 11699
continuing to the low-order bit (bit 0) on the right. 11700

Parts of Clause 10 present notional implementation aspects as if they were subject to 11701
conformance testing. Where such aspects are not externally observable, any such 11702
specifications are strictly hypothetical. Only observable, testable aspects of Clause 10 are 11703
normative. 11704

 NL functionality overview 10.211705

 General 10.2.111706

The NL in this standard performs the following functions: 11707

• Addressing: An NLE determines the appropriate address information for an NPDU. 11708

• Address translation: This standard uses primarily two types of addresses, short 11709
DL16Addresses, and long IPv6Addresses. The short DL16Addresses are used within a 11710
D-subnet to conserve energy and bandwidth. ALEs, TLEs and NLEs on backbone 11711
networks use long IPv6Addresses. The NLE is responsible for translation between the 11712
various types of addresses, e.g., when an NPDU moves from a D-subnet to a backbone 11713
network (or vice versa). 11714

• NPDU formats: This standard allows for more than one NPDU format to accommodate 11715
conservation of energy and bandwidth (which favors short headers), a variety of network 11716
topologies, and internetworking with backbone networks. The NLE selects an appropriate 11717
format for the NPDU based on such considerations as addressing, routing, level of 11718
service, etc. 11719

• Fragmentation and reassembly: NPDU fragmentation and reassembly occurs within the 11720
NLE. An NPDU of a size of more than the maximum DSDU size is fragmented by the 11721
sending NLE at the point of ingress into a D-subnet. Reassembly is performed by the 11722
receiving NLE at the point of egress from the D-subnet. 11723

 – 438 – 62734/2CDV © IEC(E)

• Routing: This standard performs routing at two levels: within the backbone network and 11724
within the mesh D-subnet. Responsibility for routing at the NL and DL protocol layers is 11725
the responsibility of the respective layer entities. 11726

 Addressing 10.2.211727

ALEs and TLEs in this standard use IPv6Addresses. Each NLE shall have an IPv6Address. If 11728
the NLE does not have an IPv6Address prior to the network join process, the NLE shall be 11729
assigned such an IPv6Address by the system manager during the joining process. The NL 11730
uses these IPv6Addresses, but does not associate any further meaning to them. 11731

Each NLE compliant with this standard shall also have an IPv6Address that is autoconfigured 11732
by the NLE as part of the initialization of its protocol stack. This IPv6Address is referred to as 11733
the NLE’s link-local address and is derived from the associated DLE’s EUI64Address. The 11734
format of this IPv6Address is that of a link-local unicast address, as defined in IETF RFC 11735
4291, 2.5.6. Table 200 illustrates this address structure. 11736

Table 200 – Link-local address structure 11737

10 bits 54 bits 64 bits

11 1111 1010 0 EUI64Address

 11738
When DPDUs are transmitted over a D-subnet, conveyance of IPv6Addresses consumes 11739
valuable bandwidth and device energy resources. Thus this standard defines 16-bit D-aliases 11740
for IPv6Addresses so that the short D-aliases are used over the D-subnet. For each D-subnet, 11741
a unique DL16Address shall be assigned to each DLE within that D-subnet, as well as to each 11742
DLE outside the D-subnet with which a DLE within the D-subnet has a contract. This allows 11743
short D-addresses to be used in the D-subnet to represent all origin and destination NLEs. 11744

The scope of a DL16Address is the D-subnet within which it has been defined. Thus, a 11745
particular device may have one D-address in the D-subnet to which it belongs and a different 11746
D-address in a foreign D-subnet. When a DL16Address is used, it is carried in the DPDU’s 11747
header. 11748

During the joining process, an NLE might not yet have an IPv6Address and its associated 11749
DLE might not have a DL16Address. In this case, TPDUs between the joining device and the 11750
advertising D-router shall use the link-local IPv6Addresses when needed (e.g., for the TPDU 11751
pseudo-header in join TPDUs). The joining device and the advertising router shall be 11752
identified as such by using their EUI64Addresses in the DPDU headers that convey the join 11753
messaging. 11754

The system manager assigns the DL16Address and IPv6Address of each DLE and NLE, 11755
respectively, that operate in a WISN conforming to this standard. These addresses are 11756
assigned during the join process. The NLE specified by this standard supports only unicast 11757
addressing. 11758

NOTE 1 Multicast addressing is a subject for future standardization. 11759

NOTE 2 Backbone and plant network technologies are outside the scope of this standard. Therefore this standard 11760
does not specify the representation of IPv6Addresses on a particular backbone or plant network. 11761

 Address translation 10.2.311762

Since this standard employs DL16Addresses within a D-subnet, when a NPDU moves from a 11763
D-subnet to a backbone network (or vice versa), the NLE of the backbone router shall 11764
translate between the DL16Addresses and the IPv6Addresses. The same kind of translation 11765
shall be performed by the NLE of a D-subnet endpoint. 11766

62734/2CDV © IEC(E) – 439 –

All devices in this standard shall maintain an address translation table (ATT), as shown in 11767
Table 201. 11768

Table 201 – Address translation table (ATT) 11769

D-address (DL16Address) N-address (IPv6Address)

N1_16 N1_128

N2_16 N2_128

GW_16 GW_128

BBR_16 BBR_128

SM_16 SM_128

 11770
The address translation table is initialized during the join process with the DL16Address and 11771
the IPv6Address of the system manager. This information is part of the non-security 11772
component of join response, received from the system manager as described in 6.3.9.2. 11773

The address translation table shall be updated by the source NLE whenever a communication 11774
session is established with a new destination NLE. Communication sessions are described in 11775
6.3.11.2.5.2. The DL16Address and the IPv6Address of the destination NLE and its 11776
associated DLE are stored in the address translation table upon the successful completion of 11777
the session establishment process. The process of session establishment is described in 7.5. 11778
If a session is terminated for whatever reason, any entry associated with the destination 11779
device shall be deleted. 11780

An NLE maintains entries in its ATT for other NLEs with which it communicates; these other 11781
NLEs may either belong to the same D-subnet as the first NLE or have a DL16Address in the 11782
same D-subnet. 11783

Within a particular D-subnet, an NLE (whether local or remote) shall have only one 11784
DL16Address. Thus, the ATT can be used for both forward and reverse lookup by the NLE: 11785

• IPv6Address determined through ATT_lookup of a DL16Address; 11786

• DL16Address determined through ATT_lookup of an IPv6Address. 11787

It is possible to package multiple NLEs or DLEs in a single physical device to support multi-11788
homing. Although such operation is not specified by the standard, it is not prohibited. 11789

An address with no entry in the ATT shall be translated with the help of the system manager. 11790
For each NLE joining the network, the system manager shall maintain the IPv6Address of the 11791
NLE and the associated DL16Address or D-alias for each D-subnet in which the NLE has 11792
such an alias. Hence, the local ATT at an NLE shall be updated through the system manager. 11793

The ATT is an integral part of the NLMO and can be directly updated by the system manager 11794
by using the NLMO manipulation methods described in Table 210. 11795

If a lookup in the ATT yields no results, then the lookup function notifies the NLMO. The 11796
NLMO issues a read primitive to the directory service object (DSO) in the system manager to 11797
obtain the appropriate translation. The lookup function return a value of null if the system 11798
manager also has no mapping for a particular address or the system manager is not available. 11799
Any new information from the system manager is stored in the ATT table. 11800

This process is illustrated in Figure 91. 11801

 – 440 – 62734/2CDV © IEC(E)

Start

16_bit_addr or
128_bit addr for

lookup

Send message to look up
at system manager

Response from
system manager ?

Update
ATT

Return lookup
value

Entry in ATT ?

Return NULL Return

Yes

No

Yes

No

 11802

Figure 91 – Address translation process 11803

 Network protocol data unit headers 10.2.411804

Three formats are used for NPDU headers. The value of the header’s first octet provides the 11805
means to distinguish between these formats: 11806

• Basic header: This format is intended for NPDUs traversing a single D-subnet and shall be 11807
used only over that D-subnet. It is expected to be the most common format in use because 11808
its use minimizes the overhead associated with the transmission of headers. The basic 11809
header is just an abbreviation for a specific fixed value of the 6LoWPAN compressed 11810
header; this value indicates that the source and destination addresses are elided, instead 11811
being conveyed in the DPDU header, as described in 10.5.2. 11812

• Contract-enabled header: This format also is used only over a single D-subnet, when the 11813
originating device needs to include more information in the NPDU, such as a contractID. 11814
This additional information allows backbone routers to select appropriate resources (e.g., 11815
graphID, priority) for the routing of the NPDU, as described in 10.5.3. 11816

• Full header: This is a full IPv6 header, suitable for use over the backbone. NPDUs 11817
containing a basic or contract-enabled header shall be expanded into the full header 11818
format before routing over the backbone. In return, backbone routers convert full headers 11819
into basic or contract-enabled headers for transmission over a D-subnet, as described in 11820
10.5.4. 11821

 Fragmentation and reassembly 10.2.511822

If the entire NPDU is smaller than the maximum DSDU size, the NPDU shall not be 11823
fragmented and the network header shall not contain a fragmentation header. If the NPDU 11824
exceeds the maximum DSDU size, the NPDU shall be fragmented into fragmented NPDUs 11825
that do not exceed the D-subnet’s maximum DSDU size. Fragmentation shall be performed by 11826

62734/2CDV © IEC(E) – 441 –

the NLE at the point of ingress into a D-subnet. Reassembly shall be performed by the NLE at 11827
the point of egress from a D-subnet. 11828

NOTE Origination by a TLE in a D-subnet-connected device constitutes “a point of ingress” into the D-subnet, and 11829
similarly delivery to a TLE in a D-subnet-connected device constitues “a point of egress” from the D-subnet. 11830

The first fragment shall contain the first fragment header as defined in Table 219. The second 11831
and subsequent fragments (up to and including the last fragment) shall contain a 11832
fragmentation header as defined in Table 220. The offset of this fragment, referred to as the 11833
datagram offset, shall be expressed in units of eight octets, so that each fragment other than 11834
the last consists of a multiple of eight octets. 11835

The Datagram_size field shall be present in every fragment, to simplify the reassembly tasks 11836
when fragments arrive out of order at their reassembling NLE. The inclusion of the 11837
Datagram_size in every fragment allows the receiver to allocate the appropriate amount of 11838
buffer space when the first fragment is delayed. 11839

All fragments (first and subsequent fragments) shall have a Datagram_tag field in their 11840
header. The value of this field shall be assigned by the device performing the fragmentation 11841
and shall be the same for all fragments of the NPDU, so that the reassembling device can 11842
recognize that the fragments belong to the same NPDU. To the extent possible, the NLE 11843
performing the fragmentation shall assign a different Datagram_tag value to each distinct 11844
NPDU that it fragments. To achieve this, each NLE shall have a counter that is initialized to a 11845
uniform-random value and is incremented for each NPDU that undergoes fragmentation; the 11846
value of this counter shall be placed in the Datagram_tag field of each fragment of the NPDU. 11847

In the extremely rare case that two NPDUs from the same source to the same destination are 11848
fragmented by different intermediate routers that coincidentally pick the exact same 11849
Datagram_tag, the reassembling device may not be able to disambiguate fragments. In this 11850
case, the GraphID may be used to disambiguate further; however, this is not specified as 11851
mandatory in this standard. TPDUs reassembled in error from multiple sources will be 11852
dropped due to checksum errors and retransmitted. Intermediate routers that fragment NPDUs 11853
may also coordinate their fragmentation state machines in order to avoid scenarios in which 11854
the reassembling device might not be able to disambiguate fragments. 11855

Figure 92 illustrates the fragmentation process. 11856

 – 442 – 62734/2CDV © IEC(E)

 11857

Figure 92 – Fragmentation process 11858

To identify all fragments that belong to the same NPDU, the reassembling NLE shall use: 11859

• the source IPv6Address; 11860

• the destination IPv6Address; 11861

• the datagram_tag; and 11862

• the datagram_size. 11863

Otherwise the NLE shall begin reconstructing the original unfragmented NPDU, whose size is 11864
Datagram_size, using the Datagram_offset field to determine the relative location of the 11865
individual fragments within the original unfragmented NPDU. 11866

When a NLE first receives a fragment with a given Datagram_tag that requires reconstruction, 11867
it starts a reassembly timer. If this timer expires before the entire NPDU has been 11868
reassembled, the received fragments shall be discarded. The reassembly timeout shall be set 11869
to a value defined in nlmo.Frag_Reassembly_Timeout (attribute identifier 11 in Table 206). If 11870
a fragment that partially overlaps another fragment is received, and it differs in either the size 11871
or Datagram_offset of the overlapped fragment, the fragment(s) already accumulated in the 11872
reassembly buffer shall be discarded. 11873

The text just before Figure 92 provides one example of how such inconsistent fragmentation can arise. 11874

A new reassembly commences with a fragment containing a tag for which no fragments are 11875
pending. This may lead to buffers being allocated when some fragments arrive after the 11876

62734/2CDV © IEC(E) – 443 –

timeout of the reassembly process that had been previously initiated for the same tag (in 11877
essence, attempting to reassemble the NPDU a second or later time). That repeated 11878
reassembly usually will fail to complete, causing the new buffers to eventually be flushed due 11879
to a nlmo.Frag_Reassembly_Timeout. 11880

The reassembly process is completed when the NPDU is fully reassembled or the timer 11881
expires. If the NPDU exceeds the size indicated by nlmo.Max_NSDU_size, the reassembly 11882
process may be aborted and the NPDU may be discarded. The device may send a dropped 11883
PDU/PDU error alert with value 7 indicating that it is out of memory. Dropped PDU/PDU error 11884
alerts are shown in Table 211. 11885

The NPDU reassembly process is shown in Figure 93. 11886

Start

New Datagram_tag
for this source-dest

pair ?

Allocate buffer of
Datagram_size

Start timer

Place fragment at
appropriate place

in buffer

Buffer == FULL ?

Flush buffer
and timer

ReturnReturn success,
buffer contents

Timer
expired?

Flush buffer
and timer

Return errorReturn

Timer service routine

Yes

No

Yes

No

No

Yes

Timer value

 11887

Figure 93 – Reassembly process 11888

 Routing 10.2.611889

10.2.6.1 General 11890

Routing within a network compliant with this standard happens at two levels: 11891

• One level comprises the endpoints and the backbone devices, if any; the NL is responsible 11892
for routing PDUs at this level. This level does not handle routing over the DL links; 11893
traversal of a D-subnet appears as a single hop to an NLE. 11894

• The second level of routing is within a D-subnet. This level is the responsibility of the DL 11895
(a layer 2 mesh implementation). 11896

The routing between D-subnets and backbone networks is the responsibility of the NL, whose 11897
NPDUs conform to the IETF IPv6 and 6LoWPAN standards. This standard specifies minimum 11898
requirements for routing, along with notional management services for adding, deleting, and 11899
maintaining routes. 11900

 – 444 – 62734/2CDV © IEC(E)

10.2.6.2 Routing tables 11901

The NLE in devices compliant with this standard shall maintain a routing table (RT) to keep 11902
track of the next hop for a given destination. This table shall be maintained using 11903
IPv6Addresses, since such addresses are unique across an entire network compliant with this 11904
standard (including all D-subnets). An example of a routing table is provided in Table 202. 11905
The routing table may be updated at the source device whenever a communication session is 11906
established with a destination device. 11907

Table 202 – Example of a routing table 11908

DestinationAddress NextHop NWK_Hop_Limit OutgoingInterface a)

N1 BBR1 2 Backbone

N2 BBR1 2 Backbone

GW GW 2 Backbone

N3 N3 1 D-subnet

N4 N4 1 D-subnet

N5 N5 1 D-subnet

...

a) This field is set to D-subnet for all destinations in routers and I/O devices.

 11909
NOTE In this standard, the route table and all NL management objects are specified to support only one active 11910
D-subnet at a time. All DL16Addresses are unique within the scope of that single D-subnet. This is not intended to 11911
prevent a device from participating in multiple D-subnets simultaneously. Multiple D-subnets are represented by 11912
multiple NLEs. 11913

DLEs that are not backbone-capable only route DPDUs within the D-subnet. Routing within 11914
the D-subnet is the responsibility of the DL (a layer 2 mesh implementation). Hence DLEs that 11915
operate in the D-subnet but are not backbone capable may maintain a routing table but are 11916
not required to do so. This is also reflected in Table B.18 that normatively presents the 11917
minimum routing table sizes that need to be supported by devices that meet various role 11918
profiles. NL routing tables provide layer independence and allow potential route-over 11919
implementations, where routing within the D-subnet is achieved through NL routing. 11920

The routing table shall also be used by the backbone routers to decide whether to route a 11921
PDU over the backbone or over the D-subnet of this standard. The OutgoingInterface field 11922
indicates whether the PDU shall be sent over the backbone or over the D-subnet. 11923

NextHop indicates the next device whose NLE shall process the NPDU destined for the 11924
DestinationAddress. Any device reachable through the DL mesh has NextHop equal to the 11925
destination address and the NWK_Hop_Limit field set to 1. From the perspective of the NLE, 11926
any device that is reachable through the DL mesh is a single network hop away. 11927

10.2.6.3 Processing of a network service data unit received from a TLE 11928

When an NSDU is passed to an NLE by a TLE, the NLE determines the final destination for 11929
that NSDU based on the ContractID. The contract table (see Table 207) is used to obtain the 11930
destination address. Devices with both a backbone and a DL interface compliant with this 11931
standard shall look up the destination address in the routing table to determine which network 11932
interface to use. All non-backbone DLEs shall always use their DL interface. 11933

The NLE shall use the ContractTable to obtain the two-bit priority for the contractID in the 11934
N-Data.request. This contract priority shall be combined with the two bits of message priority 11935
(also passed in the N-Data.request) to obtain a 4-bit NPDU priority that is passed down to the 11936
DLE; the two most significant bits shall be the contract priority, and the two least significant 11937
bits shall be the message priority. The Discard Eligible (DE) field from the N-Data.request is 11938
also passed down to the DLE. If the OutgoingInterface for the destination address is the 11939

62734/2CDV © IEC(E) – 445 –

backbone then the 4-bit priority and DE eligible bits shall be included in the TrafficClass field 11940
of the IPv6 header. 11941

The NLE shall use the ContractTable to check if the ContractID needs to be included in the 11942
NPDU. Including the ContractID in the NPDU allows intermediate backbone routers to make 11943
appropriate routing choices (level of service, graphID, etc.) on the backbone or a different 11944
D-subnet. When routing over the DL interface, if ContractID need not be included, then a 11945
basic NPDU header should be constructed; otherwise, a contract-enabled NPDU header 11946
should be constructed. 11947

The NLE shall also determine whether fragmentation is needed for the NPDU and shall 11948
perform the fragmentation process if necessary. Fragmentation shall be required only for 11949
NPDUs routed over a D-subnet; dlmo.MaxDSDUSize shall indicate the maximum payload that 11950
can be carried over the D-subnet. If the DSDU size is greater than this value, then 11951
fragmentation is necessary. 11952

BBR caching mechanisms and inter-BBR forwarding and reassembly protocols can provide 11953
the necessary functionality to permit NSDU fragments that arrive (from the D-subnet) at 11954
differing BBRs to be reassembled and forwarded by one of those BBRs. 11955

NOTE A future edition of this standard may specify such an inter-BBR mechanism and protocol. 11956

Unless the configuring system manager knows that the selected BBRs have the necessary 11957
capability, NPDUs requiring fragmentation shall not use D-subnet routes that terminate in 11958
more than one BBR, because the non-initial NPDUs resulting from 6LoWPAN fragmentation 11959
do not carry sufficient information for them to be routed directly to their intended final 11960
destination on the backbone subnet before reassembly has occurred. 11961

Figure 94 illustrates the processing of an NSDU received from a TLE. 11962

 11963

Figure 94 – Processing of a NSDU received from a TLE 11964

 – 446 – 62734/2CDV © IEC(E)

10.2.6.4 Processing of a received NPDU 11965

A received NPDU (i.e., a packet), whether received from the DL or the backbone interface, 11966
shall first be checked to determine if the final destination is a TLE of the current device. If so, 11967
the NSDU that is conveyed as the payload of the NPDU (after any required NPDU 11968
defragmentation) shall be passed to the collocated TLE. If the final destination is not the 11969
current device, then the device shall route the NPDU appropriately (via either the backbone or 11970
the associated DLE). The overall decision process is shown in Figure 95. Not all packets 11971
received from the DLE will have a corresponding DL16Address entry in the ATT. Some 11972
devices operating on the backbone may not have an assigned DL16Address, but only an 11973
IPv6Address. In such a case the NPDU will be delivered by the local DLE after being 11974
forwarded from the sending remote DLE over a default route. In that case the backbone-11975
capable device will directly look up the route associated with the destination IPv6Address. 11976

Start

PDU came
from DL ?

Final
destination

is me ?

Reassembly
needed?

NPDU.F128=
ATT_lookup (NPDU.F16)

Next HOP =
RT_lookup (NPDU.F128)

HopCount =
RT_lookup (NPDU.F128)

Process
backbone

PDU

Deliver
PDU

Reassembly
process

Reassembly
success ?

Drop
packet

Is NextHOP
== NULL?

F128 =ATT_lookup (NPDU.F16)
V128 = ATT_lookup

(NPDU.V16)

Expand NWK header
with F128, V128
and traffic class;

route over backbone
to NextHOP

Return

Yes

Yes

Yes

Yes

YesNo

No No

No

No

 11977

Figure 95 – Processing of a received NPDU 11978

The DLE's notional DD-DATA.indication and DD-DATA.request services convey a LastHop (LH) 11979
parameter. When this LH parameter is set, it indicates that the PDU entered the D-subnet 11980
through a backbone router, and therefore is prohibited from exiting the D-subnet through a 11981
backbone router, thus avoiding circular routes within the NL. This restriction enables the NLE 11982
to elide the Hop Limit field from a compressed NPDU that uses the basic header format while 11983
still preventing circular routing. 11984

When the NPDU is received from the DL at a device other than the destination, if the LastHop 11985
(LH) parameter is set in the DD-DATA.indication, the NPDU has reached the current device in 11986
error and shall be discarded. If the NPDU is received from the D-subnet and not discarded 11987
(see Figure 95), the intermediate router shall first fully expand the NPDU’s network header. 11988
As part of this expansion, the explicit congestion notification (ECN) value provided by the 11989
DD-DATA.indication shall be included in the appropriate field of the expanded header. 11990

62734/2CDV © IEC(E) – 447 –

After any header expansion, the receiving DLE shall check to see whether reassembly (due to 11991
prior fragmentation) is needed for this NPDU. Once any needed reassembly completes, the 11992
NPDU shall be prepared for routing over the backbone. The DL16Address of the origin (very 11993
first V) and destination (final destination F) in the DD-DATA.indication shall be translated into 11994
IPv6Addresses. Then the routing table shall be used to determine the next NL hop for 11995
reaching the final destination. The NPDU shall be presented to the NLE of the backbone 11996
interface for routing on the backbone network. This standard does not specify how the 11997
backbone handles and routes the NPDU. The backbone has the responsibility to deliver the 11998
NPDU to the NLE of the NextHop. 11999

This standard always uses ECN. When congestion notification is carried in a DPDU header, if 12000
the ECN bits are non-zero in the NPDU header, they shall be set to zero in that header to 12001
indicate that the notification is carried in the DPDU header. A backbone router NLE that 12002
receives a potentially-reassembled NPDU from its associated DLE shall use the ECN 12003
information carried in the received DPDU header to fill in the ECN bits in the expanded NPDU 12004
header. NPDUs originating from backbone devices shall have the ECN bits set to indicate that 12005
explicit congestion notification is used. 12006

If an NPDU is received from the backbone, it will have an expanded header, and the final 12007
destination and very first (originator) addresses will already be expressed as IPv6Addresses. 12008
If the NPDU needs to be routed over a D-subnet, the DL16Addresses in that D-subnet of the 12009
very first (originator) DLE and final destination DLE shall be obtained from the ATT and 12010
passed to the DLE in the DD-DATA.request. The NLE shall check if the ContractID and priority 12011
are included in the FlowLabel and TrafficClass fields, respectively, of the expanded NPDU 12012
header. If so, the ContractID and priority shall also be passed to the DLE to allow the 12013
selection of appropriate DL routing mechanisms (GraphID, etc.). 12014

The presence or absence of congestion is determined from the ECN field of the NPDU 12015
received from the backbone, which is passed to the local DLE in a DD-DATA.request. When 12016
passing an NPDU with a basic header to a local DLE, then the LastHop (LH) parameter shall 12017
be set in the DD-DATA.request to indicate that the NPDU has entered a D-subnet from which it 12018
is not allowed to exit. If the NPDU size exceeds dlmo.MaxDsduSize for this D-subnet, the 12019
NPDU shall be fragmented before conveyance as DSDUs. This process is depicted as a 12020
flowchart in Figure 96. 12021

 – 448 – 62734/2CDV © IEC(E)

 12022

Figure 96 – Processing of a NPDU received by a NLE from the backbone 12023

If the receiving NLE is the intended final destination, then that NLE shall process the NPDU 12024
and shall pass the conveyed NSDU up to an associated local TLE, along with an indication of 12025
whether congestion was encountered, as conveyed by the NPDU’s ECN bits. The NLE shall 12026
first check if it has received a fragment; if so, it shall perform the reassembly process (see 12027
Figure 93). The NPDU’s source IPv6Address shall be translated to an IPv6Address, if 12028
necessary, and the NSDU shall be passed to the associated TLE. Figure 97 depicts the 12029
flowchart for this processing. 12030

62734/2CDV © IEC(E) – 449 –

Start

Reassembly
necessary ?

Reassembly
process

Fetch
source

address

Reassembly
success?

Is source
address
16-bit?

128-bit source address =
ATT_lookup (source address)

Send Data.Indication to
upper layer (NSDU and
128-bit source address)

Return

No

Yes

No

No

Yes Yes

 12031

Figure 97 – Delivery of a received NPDU at its final destination NLE 12032

 Routing examples 10.2.712033

10.2.7.1 Routing from a field device direct to a field-connected gateway 12034

Figure 98 illustrates routing from a field device to a gateway with no backbone routing. 12035

 – 450 – 62734/2CDV © IEC(E)

 12036

Figure 98 – Routing from a field device direct to a field-connected gateway 12037
without backbone routing 12038

Figure 99 depicts the flow through the communication protocol suites as the PDU moves from 12039
an I/O device to the gateway. It is assumed that the NPDU needs no fragmentation. 12040

62734/2CDV © IEC(E) – 451 –

 12041

Figure 99 – Protocol suite diagram for routing from a field device 12042
direct to a field-connected gateway without backbone routing 12043

In Figure 99, the gateway is shown to have a field medium; hence no backbone network is 12044
involved in this example. The operations of the NLEs at the devices that the NPDU traverses 12045
(numbered in order) are as follows: 12046

a) The NLE in the originating field device uses a basic network header; the DL16Address of 12047
the gateway and the DL16Address of the device itself are obtained from the ATT and 12048
passed to the DLE as a DSDU for conveyance to the gateway. 12049

b) The NLE in the gateway receives the NPDU, checks that the NPDU is intended for the 12050
gateway, translates the DL16Address of the originating device (provided by the 12051
DD-DATA.indication) into an IPv6Address, and then passes the NSDU to the TLE. 12052

10.2.7.2 Routing from a field device to a gateway via a backbone router 12053

Figure 100 illustrates the routing of a PDU from a field device to a gateway via a backbone 12054
router. 12055

 – 452 – 62734/2CDV © IEC(E)

 12056

Figure 100 – Routing a NPDU from a field device to a gateway via a backbone router 12057

Figure 101 depicts the flow of an NPDU from a field device to a gateway resident on the 12058
backbone network. 12059

The NPDU is first routed to a backbone router over the D-subnet, and from there to the 12060
gateway over the backbone. The operation of the NLEs at the devices that the NPDU 12061
traverses (listed in order) is as follows: 12062

a) The NLE of the I/O device passes to its local DLE its own DL16Address as the source 12063
address and the DL16Address of the gateway as the final destination address. If the 12064
ContractTable indicates that the ContractID needs to be included in the NPDU, the 12065
contract-enabled header is used; otherwise, the basic header is used if the compression 12066
used by the transport allows it (see 10.5.2.1). If the size of the NPDU is larger than 12067
maxDSDU size, the NPDU is fragmented. The complete NPDU (or the set of fragment 12068
NPDUs) is then passed as DSDU(s) to the associated DLE. 12069

b) The DLE conveys the DSDU to the backbone router. If fragmented in a), the set of 12070
fragments is reassembled as the NPDU at the backbone router. The NLE at the backbone 12071
router receives the NPDU and determines that the NPDU is not intended for the backbone 12072
router, since the final destination address in the DD-Data.indication is the DL16Address of 12073
the gateway. The backbone router translates this DL16Address into the IPv6Address of 12074
the desired gateway, uses its routing table to determine the next-hop address to reach the 12075
gateway and creates a full header (format shown in Table 216). 12076

c) The reconstituted NPDU with the expanded network header is presented to the backbone 12077
interface. The backbone interface routes the NPDU towards its final destination. In this 12078
example, the next hop is the final destination (the gateway). 12079

d) The NPDU arrives at the NLE of the gateway over the backbone. The NLE at the gateway 12080
determines that the final destination address is equal to the address of the gateway itself 12081
and passes the NSDU to its TLE. 12082

62734/C

D
V

 ©
 IE

C
(E

)
– 453 –

 12083

Figure 101 – Protocol suite diagram for routing an APDU from a field device to a gateway via a backbone router 12084

 – 454 – 62734/2CDV © IEC(E)

10.2.7.3 Routing from a field device to another field device on a different D-subnet 12085

Figure 102 illustrates routing from an I/O device on one D-subnet to another I/O device on a 12086
different D-subnet. 12087

 12088

Figure 102 – Routing from a field device on one D-subnet 12089
to another field device on a different D-subnet 12090

Figure 103 shows the flow of a NPDU between two field devices on different D-subnets (see 12091
10.2.7.3). It is assumed that the NPDU needs no fragmentation. 12092

62734/2C

D
V

 ©
 IE

C
(E

)
– 455 –

 12093

Figure 103 – Protocol suite diagram for routing from an I/O device on one D-subnet to another I/O device on a different D-subnet 12094

 – 456 – 62734/2CDV © IEC(E)

The NPDU is routed over the backbone from one D-subnet to the other. The operations 12095
performed by the NLEs of the devices as the NPDU moves from the originating I/O device 12096
(I/O-1) located in D-subnet DL-1 to the destination I/O device (I/O-2) located in D-subnet DL-2 12097
are as follows: 12098

a) The NLE at I/O-1 creates the NPDU using the contract-enabled network header. The NLE 12099
passes the NPDU to the associated DLE as a DSDU, along with the DL16Address of I/O-1 12100
within DL-1 as the source address, and the DL16Address of I/O-2 in DL-1 as the final 12101
destination address, via the notional DD-DATA.request. The ContractID is placed in the 12102
FlowLabel field of the contract-enabled header. 12103

b) The resulting DPDU(s) is/are routed over DL-1 and arrive(s) at the DLE of BBR-1, i.e., the 12104
backbone router in DL-1. The DPDU payloads are used to regenerate the NPDU, which is 12105
checked to see if it is destined for BBR-1 itself. Since it is not destined for BBR-1, the 12106
DL16Addresses of I/O-1 and I/O-2 in the notional DD-DATA.indication are translated into 12107
their IPv6Addresses. 12108

c) The expanded header (in the format defined in Table 216) is created and presented to the 12109
backbone interface. The next hop for this NPDU over the backbone is determined by 12110
looking up the IPv6Address of the final destination in the RT. The RT returns the 12111
IPv6Address of BBR-2 (the backbone router of DL-2) as the next hop, since BBR-2 is the 12112
backbone router serving I/O-2. The ContractID is placed in the FlowLabel field of the 12113
expanded header. The priority of the PDU is placed in the TrafficClass field. 12114

d) The NLE at BBR-2 receives the NPDU over the backbone. The NPDU indicates that the 12115
final destination is the IPv6Address of I/O-2. This NPDU is then prepared for routing over 12116
DL-2 to reach I/O-2. 12117

e) The NLE at BBR-2 creates a basic NPDU header. In the subsequent notional 12118
DD-DATA.request, the DL16Address of I/O-1 in DL-2 is the originator address and the 12119
DL16Address of I/O-2 in DL-2 is the final destination. The ContractID, extracted from the 12120
FlowLabel field of the expanded header, and the priority, extracted from the TrafficClass, 12121
are also passed down to the DL to enable selection of the appropriate routing resources 12122
(GraphID, etc). 12123

f) The NPDU arrives at the NLE of I/O-2. Since the final destination indicated in the notional 12124
DD-DATA.indication is the DL16Address of I/O-2 in DL-2, the NLE translates the addresses 12125
into an IPv6Address and passes the NSDU to the TL of I/O-2. 12126

10.2.7.4 Example of routing over an Ethernet backbone network 12127

Figure 104 is an example of an implementation of the protocol suite diagram illustrated in 12128
Figure 103. In this network, a field device communicates with a control system that is aware 12129
of the native protocol of this standard; the backbone network in this example is an Ethernet 12130
network carrying IPv6 traffic. 12131

 12132

Figure 104 – Example of routing over an Ethernet backbone network 12133

62734/2CDV © IEC(E) – 457 –

The numbered circles in Figure 104 indicate steps in the routing process and where they 12134
occur: 12135

1) The NLE at the field device creates a NPDU and hands it to the associated DLE for 12136
transmission to the next NL hop (backbone router). The final destination address of the 12137
DPDU is the DL16Address for the native protocol-aware control system. The DL mesh 12138
delivers the NPDU to the NLE of the backbone router. 12139

2) The backbone router receives the NPDU, replaces the DL16Addresses with the 12140
corresponding IPv6Addresses and expands the NPDU into a full IPv6 NPDU. 12141

3) The backbone router sends the IPv6 NPDU over the Ethernet interface. 12142
4) The NLE at the control system receives the IPv6 NPDU from its Ethernet interface, 12143

performs NL processing and passes the NSDU to the TLE. 12144

10.2.7.5 Example of routing over a backbone network 12145

Figure 105 is a variant of Figure 104 that substitutes a generic fieldbus for the Ethernet 12146
backbone network. In this variant the IPv6 NPDU is encapsulated for transport over the 12147
fieldbus network via one or more fieldbus PDUs. 12148

NOTE Other variants of this fieldbus backbone scenario are possible. 12149

 12150

Figure 105 – Example of routing over a fieldbus backbone network 12151

The numbered circles in Figure 105 indicate steps in the routing process and where they 12152
occur: 12153

1) The NLE at the field device creates a NPDU and hands it to the associated DLE for 12154
transmission to the next NL hop (backbone router). The final destination address of the 12155
DPDU is the DL16Address for the native protocol-aware control system. The DL mesh 12156
delivers the NPDU to the NLE of the backbone router. 12157

2) The backbone router receives the NPDU and translates the DL16Address into the 12158
IPv6Address and expands the NPDU into a full IPv6 NPDU. 12159

3) The backbone router encapsulates the entire NPDU in one or more fieldbus PDUs 12160
addressed to the control system. 12161

4) The control system (gateway) receives the fieldbus PDU(s), extracts the NPDU, performs 12162
NL processing, and delivers the NSDU to the associated TLE. 12163

 NLE data services 10.312164

 General 10.3.112165

The TLE uses the NLE’s NDSAP interface to send and receive data. This interface is internal 12166
to a compliant device and is therefore notional and not testable. The internal NSAPs of the 12167
device are depicted in Figure 16. 12168

 – 458 – 62734/2CDV © IEC(E)

All interfaces between the NLE and its NME or the adjacent TLE and DLE are internal 12169
interfaces within the device, and thus are unobservable. Therefore they are not subject to 12170
standardization. Thus all of this description is notional. 12171

 N-DATA.request 10.3.212172

10.3.2.1 General 12173

N-DATA.request is used by a TLE to request the NLE to transmit a TSDU. 12174

10.3.2.2 Semantics 12175

The semantics of the N-DATA.request primitive is as follows: 12176

N-DATA.request (12177
 DestAddress, 12178
 ContractID, 12179
 Priority, 12180
 DE, 12181
 NSDU, 12182
 NSDUSize, 12183
 NSDUHandle, 12184
 ECN 12185
) 12186
Table 203 specifies the elements for the N-DATA.request primitive. 12187

Table 203 – N-DATA.request elements 12188

Standard data type name: N-DATA.request

Element name Element
identifier

Element scalar
type

DestAddress (the IPv6Address of the destination NLE for the NSDU) 1 Type: Device
address

ContractID (the contract ID associated with the resources to be used for
transmitting this NPDU; this ID is passed through directly to the DLE)

2 Type: Unsigned16

Named value:
0 indicates no
contract

Priority (priority of the message within the contract) a 3 Type: Unsigned2

DE (indicates whether the PDU is eligible for discard) 4 Type: Unsigned1

NSDU (the set of octets forming the NSDU to be transmitted by the NL,
including the transport headers)

5 Type: OctetString

NSDUSize (the number of octets in the NSDU to be transmitted) 6 Type: Unsigned16

NDSUHandle (the handle associated with the NSDU to be transmitted) 7 Type: Unsigned16

ECN (explicit congestion notification) 8 Type: Unsigned2

a) The NLE shall combine this priority with the 2-bit contract priority to encode the D-priority as a 4 bit field
before passing it to the DLE.

 12189
10.3.2.3 Appropriate usage 12190

The TLE invokes N-DATA.request to request that the NLE transmit an NSDU. 12191

10.3.2.4 Effect on receipt 12192

On receipt of an N-DATA.request, the NLE constructs the NL headers of the NPDU, first 12193
eliding the first octet of the LoWPAN_NHC of the NSDU if the basic header is used, then 12194
fragmenting the NPDU (if necessary), and conveying it to the DLE for transmission over the 12195
local D-subnet. If ContractID is zero, the NLE treats the NSDU as a join-related PDU with an 12196
associated destination EUI64Address, for which the required destination IPv6Address is 12197
derived from the link-local address passed as the DestAddress parameter. 12198

62734/2CDV © IEC(E) – 459 –

 N-DATA.confirm 10.3.312199

10.3.3.1 General 12200

N-DATA.confirm is used to report the result of an N-DATA.request. 12201

10.3.3.2 Semantics 12202

The semantics of the N-DATA.confirm primitive is as follows: 12203

N-Data.confirm (12204
 NSDUHandle, 12205
 status 12206
) 12207
Table 204 specifies the elements for the N-DATA.confirm primitive. 12208

Table 204 – N-DATA.confirm elements 12209

Element name Element
identifier

Element scalar type

NSDUHandle (the handle of the NSDU whose status is
being reported)

1 Type: Unsigned16

Status (the result of the N-DATA.request primitive that
conveyed the NSDU)

2 Type: Unsigned

Named value:
0: success

 12210
10.3.3.3 When generated 12211

The NLE generates N-DATA.confirm as a delayed response to an N-DATA.request. 12212
N-DATA.confirm returns a status to the TLE that indicates either SUCCESS or FAILURE. 12213

10.3.3.4 Appropriate usage 12214

N-DATA.confirm notifies the TLE of the result of its request to transmit an NSDU. 12215

 N-DATA.indication 10.3.412216

10.3.4.1 General 12217

N-DATA.indication is used by an NLE to deliver a received TSDU to an associated TLE. 12218

10.3.4.2 Semantics 12219

The semantics of the N-DATA.indication primitive is as follows: 12220

N-Data.indication (12221
 SrcAddress, 12222
 DestAddress, 12223
 NSDU, 12224
 NSDUSize, 12225
 ECN, 12226
 Priority 12227
) 12228
Table 205 specifies the elements for the N-DATA.indication primitive. 12229

 – 460 – 62734/2CDV © IEC(E)

Table 205 – N-DATA.indication elements 12230

Element name Element
identifier

Element scalar type

SrcAddress (the IPv6Address of the source of the NSDU) 1 Type: Device address

DestAddress (the IPv6Address of the destination of the NSDU, e.g, the
device's own IPv6Address.)

2 Type: Device address

NSDU (the received NSDU, including associated TL headers) 3 Type: Sequene of octets

NSDUSize (the number of octets in the received NSDU) 4 Type : Unsigned16

ECN (explicit congestion notification information from the received NSDU) 5 Type: BitArray4

Priority (4-bit NPDU priority as received) 6 Type: Unsigned4

 12231
10.3.4.3 Appropriate usage 12232

The NLE invokes N-DATA.indication to notify the associated TLE of a received NSDU and 12233
associated conveyance information. If the received NPDU contained a basic header, then, 12234
before passing the NSDU to the TLE, the NLE restores (prepends) the first octet of the NSDU 12235
as LoWPAN_NHC (= 0x 1111 0111), which had been elided when the basic header was 12236
constructed. If the source D-address received from the underlying DLE is an EUI64Address, a 12237
link-local IPv6Address is constructed from the EUI64Address and passed as the SrcAddress 12238
parameter of the N-DATA.indication. The DestAddress parameter of the N-DATA.indication is 12239
the link-local IPv6Address of the device when used for join-related APDUs, or the globally-12240
assigned IPv6Address for post-join operation. 12241

10.3.4.4 Effect on receipt 12242

On receipt of an N-DATA.indication, the TLE is able to process the reported NSDU. 12243

 NL management object 10.412244

 NL management information base 10.4.112245

Table 206 specifies the attributes of the NL management object (NLMO). 12246

62734/2CDV © IEC(E) – 461 –

Table 206 – NLMO attributes 12247

Standard object type name: NL management object (NLMO()

Standard object type identifier: 123

Attribute name Attribute
identifier

Attribute
description

Attribute type Description of behavior
of attribute

Backbone_Capable 1 A Boolean flag
indicating
whether the
device is
backbone
capable

Type: Boolean1 Fixed value based on
device capabilities and
implementation details.
Backbone capability may
be ignored by a system
manager

Classification: Static

Accessibility: Read
only

DL_Capable 2 A Boolean flag
indicating
whether the
device is
capable of
communicate
over the
wireless Type
A medium of
this standard

Type: Boolean1 Fixed value based on
device capabilities and
implementation details.
DL interface capability
may be ignored by a
system manager

Classification: Static

Accessibility: Read
only

 DL16Address 3 The
DL16Address
of the device

Type: DL16Address A fixed value as assigned
by the system manager at
join.a This attribute is a
duplicate of the
corresponding attributes
in the DMO and DLMO

Classification: Static

Accessibility:
Read/write

Valid range:
1.. 215 -1

Long_Address 4 The
IPv6Address of
the device

Type: IPv6Address A fixed value as assigned
by the system manager at
join.a This attribute is a
duplicate of the
corresponding attributes
in the DMO and DLMO

Classification: Static

Accessibility:
Read/write

Valid range: all with
high-order bit reset

Route_Table 5 The routing
table that
includes
information to
route a NPDU.

Type: Array of
NLRouteTbl
structures (see
NLRouteTbl)

The routing table consists
of a destination address,
next network hop for that
destination and the
number of network hops
needed. The routing table
structure, its
corresponding alerts and
methods are discussed in
10.2.6.2. The size of the
routing table present in
devices that only operate
within the D-subnet and
are not backbone capable
is presented in Table
B.18

Classification: Static

Accessibility:
Read/write

Valid range: See
Table 208

Enable_Default_Route 6 A Boolean
value set to
indicate if a
default routing
is enabled

Type: Boolean1 Enables a default route

Classification: Static

Accessibility:
Read/write

Default value:
Disabled

 12248

 – 462 – 62734/2CDV © IEC(E)

Table 206 (continued)

Standard object type name: NL management object (NLMO()

Standard object type identifier: 123

Attribute name Attribute
identifier

Attribute
description

Attribute type Description of behavior
of attribute

Default_Route_Entry 7 Destination
address
associated
with the default
route

Type : IPv6Address Can be used to look up
the default route in the
route table. Packets that
include a destination
address with no
corresponding entry in
the routing table shall be
forwarded using the
default route. Field
devices may use the
default route to send
packets to devices
operating on the
backbone that have not
been assigned 16-bit
addresses, but only
IPv6Addresses

Classification: Static

Accessibility:
Read/write

Contract_Table 8 Includes
information to
construct the
network
header for a
particular PDU
flow

Type: Array of
NLContractTbl
structures (see
NLContractTbl)

The contract table
consists of the
destination address,
priority for a particular
flow. The table also
includes information
indicating if a ContractID
needs to be carried in the
NPDU or not. The scope
of a contract ID is local to
a device, however, the
combination of a source
address (128-bit) and
ContractID is globally
unique. The contract
table structure and its
corresponding alerts and
methods are discussed
below

Classification: Static

Accessibility:
Read/write

Valid range: See
Table 207

Address_Translation_Table 9 Includes the
IPv6Address
and the
DL16Address
alias for the
IPv6Addresses

Type: Array of
NLATTbl structures
(see NLATTbl)

The address translation
table in a device is
indexed via the
IPv6Address and stores
the corresponding
DL16Address alias within
the D-subnet to which the
device belongs

Classification: Static

Accessibility:
Read/write

Valid range: See
Table 209

Max_NSDU_size 10 Maximum
service data
unit size
supported by
the NL of the
device

Type: Unsigned16 Fixed value based on
device memory
capabilities and
implementation details.
The value 1 280 comes
from IETF RFC 4944. See
6.2.8 on how this value
can necessitate
fragmentation at the AL.
NSDUs that exceed the
maximum value may be
rejected by the device

Classification:
Constant

Accessibility: Read
only

Default value: 70

Valid range:
70..1 280

62734/2CDV © IEC(E) – 463 –

Table 206 (continued)

Standard object type name: NL management object (NLMO()

Standard object type identifier: 123

Attribute name Attribute
identifier

Attribute
description

Attribute type Description of behavior
of attribute

Frag_Reassembly_Timeout 11 Amount of time
(in seconds) a
reassembly
buffer needs to
be held open
for fragments
to come in
before
discarding the
NPDU

Type: Unsigned16 The default value is 60 s,
but the system manager
can change this value Classification: Static

Accessibility:
Read/write

Default value: 60

Valid range: 1..600

Frag_Datagram_Tag 12 Current tag
number for
fragmentation
at the device

Type: Unsigned16 A new tag number is used
for every NPDU that
needs to be fragmented.
The Tag number is
incremented by one for
each NPDU to be
fragmented. Value wraps
back to zero after 65 535

Classification:
Dynamic

Accessibility: Read
only

Default value:
Uniform random

NLRouteTblMeta 13 Metadata for
Route Table
attribute
(Attribute 5)

Type:
Metadata_attribute

Metadata containing a
count of the number of
entries in the table and
capacity (the total number
of rows allowed) for this
table. The size of the
routing table present in
devices that only operate
within the D-subnet and
are not backbone capable
is presented in Table
B.18

Classification: Static

Accessibility: Read
only

NLContractTblMeta 14 Metadata for
Contract Table
attribute
(Attribute 8)

Type:
Metadata_attribute

Metadata containing a
count of the number of
entries in the table and
capacity (the total number
of rows allowed) for this
table

Classification: Static

Accessibility: Read
only

NLATTblMeta 15 Metadata for
Address
Translation
Table attribute
(attribute 9)

Type:
Metadata_attribute

Metadata containing a
count of the number of
entries in the table and
capacity (the total number
of rows allowed) for this
table

Classification: Static

Accessibility: Read
only

DroppedNPDUAlertDescriptor 16 Describes how
a dropped
NPDU alert is
reported on the
network

Type : Alert report
descriptor

—

Classification: Static

Accessibility:
Read/write

Default value:
[TRUE, 7]

a) The attribute shall remain unchanged during normal operation; only a system manager may change it.
Assignment of a new DL16Address shall trigger a Join_Command = 3, restartAsProvisioned, following which
the device shall re-join the wireless network.

 12249
 Structured management information bases 10.4.212250

The NLMO defines three structured management information bases (SMIBs) as tables. They 12251
are the contract table, the route table (RT), and the address translation table (ATT). 12252

 – 464 – 62734/2CDV © IEC(E)

Table 207 specifies the elements for the contract table. Devices that are not backbone 12253
capable may elide the Source_Address field. 12254

Table 207 – Contract table structure 12255

Standard data type name: NLContractTbl

Standard data type code: 441

Element name Element identifier Element scalar type

Contract_ID* 1 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Source_Address* 2 Type: IPv6Address

Classification: Static

Accessibility: Read/write

Default value : 0

Destination_Address 3 Type: IPv6Address

Classification: Static

Accessibility: Read/write

Default value : 0

Contract_Priority 4 Type: Unsigned2

Classification: Static

Accessibility: Read/write

Default value : 00

Include_Contract_Flag 5 Type: Boolean1

Classification: Static

Accessibility: Read/write

Default value : FALSE

NOTE * indicates an index field.

 12256
Table 208 specifies the elements for the route table. 12257

Table 208 – Route table elements 12258

Standard data type name: NLRouteTbl

Standard data type code: 442

Element name Element identifier Element scalar type

Destination_Address* 1 Type: IPv6Address

Classification: Static

Accessibility: Read/write

Next_Hop 2 Type: IPv6Address

Classification: Static

Accessibility: Read/write

62734/2CDV © IEC(E) – 465 –

Standard data type name: NLRouteTbl

Standard data type code: 442

Element name Element identifier Element scalar type

NWK_HopLimit 3 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Default value : 64

Outgoing_Interface 4 Type: Unsigned1

Classification: Static

Accessibility: Read/write

Default value: 0

Named values:
0: DL;
1: Backbone

NOTE * indicates an index field.

 12259
Table 209 specifies the elements for the address translation table. 12260

Table 209 – Address translation table structure 12261

Standard data type name: NLATTbl

Standard data type code: 443

Element name Element identifier Element scalar type

Long_Address* 1 Type: IPv6Address

Classification: Static

Accessibility: Read/write

Short_Address 2 Type: DL16Address

Classification: Static

Accessibility: Read/write

NOTE * indicates an index field.

 12262
 NL management object methods 10.4.312263

Standard methods such as read and write can be used for scalar or structured MIBs in their 12264
entirety. These methods are used to manipulate tables. They allow access to a particular row 12265
of a structured MIB based on a unique index field. All devices shall be capable of 12266
manipulating the NLMO attributes immediately. Devices support delayed manipulation of 12267
these attributes using cutover methods but are not required to do so. 12268

It is assumed that the tables have a unique index field, which may either be a single element 12269
or the concatenation of multiple elements. The index field is assumed to be the 12270
(concatenation of the) first (few) element(s) of the table. For example, the contract table index 12271
field is the concatenation of the Contract_ID and Source_Address. 12272

These methods do not specify the interface between the NME and NLMO, as this interface is 12273
internal to a particular device. The management entity may keep local copies of the MIBs. 12274

Table 210 describes the methods for manipulation of structured MIBs. These methods are 12275
based on the Read_Row, Write_Row, and Delete_Row templates defined in Annex J. 12276

 – 466 – 62734/2CDV © IEC(E)

Table 210 – NLMO structured MIB manipulation methods 12277

Standard object type name: NLMO

Standard object type identifier: 123

Method name Method
ID

Method description

Set_row_RT 1 Method to set (either add or edit) the value of a single row of the route
table. The method uses the Write_Row method template defined in
Annex J with the following arguments:

Attribute_ID :5 (route table)

Index 1: 1 (Destination_address)

Get_row_RT 2 Method to get the value of a single row of the route table. The method
uses the Read_Row method template defined in Annex J with the
following arguments:

Attribute_ID :5 (route table)

Index 1: 1 (Destination_address)

Delete_row_RT 3 Method to delete a single row of the contract table. The method uses the
Delete_Row method template defined in Annex J with the following
arguments:

Attribute_ID :5 (route table)

Index 1: 1 (Destination_address)

Set_row_ContractTable 4 Method to set (either write or edit) the value of a single row of the
contract table. The method uses the Write_Row method template
defined in Annex J with the following arguments:

Attribute_ID :8 (contract table)

Index 1: 1 (ContractID)

Index 2: 2 (Source Address)

Get_row_ContractTable 5 Method to get the value of a single row of the contract table. The
method uses the Read_Row method template defined in Annex J with
the following arguments:

Attribute_ID :8 (contract table)

Index 1: 1 (ContractID)

Index 2: 2 (Source Address)

Delete_row_ContractTable 6 Method to delete the value of a single row of the contract table. The
method uses the Delete_Row method template defined in Annex J with
the following arguments:

Attribute_ID :8 (contract table)

Index 1: 1 (ContractID)

Index 2: 2 (Source Address)

Set_row_ATT 7 Method to set (either add or edit) the value of a single row of the
Address Translation table. The method uses the Write_Row method
template defined in Annex J with the following arguments:

Attribute_ID :9 (AT table)

Index 1: 1 (Long Address)

Get_row_ATT 8 Method to get the value of a single row of the Address Translation table.
The method uses the Read_Row method template defined in Annex J
with the following arguments:

Attribute_ID :9 (AT table)

Index 1: 1 (Long Address)

Delete_row_ATT 9 Method to delete a single row of the Address Translation table. The
method uses the Delete_Row method template defined in Annex J with
the following arguments:

Attribute_ID :9 (AT table)

Index 1: 1 (Long Address)

62734/2CDV © IEC(E) – 467 –

 12278
Table 211 describes the alert to indicate a dropped PDU/PDU error. 12279

Table 211 – Alert to indicate dropped PDU/PDU error 12280

Standard object type name(s): NLMO

Standard object type identifier: 123

Description of the alert: Alert to indicate dropped PDU /PDU error

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type

(Enumerated:
based on alert

category)

Alert priority

(Enumerated:
high, med,

low, journal
only)

Value data
type

Description of value
included with alert

0 = Event 1 = Comm.
diagnostic

0 =
NL_Dropped_PDU

7 =Medium Type:
OctetString

The value is an octet
string consisting of at
least two octets. The
first octet is an
Unsigned8 that
specifies the size of
the value field included
with the alert in octets.

The second octet is an
Unsigned8 that
conveys the diagnostic
class.

Named values:
0: reserved;
1: Destination
unreachable;
2: Fragmentation error;
3: Reassembly
timeout;
4: Hop limit reached;
5: Header errors;
6: No route, next hop
unreachable;
7: Out of memory;
8: NPDU size too
large;
9..255: reserved.

The remaining octets
include the NPDU
header for the dropped
PDU.

 12281
 NPDU formats 10.512282

 General 10.5.112283

Each NPDU shall consist of two basic components: 12284

• A network header possibly comprising addressing, class of service (CoS), and 12285
fragmentation fields. 12286

• A network payload of variable size containing the data that needs to be transmitted. 12287

This standard shall allow three different NPDU header formats: 12288

– the basic header; 12289
– the contract-enabled header; and 12290
– the full header. 12291

 – 468 – 62734/2CDV © IEC(E)

Devices compliant with this standard shall use dispatch prefixes (the least significant 3 bits of 12292
the first octet of the NPDU) to distinguish between these header formats (see Figure 106). 12293
The prefix 000 shall indicate that the NPDU header format is the basic header. The basic 12294
header prefix conforms to the NALP dispatch of 6LoWPAN. 12295

The prefix 011 shall indicate the contract-enabled header. The contract-enabled header 12296
conforms to the LOWPAN_IPHC dispatch of 6LoWPAN. 12297

The prefix 010 shall indicate the full header format. Resource constrained devices that 12298
operate in the wireless D-subnet and are backbone capable may construct the full header but 12299
are not required to do so. If a packet that is constructed using the full header is received by a 12300
device that is not backbone capable, the device may discard the NPDU and send a dropped 12301
PDU/PDU error alert with value 5 indicating a header error. 12302

Finally, a prefix of 110 or 111 shall indicate that the PDU is a fragment of a larger NPDU that 12303
needs to be reassembled. 12304

This standard primarily uses 16-bit addresses for very first (originator) and final destination in 12305
the DPDUs transmitted over the IEEE 802.15.4:2011 wireless network. Therefore, the network 12306
header is recommended to be either the basic or contract-enabled header format for the 12307
NPDUs transmitted over the IEEE 802.15.4:2011 wireless links. It is not recommended, 12308
although not prohibited, to use the full header format for transmission of NPDUs over the field 12309
medium. 12310

12311
 12312

Figure 106 – Distinguishing between NPDU header formats 12313

The dispatch octet bit patterns are shown in Table 212. 12314

62734/2CDV © IEC(E) – 469 –

Table 212 – Common header patterns 12315

Dispatch pattern Header type

000xxxxx NALP (Not A 6LoWPAN NPDU) – Basic header

010xxxxx IPv6 (uncompressed IPv6 header) – Full header

011xxxxx LoWPAN_IPHC (compressed IPv6 header) – Contract-enabled header

11xxxxxx LoWPAN fragment

 12316
The NL headers shall follow the formats defined herein. 12317

 Basic header format for NL 10.5.212318

10.5.2.1 Intended usage 12319

The DL of this standard employs a link level mesh. In the most common case, a PDU will 12320
traverse a single D-subnet, so the basic header is optimized to minimize the NPDU overhead. 12321
The route that needs to be taken by the PDU is known to the device of ingress into the 12322
D-subnet; this device of ingress makes all the necessary DL routing decisions. The ContractID 12323
is not transmitted in the basic network header. 12324

The basic header for the NL shall be used only if the user datagram protocol (UDP) header is 12325
fully compressed (i.e., the source and destination port numbers are compressed to four (4) 12326
bits each and the UDP checksum is elided). The NL can determine whether the UDP header 12327
is fully compressed by looking at the LOWPAN_NHC octet, which is always the first octet of 12328
the NSDU passed to the NL by the TL. Since the basic header is used only in case of fully 12329
compressed UDP header (i.e., fixed and known value of UDP LOWPAN_NHC) the UDP 12330
LOWPAN_NHC octet shall be elided by the NL of origin and restored by the destination NL. 12331

10.5.2.2 Format 12332

Table 213 describes the basic network header format. 12333

Table 213 – Basic NL header format 12334

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Dispatch

(variable) Network payload

 12335
The basic NL header shall consist of a single Dispatch field as follows: 12336

Dispatch: The dispatch field indicates the NL header format. For the basic header, the 12337
dispatch field shall have the value 0x 0000 0001. 12338

10.5.2.3 Relation to 6LoWPAN 12339

The 6LoWPAN format allows all fields of the full IPv6 header to be elided. The dispatch and 12340
encoding octets to achieve this are 0x0111 1110 0111 0111, which indicate (when parsed as 12341
011.11.1.10.0.1.11.0.1.11): 12342

• Dispatch = 011 12343

• TF = 11 (both traffic class and flow label elided) 12344

• NH = 1 (next header field elided) 12345

• HLIM = 10 (HopLimit = 64) 12346

 – 470 – 62734/2CDV © IEC(E)

• CID = 0 (no context identifier extension) 12347

• SAC = 1 (stateful source address compression; the ATT provides the context) 12348

• SAM = 11 (source address fully elided) 12349

• M = 0 (no multicast) 12350

• DAC = 1 (stateful destination address compression; the ATT provides the context) 12351

• DAM = 11 (destination address fully elided) 12352

The 6LoWPAN format also allows the UDP header to be compressed so that the source and 12353
destination port numbers are four (4) bits each and the checksum is elided. In this case, the 12354
UDP LOWPAN_NHC field has the value 0x 1111 0111 , which indicates (when parsed as 12355
11110.1.11): 12356

– protocol = 11 110 (UDP) 12357
– checksum compression = 1 (checksum elided) 12358
– port compression = 11 (source and destination ports are compressed to four (4) bits each 12359

and their implied prefix is 0xF0B) 12360

The basic header is essentially a single-octet abbreviation for the three octets (two octets of 12361
fully compressed IP header and one octet of fully compressed UDP header) noted above. 12362
Since it is an abbreviation, it is fully compatible with the 6LoWPAN format. A device receiving 12363
a basic header NPDU can expand the basic header dispatch octet to the three octets noted 12364
above and obtain a 6LoWPAN-compliant PDU. 12365

 Contract-enabled network header format 10.5.312366

10.5.3.1 Intended usage 12367

Like the basic header, the contract-enabled network header is intended for use within 12368
D-subnets. The very first (originator) device of an NPDU may use the contract-enabled header 12369
instead of the basic header if it is desirable for devices other than the very first (originator) 12370
device to be aware of the NPDU stream to which the NPDU belongs. For example, an 12371
intermediate router on the backbone may need to select: 12372

• appropriate backbone resources upon egress from the originating D-subnet; or 12373

• appropriate DL resources (graph ID, priority, etc.) upon ingress into a destination 12374
D-subnet. 12375

The contract includes a flag to indicate to the originating NL whether the network header 12376
requires inclusion of the ContractID. 12377

The contract-enabled header shall also be used if the UDP LOWPAN_NHC does not indicate 12378
full compression of the UDP header. Join process messages between the new device and the 12379
advertising router will always fall under this category since they do not elide the UDP 12380
checksum. 12381

10.5.3.2 Format 12382

Table 214 describes the contract-enabled header format. 12383

62734/2CDV © IEC(E) – 471 –

Table 214 – Contract-enabled NL header format 12384

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
LOWPAN_IPHC dispatch LOWPAN_IPHC encoding (bits 8..12)

LOWPAN_IPHC encoding (bits 0..7)

0 or 3

reserved FlowLabel (bits16..19)

Flow Label (bits 8..15)

Flow Label (bits 0..7)

0..1 HopLimit

(variable) Network payload

 12385
Fields include: 12386

• LOWPAN_IPHC dispatch: This field shall indicate that the header format is contract-12387
enabled and that LOWPAN_IPHC header compression encoding bits follow. The 12388
LOWPAN_IPHC dispatch field shall be 011. 12389

• LOWPAN_IPHC encoding: This field is 13 bits long; its value shall be encoded as 12390
0x0 11HH 0111 0111 when octets 3..5 are present to carry the contract ID, or as 12391
0x1 11HH 0111 0111 when octets 3..5 are elided. In either case, HH shall have the value 12392
00 if HopLimit is carried inline, 01 if the hop limit is 1, 10 if the hop limit is 64 and 11 if the 12393
hop limit is 255. 12394

• FlowLabel: The lower order 16 bits of the FlowLabel shall be set to ContractID. The higher 12395
order 4 bits shall be all zeros. This field shall only be present if octets 3 through 5 are 12396
present, as indicated by LOWPAN_IPHC encoding. 12397

• HopLimit: This field shall indicate the number of layer-3 hops permitted before the NPDU 12398
is discarded. The HopLimit field shall be set to a value indicated by the device’s routing 12399
table (RT; see 10.2.6.2). The default value for HopLimit field shall be 64. Devices that only 12400
operate within the D-subnet and are not backbone capable shall set the HopLimit to 1. 12401
From the perspective of the NL, any device reachable through the DL mesh is a single 12402
network hop away. 12403

For join process messages, LOWPAN_IPHC encoding shall have the value 12404
0x1 1101 0111 0111 to indicate that octets 3 through 5 are elided (no contract ID) and that the 12405
hop limit is 1 (HopLimit field elided). 12406

10.5.3.3 Relation to 6LoWPAN 12407

Table 215 shows the 6LoWPAN_IPHC encoding format. 12408

Table 215 – 6LoWPAN_IPHC encoding format 12409

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 0 1 1 TF NH HLIM

1 CID SAC SAM M DAC DAM

… Non-compressed fields

 12410
The encoding for the contract-enabled NL header is derived by using the following values for 12411
the 6LoWPAN_IPHC encoding fields: 12412

• TF = 01 or 11. In a 6LoWPAN format, TF = 01 implies a 3-octet inline field is carried in the 12413
non-compressed fields. This inline field consists of 2 bits of ECN, followed by a 2-bit pad, 12414

 – 472 – 62734/2CDV © IEC(E)

followed by 20 bits of flow label. Since in this standard the ECN is always enabled and the 12415
congestion indication is carried by the lower layer, both the ECN and the 2-bit pad shall be 12416
all zeros. In a 6LoWPAN format, TF = 11 implies this 3-octet field is elided. 12417

• NextHeaderNH = 1 to indicate that the next header can be inferred from the prefix of the 12418
transport header. In this standard, the next header is always UDP. 12419

• HLIM = HH. These bits are used by this standard to indicate the hop limit compression 12420
scheme as intended in 6LoWPAN. 12421

• CID = 0 to indicate no additional 8-bit context identifier extension is used. 12422

• SAC = 1 to indicate stateful compression for the source address. 12423

• SAM = 11 to indicate that all 128 bits of the source address are elided (since, in this 12424
standard, the 16-bit D-alias is carried by the lower layer and is indexed in the ATT, which 12425
provides the translation context). 12426

• M = 0 to indicate the destination address is not multicast. 12427

• DAC = 1 to indicate stateful compression for the destination address. 12428

• DAM = 11 to indicate that all 128 bits of the source address are elided (since, in this 12429
standard, the 16-bit D-alias is carried by the lower layer and is indexed in the ATT, which 12430
provides the translation context). 12431

 Full header (IPv6) format 10.5.412432

10.5.4.1 Intended usage 12433

The full header format is used primarily over the backbone network. A field device may also 12434
use the full header format instead of the basic or contract-enabled format but it is not 12435
recommended. 12436

When the NPDU reaches an intermediate backbone router over the DL, the backbone router 12437
shall fully expand the header to include all fields as defined in the IPv6 header. It is necessary 12438
to expand the NL addresses of the very first (originator) device and the final destination 12439
device to 128 bits to disambiguate their DL16Addresses when routing outside the D-subnet. 12440

10.5.4.2 Format 12441

Table 216 describes the IPv6 header format. 12442

Table 216 – IPv6 NL header format 12443

Number
of octets

bits

7 6 5 4 3 2 1 0

1 Version TrafficClass (bits 7..4)

3

TrafficClass (bits 3..0) FlowLabel (bits 19..16)

FlowLabel (bits 15..8)

FlowLabel (bits 7..0)

2
PayloadSize (bits 15..8)

PayloadSize (bits 7..0)

1 NextHeader

1 HopLimit

16 Source address

16 Destination address

(variable) Network payload

 12444
Fields include: 12445

62734/2CDV © IEC(E) – 473 –

• Version: 4-bit IP version number shall be set to 6. 12446

• TrafficClass: The higher order four bits of this 8-bit field shall be used to carry the 4-bit 12447
priority of the NPDU over the backbone. The fifth bit shall be 0 and the sixth bit shall be 12448
used to carry the Discard Eligible (DE) bit of the NPDU over the backbone. The two 12449
lowest-order bits shall carry the ECN. 12450

• FlowLabel: The value of this field shall be as defined in the contract-enabled header 12451
format (see 10.5.3.2). This field shall be set to all zeros if the Contract ID is not carried as 12452
part of the flow. 12453

• PayloadSize: This 16-bit unsigned integer shall contain the size of the IPv6 payload, i.e., 12454
the rest of the NPDU following this header, in octets. 12455

• NextHeader: This 8-bit field shall bet set to 0x 0001 0001 (17 decimal) identifying the 12456
following header as UDP. 12457

• HopLimit: The value of this 8-bit field shall be set to the number of NL (layer 3) hops 12458
needed to get to the destination. If the NPDU is received over a D-subnet with the basic 12459
header, this field shall be updated upon egress from the D-subnet by a backbone router 12460
according to the routing table of the router. This field is decremented by 1 by the NL of 12461
each device if the NL forwards the NPDU. The NPDU shall be discarded if HopLimit is 12462
decremented to zero. 12463

• Source address: This field shall contain the IPv6Address of the originator of the NPDU. 12464

• Destination address: This field shall contain the IPv6Address of the final destination 12465
(intended recipient) of the NPDU. 12466

10.5.4.3 Relation to 6LoWPAN 12467

It is not recommended to use the full NL header format in an NPDU being transmitted over the 12468
D-subnet of this standard. However, the standard does not preclude the use of the full header 12469
over D-subnets. If used over the D-subnet, the NPDU shall contain the IPv6 dispatch as 12470
shown in Table 217. 12471

Table 217 – Full NL header in the DL 12472

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 IPv6 dispatch

4

Version TrafficClass (bits 7..4)

TrafficClass (bits 3..0) FlowLabel (bits 19..16)

FlowLabel (bits 15..8)

FlowLabel (bits 7..0)

2 PayloadSize (bits 15..8)

 PayloadSize (bits 7..0)

1 NextHeader

1 HopLimit

16 Source address

16 Destination address

(variable) Network payload

 12473

 – 474 – 62734/2CDV © IEC(E)

 Fragmentation header format 10.5.512474

10.5.5.1 Intended usage 12475

If an NPDU with size greater than the dlmo.maxDSDUSize needs to be transmitted over the 12476
DL, the NPDU shall be fragmented. When an NPDU needs to be fragmented, the 12477
fragmentation header shall be inserted. 12478

10.5.5.2 Format 12479

The fragmentation header contains a 5-bit fragmentation type, followed by a 27-bit header for 12480
the first fragment and a 35-bit header for subsequent fragments. Fields of the basic, contract-12481
enabled, or full headers from the dispatch octet onwards shall be placed in the first fragment 12482
only. Table 218 shows the NL header format for fragmented NPDUs. 12483

Table 218 – NL header format for fragmented NPDUs 12484

Number
of octets

Bits

7 6 5 4 3 2 1 0

4..5

Fragmentation type Fragmentation header

Other fields of fragmentation header

(see Table 219 and Table 220)

(variable) Basic / contract-enabled / full header (for first fragment only)

(variable) Network payload

 12485
Fields include: 12486

• Fragmentation type: This 5-bit field shall be set to 0x1 1000 for the first fragment and to 12487
0x1 1100 for the second and subsequent fragments. 12488

• Fragmentation header: 12489
– First fragment: The first fragment shall contain the first fragment header as defined in 12490

Table 219 and the following text. 12491

Table 219 – Format of first fragment header 12492

Number
of octets

Bits

7 6 5 4 3 2 1 0

2

Fragmentation type
Datagram_size (bits 10..8)

1 1 0 0 0

Datagram_size (bits 7..0)

2 Datagram_tag

 12493
– Subsequent fragments: The second and subsequent fragments (up to and including the 12494

last) shall contain a fragmentation header as defined in Table 220 and the following 12495
text. 12496

62734/2CDV © IEC(E) – 475 –

Table 220 – Format of second and subsequent fragment headers 12497

Number
of octets

Bits

7 6 5 4 3 2 1 0

2

Fragmentation type
Datagram_size (bits 10..8)

1 1 1 0 0

Datagram_size (bits 7..0)

2 Datagram_tag

1 Datagram_offset

 12498
All fragment headers contain: 12499
– Datagram_size: This 11-bit field encodes the size of the entire NSDU before 12500

fragmentation plus the size of the basic, contract-enabled or full header. The value of 12501
Datagram_size shall be the same for all fragments of the NSDU. 12502

– Datagram_tag: This provides the identification for the reassembling NLE. The 12503
originating NLE shall increment Datagram_tag for successive, fragmented NPDUs. The 12504
incremented value of Datagram_tag is left-truncated to 16 bits (i.e., modulo 216) for 12505
inclusion in the NPDU. To minimize its predictability to an attacker, the initial value for 12506
Datagram_tag shall be selected from a uniform-random distribution. The value of 12507
Datagram_tag shall be the same for all fragments of an NSDU. 12508

Second and subsequent fragment headers also contain: 12509
– Datagram_offset: This field shall be present only in the second and subsequent 12510

fragments and shall specify the offset, in units of 8 octets, of the fragment from the 12511
beginning of the NPDU payload. (The first fragment of the NSDU has an offset of zero; 12512
the implicit value of Datagram_offset in the first fragment is zero.) This field is 8 bits 12513
long. 12514

10.5.5.3 Relation to 6LoWPAN 12515

The fragmentation header formats in this standard are based entirely on the IETF RFC 4944 12516
format, with no changes. As in IETF RFC 4944, the Datagram_size field is carried in all 12517
fragments, and the Datagram_offset is expressed in 8-octet units. Fragmentation and 12518
reassembly can occur at intermediate devices and are not necessarily end-to-end. 12519

 – 476 – 62734/2CDV © IEC(E)

11 Transport layer 12520

 General 11.112521

The reference model in this standard is composed of five protocol layers. In this model, 12522
transport is the fourth layer, immediately subordinate to the AL. A TLE responds to service 12523
requests from a superior ALE at a TSAP and issues service requests to an inferior NLE at an 12524
NSAP. 12525

The TL is responsible for end-to-end communication and operates only at the communication 12526
endpoints (as opposed to the routing devices). 12527

The TL provides connectionless services, usually with cryptographic-based security: 12528

• The connectionless service extends UDP over IPv6, as defined in IETF RFC 768 and 12529
IETF RFC 2460, by providing an alternative, more secure TPDU integrity check with 12530
cryptographic authentication and, when so configured, privacy. 12531

• Security is handled in a manner similar to that of the DL, but from end-to-end rather than 12532
hop-by-hop. 12533

• The connectionless service also extends 6LoWPAN as defined by IETF RFC 6282. When 12534
security is activated, it is possible to compress the UDP header to one octet by eliding the 12535
UDP checksum and relying on the larger, appended transport message integrity code 12536
(TMIC) to provide end-to-end integrity. 12537

 TLE reference model 11.212538

The TLE reference model is shown in Figure 107. 12539

 12540

Figure 107 – TLE reference model 12541

The TLE conceptually includes the transport management entity (TME), the transport data 12542
entity (TDE) and the transport security component (TSC). 12543

The TDE has a dedicated TDSAP for the DMAP, TDE-0; a TDSAP that is reserved for SMAP, 12544
TDE-1; and a TDSAP for each UAP, TDE-2 to TDE-n. 12545

62734/2CDV © IEC(E) – 477 –

The TME configures and monitors the actions of the TLE. The transport management 12546
information base (TMIB) (see 11.6.2.5.2) maintains abstract information for the TME, that is 12547
accessed at the TMSAP as part of the TLMO. The TSC provides the TLE’s security functions, 12548
based on tables of security information that are maintained and monitored via the TMSAP. 12549
The TDE uses the TSC to perform security operations on TPDUs. 12550

 Transport security entity 11.312551

 General 11.3.112552

The TSC is conceptually a compartmented service within the TLE. TL security can protect the 12553
integrity of the conveyed transport service data unit (TSDU), the transport header and the 12554
transport endpoint IPv6Addresses. When active, it also provides protection against excessive 12555
TPDU delay and TPDU replay, and can encrypt the TSDU for confidentiality. 12556

 Securing the TL 11.3.212557

The TSC and DSC share functionality. The TSC is responsible for: 12558

• determining which security level shall be applied to a given secure session based on 12559
policies; 12560

• on receipt of a TPDU (as part or all of an NSDU), 12561
– discarding non-conforming TPDUs; 12562
– discarding TPDUs that fail, depending on T-association configuration, either 12563

• the traditional UDP integrity check that protects against non-malicious errors, or 12564

• cryptographic authentication checks that protect against both accidental and 12565
deliberate TPDU modification, excessive TPDU delay and TPDU replay; 12566

– decrypting a protected TSDU conveyed by the TPDU; 12567

• when preparing a TPDU for transmission via a NLE, 12568
– encrypting TSDUs that are to have confidentiality protection during TL conveyance; 12569

and 12570
– depending on the session configuration, either 12571

• including the traditional, computed UDP integrity checksum to protect against non-12572
malicious errors, or 12573

• including cryptographic authentication material to protect against both accidental 12574
and deliberate TPDU modification, excessive TPDU delay and TPDU replay. 12575

The functionality of the TSC is defined in 7.3.3. 12576

Similar to DL security, TL security uses a cryptographic block cipher in a generic 12577
authenticated encryption block cipher mode called the Counter with CBC-MAC (CCM*), as 12578
defined by IEEE 802.15.4:2011, Annex B. The default block cipher is AES-128, but other 12579
block ciphers can be used where required by national regulation. 12580

CCM* enables authentication of a message while encrypting only a part of that message, 12581
leaving the rest of the message (usually a header) in the clear. When this feature is enabled 12582
for a particular session, the UDP checksum is not used and is elided in the compressed form 12583
of the TPDU, as specified in 11.4.3.4. It is always present in the expanded form of the TPDU, 12584
to provide compliance with IETF RFC 2460 (UDP over IPv6). 12585

 – 478 – 62734/2CDV © IEC(E)

 Transport data entity 11.412586

 General 11.4.112587

The TDE provides connectionless services based on the User Datagram Protocol (UDP, 12588
IETF RFC 768) over IPv6 (IETF RFC 2460), with a compression as defined in IETF RFC 12589
6282. 12590

The main steps in TPDU construction are, in order: 12591

a) A TSDU is received from a local ALE through a TDSAP. 12592

NOTE This TSDU can convey a single APDU or multiple concatenated APDUs. 12593
b) The TSDU is protected and timestamped as described in 7.3.3.2.1. The resulting UDP 12594

payload comprises a TL security header, the TSDU, and, when cryptographic security is 12595
configured, a TMIC. The TSDU is encrypted for confidentiality if so indicated by the TL 12596
security header. The presence of the TMIC, and its size, are conveyed to receiving 12597
device(s) in the TL security header. 12598

c) A UDP header is prepended to the UDP payload. The UDP header may be compressed. 12599
Compression involves eliding the UDP checksum from the UDP header when the UDP 12600
payload contains an alternative integrity check. An integrity check within the UDP payload 12601
may be a TMIC as indicated in the TL security header and/or an integrity check embedded 12602
in a tunneled payload. 12603

 UDP over IPv6 11.4.212604

UDP (IETF RFC 768) provides a connectionless mode of computer communication in the 12605
environment of an interconnected set of computer networks. 12606

UDP is essentially transparent to application operation, leaving both control and responsibility 12607
for proper network operation to the AL. Proven, standard-based approaches exist for this 12608
purpose. Relevant issues are further documented in 11.4.4. 12609

IETF RFC 768 assumes that IPv4 is used as the underlying protocol and defines the 12610
computation of a UDP checksum, used for error detection, that covers a UDP pseudo-header 12611
of information from the IPv4 network header, the UDP header, and the UDP payload. If that 12612
computation yields a result of zero, it is changed to 0xFFFF for placement in the UDP header 12613
and the value of zero is reserved to indicate that there is no checksum computation. 12614

IETF RFC 2460 specifies the changes to IETF RFC 768 to adapt UDP for IPv6. The changes 12615
to UDP are minor and relate to the computation of the UDP checksum, which becomes 12616
mandatory and includes a modified UDP pseudo-header adapted for IPv6, as shown in Figure 12617
108. Per IETF RFC 2460, IPv6 receivers discard UDP packets containing a checksum of 12618
0x0000 and log this event as an error. 12619

 12620

Figure 108 – UDP pseudo-header for IPv6 12621

In the pseudo-header, the value in the field named ‘Next header’ is set to 17 to indicate UDP 12622
and the value in the field named ‘Upper-layer packet size’ is the same as the Length field in 12623
the UDP header and accounts for the size of the whole TPDU, including the UDP header. 12624

A different pseudo-header, the TSS pseudo-header is used in TL security processing, as 12625
described in 7.3.3.2.1. 12626

62734/2CDV © IEC(E) – 479 –

NOTE See IETF RFC 768, IETF RFC 2460, 4.5.2.1 and 7.3.3.2.1. to understand the purposes of these pseudo-12627
headers. 12628

 UDP header transmission and compression 11.4.312629

11.4.3.1 General 12630

The TL supports uncompressed UDP for both transmission and reception of a TPDU. A device 12631
that implements the TL of this standard shall support uncompressed UDP, but should 12632
compress the UDP header for transmission over the wireless network. 12633

Table 221 describes the UDP header encoding. 12634

Table 221 – UDP header encoding 12635

Number
of octets

Bits (presented in IEC convention, which is different from IETF convention)

7 6 5 4 3 2 1..0

2 Source port: that maps one to one with the source device TDAP

2 Destination port: that maps one to one with the destination device TDAP

2 Size: the size in octets of this user datagram, including this header and the APDU

2

Checksum: the 16-bit one's complement of the one's-complement sum of

 a) the UDP pseudo-header of Figure 108, derived from the IP header;

 b) the UDP header; and

 c) the possibly-encrypted TSDU, padded with zero octets at the end (if necessary) to make a
multiple of two octets.

The checksum field of the UDP TPDU is first set to zero during the checksum computation.

 12636
The TL also complies with 6LoWPAN, which specifies a method for compressing UDP using a 12637
Next Header Compression (LoWPAN_NHC) format and mandates the use of UDP 12638
compression over the local D-subnet. A device that implements the TL of this standard shall 12639
thus support all the combinations offered by the LOWPAN_NHC for compression and 12640
expansion of the UDP header. 12641

The maximum size of a TSDU depends on a variety of factors, such as the buffering capacity 12642
at each session endpoint TLE, the selected TL security level, and network characteristics. The 12643
system manager configures TSDU maximum size on a per-contract basis to account for these 12644
and any other relevant considerations, through the value of Assigned_Max_TSDU_Size, as 12645
described in Table 30. 12646

11.4.3.2 Compressing and restoring UDP port numbers 12647

Compression for UDP port numbers is described in IETF RFC 6282:2011, 4.3. Those port 12648
numbers that are optimized by the compression process should be assigned to the ports 12649
(AEs) with highest frequency of use. Optimum compression is obtained when both the source 12650
and destination port numbers start at a base number P and are expressed as P+short_port, 12651
where: 12652

• P is the base port, 61 61610, that is, 0xF0B0; 12653

• short_port is a positive integer that is ≤ 15 (i.e., 0x0F). 12654

In such a case, the pair of source and destination ports is compressed to a single octet that 12655
specifies the source and destination values as short_ports, which reduces the size of the 12656
TPDU field required to convey the UDP port numbers from four octets to one octet. 12657

When it is not possible to have both ports within the 0xF0B0..0xF0BF range, it is still possible 12658
to reduce the TPDU size by one octet if either the source or the destination port is in the 12659
0xF000..0xF0FF range; in that case the corresponding high-order octet of 0xF0 is elided. It is 12660

 – 480 – 62734/2CDV © IEC(E)

thus recommended that server applications listen to a port in the 0xF000..0xF0FF range. For 12661
example, a typical field device has a DMAP at 0xF0B0 (encoded as short_port 0) and may 12662
have its single UAP at 0xF0B2 (encoded as short_port 2), since 0xF0B1 (encoded as 12663
short_port 1) is reserved for the local SMAP. 12664

11.4.3.3 Eliding and restoring the UDP Length field 12665

If the UDP header is not compressed, then the NSDU size is equal to the TPDU size that is 12666
placed in the UDP header. 12667

If the UDP header is compressed, the UDP Size field is always elided in transmission, and is 12668
inferred upon reception from the NSDU size passed by the receiving NLE. In that case, the 12669
TPDU size is equal to the NSDU size plus te computable difference between the sizes of a full 12670
UDP header and the actual UDP header as compressed. 12671

Even if none of the other fields in the UDP header are compressed or elided, compressing the 12672
UDP Size field reduces the TPDU size by one octet and enables the use of the basic header 12673
at the NL. 12674

For example, in the optimal case described in Table 223, the compressed UDP header 12675
requires 2 octets, thus saving 6 octets compared with the fully-expanded UDP header. The 12676
TDPU size for the expanded UDP header is thus NSDU_Size + 6. 12677

11.4.3.4 Eliding and restoring the UDP checksum 12678

The TL complies with the 6LoWPAN rules and operations defined in IETF RFC 6282:2011, 12679
4.3.2, as follows: 12680

• The authorization to elide the UDP checksum might come from the ALE or the TSC. The 12681
TSC hints at the presence or absence of this checksum by specifying whether the TMIC is 12682
present or not. 12683

• An ALE may elide the UDP checksum in the following cases: 12684
– Tunneling: The source ALE is tunneling a PDU (of unspecified type) that possesses its 12685

own integrity mechanism that provides at least as much protection as the 16-bit UDP 12686
checksum. 12687

– Application MIC: The source ALE applies an end-to-end message integrity check of at 12688
least 16 bits (e.g., as part of a key exchange). 12689

• If the local NLE is a backbone router, then the router shall recompute the elided checksum 12690
based on the received packet as specified in IETF RFC 2460 and shall place the result of 12691
that computation in the reformed UDP header before transmission over an IPv6 backbone 12692
network. 12693

• If the NLE is the destination of the packet and is aware of the presence of the TMIC in the 12694
TPDU, then it may omit the UDP checksum operation completely (neither recompute nor 12695
check the checksum). 12696

• A backbone router that forwards an IPv6 packet into D-subnet uses the security control 12697
field in TPDU security header to determine whether a TMIC is present or not. When 12698
performing the UDP compression, the backbone router should elide the UDP checksum if 12699
the TMIC is present but it shall not elide the UDP checksum if the TMIC is not present. 12700
Conversely, the fact that the checksum is not compressed is not an indication that there is 12701
no TMIC in the TPDU. 12702

6LoWPAN permits UDP checksum compression only when the alternative protection within 12703
the TPDU provides integrity protection at least as great as the UDP checksum, including end-12704
to-end protection for all the fields that the UDP checksum would protect. To meet that 12705
requirement, this standard defines a TSC pseudo-header that is included in the TMIC 12706
computation, as described in 7.3.3.2.1. Compared to the standard UDP pseudo-header of 12707
IETF RFC 2460, the TSC pseudo-header includes the UDP ports but does not include the 12708

62734/2CDV © IEC(E) – 481 –

payload size, since that is implicitly protected by the TMIC. The structure of the TSC pseudo-12709
header is defined in Table 47. 12710

In the case of a TPDU being prepared for transmission, the source and destination 12711
IPv6Addresses are obtained from the contract information; the contract ID itself is passed by 12712
the ALE as a parameter associated with the TSDU. The Next header field of the pseudo-12713
header is set to 17 (UDP). The source port is obtained from the TL context associated with 12714
the TSAP, whereas the destination port is another parameter associated with the TSDU. The 12715
TSC pseudo-header has been modeled as if it were being constructed by the TDE and passed 12716
together with the TSDU to the TSC for security processing. 12717

The TSC uses the TSC pseudo-header in the TMIC computation by prepending it to the 12718
TSDU, but the TSC pseudo-header is not encrypted when encryption is to be performed on 12719
the TSDU. Once the cryptographic process is completed, the TSC shall remove the TSS 12720
pseudo-header from the processed TSDU, add its own headers and trailers, and return the 12721
protected UDP payload to the TDE. The TDE shall complete the TPDU by prepending, and 12722
usually compressing, the UDP header to form the NSDU that is passed to the NL. 12723

In the case of a received TPDU, the source and destination IPv6Addresses and the priority 12724
bits are passed by the NL as parameters associated with the NSDU, and the ports are 12725
obtained from the UDP header in the TPDU once the UDP header is expanded. The TDE shall 12726
fill the pseudo-header, remove the UDP header from the NSDU, and pass the resulting 12727
protected UDP payload together with the pseudo-header and the priority bits to the TSC for 12728
security processing. 12729

Since an NPDU might be received out of sequence, perhaps due to its priority settings (see 12730
Table 205), the TSC may use that priority information to partition its look-aside cache, 12731
potentially optimizing its ability, within limited memory resources, to validate TPDUs that 12732
incurred substantial transit delay. The priority information is conveyed with the NSDU in the 12733
N-DATA.indication received by the TLE from a local NLE; the TLE forwards that information 12734
and the TPDU to the TSC. 12735

The receiving TSC strips the TL security headers and trailers from the protected TSDU, 12736
prepends the TSC pseudo-header, UDP ports, and security headers (see Figure 41), and then 12737
performs the security verifications. If an integrity check is applied, the TLE can verify whether 12738
any of the critical parts of the NL and TL information was modified during end-to-end 12739
transport. 12740

If the UDP upper-layer checksum field is elided, it is up to the receiving device on the wireless 12741
D-subnet to recompute the UDP checksum as part of the process of reversing the 6LoWPAN 12742
compression, if necessary, before further forwarding of the conveying NPDU to a destination 12743
outside the wireless D-subnet. This compression reversal step is needed in particular by a 12744
middlebox, such as a BBR border router, that forwards the uncompressed NPDU onto a 12745
different network. 12746

NOTE It is useless for the addressed destination TLE to reconstitute the uncompressed TPDU. 12747

If the UDP checksum is not elided, then the UDP checksum shall be computed in transmission 12748
after the security operation is complete and the security fields are preset for the computation. 12749
The UDP payload that is used for the UDP checksum shall include all data from the UDP 12750
header to the end of the TPDU, including the security fields, application data, and MIC fields, 12751
whether the application data is encrypted or not. Upon reception, it shall be verified by the 12752
TDE prior to TSC operation unless it is known by the TDE that the TSC verifies the MIC, in 12753
which case the checksum may be ignored. 12754

 TSAPs and UDP ports 11.4.412755

A device autoconfigures one link-local IPv6Address based upon its EUI64Address. After the 12756
join process is complete, a device also has at least one global IPv6Address. This standard 12757

 – 482 – 62734/2CDV © IEC(E)

permits, but does not require, a device to support more than one global IPv6Address. A UDP 12758
port shall be associated with no more than one UAP for a given IPv6Address. 12759

The port is used as the local port for all transmissions from/to that UAP using that 12760
IPv6Address. Further multiplexing between UAP objects is the responsibility of the ALE, done 12761
within TSDUs, and thus is transparent to the TLE. As a result, only a limited number of ports 12762
are actually used in the system, and there is no dynamic port allocation after the 12763
(re-)initialization phase of the applications. 12764

Each UAP shall be responsible for knowing its UDP port number and registering it with the 12765
TLE. At that time, a TLSAP shall be mapped on a one-to-one basis with the UAP and the local 12766
port for the given IPv6Address. An application process address shall consist of a device 12767
address concatenated with its TLSAP identifier. 12768

 Good network citizenship 11.4.512769

(N)-SDUs are exchanged with the upper and lower layers through (N)-DATA primitives. An 12770
implementation can report transient congestion in a lower layer via a specific completion code 12771
in an (N)-DATA.confirm primitive that is conveyed all the way up the protocol suite. Upon 12772
receiving a completion code indicating transient congestion, an ALE should either delay 12773
retransmission of the (N)-SDU by an exponential backoff amount or simply drop the (N)-SDU. 12774

Since the TL is based on UDP, it is desirable that the UAPs support TCP-Friendly Flow 12775
Control or TCP-Friendly Rate Control (TFRC, IETF RFC 5348), depending on the nature of 12776
the flow, in order to protect future uses of the network and to share the backbone network 12777
fairly. 12778

This is usually achieved by implementing a blocking protocol at the AL that enforces a round-12779
trip time (RTT) between TPDUs or uses RTT to compute a loss recovery timer. In the case of 12780
periodic samples, this may be achieved either by reserving bandwidth or by keeping the 12781
sampling period above the initial RTT value for TCP of 3 s (see IETF RFC 6298). Higher 12782
sample rates may be used in some applications. 12783

 TPDU encoding 11.512784

 General 11.5.112785

A TPDU exchanged between the two TLEs of a communication shall be composed of a UDP 12786
header in its uncompressed form, a security information header, the TSDU, and a TMIC, as 12787
shown in Figure 109. 12788

MICUncompressed UDP header Security header Application payload

 12789

Figure 109 – TPDU structure 12790

The NSDU data passed by the sending TLE to a local NLE via an NSAP includes any UDP 12791
header compression that has been applied to the TPDU. If compression was applied, the 12792
6LoWPAN_NHC-for-UDP octet is the first octet of the NSDU. 12793

The pair of IPv6Addresses, the transport type (UDP=17) and the size of the NSDU are not 12794
present in the NSDU, so are passed as associated parameters. Whether 6LoWPAN_NHC 12795
compression took place is also passed as a parameter. 12796

62734/2CDV © IEC(E) – 483 –

 Header compression – User datagram protocol encoding 11.5.212797

When the UDP header is not compressed, the NSDU is identical to the TPDU and the UDP 12798
header shall be present in full without a prefixed 6LoWPAN_NHC-for-UDP encoding octet. 12799

If any of the UDP header fields is compressed, a 6LoWPAN_NHC-for-UDP encoding octet 12800
shall be prepended that describes the compression. The NSDU shall be formed by replacing 12801
the UDP header at the beginning of the TPDU with the 6LoWPAN_NHC-for-UDP encoding 12802
octet followed by the compressed data. The 6LoWPAN_NHC-for-UDP encoding octet is 12803
structured as in Table 222. 12804

Table 222 – UDP 6LoWPAN_NHC-for-UDP encoding octet 12805

Number
of octets

Bits (presented in IEC convention, which is different from IETF convention)

7 6 5 4 3 2 1 0

1 1 1 1 1 0 C P

 12806
The C (checksum compression) and P (ports compression) fields are defined as follows: 12807

C field (1 bit): 12808

0: The TPDU’s 16-bit checksum is conveyed in the TPDU. 12809
1: The TPDU’s 16-bit checksum is elided from the TPDU. 12810

P field (2 bits): 12811

00: The TPDU conveys the source and destination ports as 16-bit values. 12812
01: The TPDU conveys the source port as a 16-bit value while only the low-order 8 bits of 12813

the destination port, which is in the range 0xF000..0xF0FF, is conveyed in the TPDU. 12814
10: The TPDU conveys the destination port as a 16-bit value while only the low-order 8 12815

bits of the source port, which is in the range 0xF000..0xF0FF, are conveyed in the 12816
TPDU. 12817

11: The TPDU conveys only the low-order 4 bits of the source and destination ports, which 12818
are in the range 0xF0B0..0xF0BF. 12819

Compressed fields appear in the same order as they do in the UDP header format specified in 12820
IETF RFC 768. 12821

When the highest degree of compression is achieved, only the compressed short_port 12822
numbers are carried after the 6LoWPAN_NHC-for-UDP encoding octet as shown in Table 223. 12823

Table 223 – Optimal UDP header encoding 12824

Number
of octets

Bits (presented in IEC convention, which is different from IETF convention)

7 6 5 4 3 2 1..0

1 1 1 1 1 0
1

(checksum
is elided)

11

(source and destination ports
are compressed)

2 source short_port destination short_port

 12825
The expanded values for the compressed source port and destination ports shall be 12826
calculated using the formula: 12827

UDP_port_number = P + short_port 12828

 – 484 – 62734/2CDV © IEC(E)

where short_port is the 4-bit compressed port number and P is the value 0xF0B0 (61 61610). 12829
In other words, short_port conveys the low-order 4 bits of the UDP port number. 12830

At the time of the join process, the field device does not have the relevant cryptographic 12831
material to compute a TMIC. Because this situation requires that the TMIC be omitted, the 12832
device shall compute the UDP checksum as prescribed by IETF RFC 768 and IETF RFC 2460 12833
and shall use the link-local IPv6Addresses to compute and send the checksum and transmit. 12834
In this case, if the UDP ports can be compressed, the encoded UDP header is formatted as 12835
represented in Table 224. 12836

Table 224 – UDP header encoding with checksum and compressed port numbers 12837

Number
of octets

Bits

7 6 5 4 3 2 1..0

1 1 1 1 1 0
0

(checksum
is present)

11
(source and destination ports

are compressed)

2 source short_port destination short_port

3
UDP checksum

4

 12838
 TPDU security header 11.5.312839

For information on the TPDU security header, encoding, and decoding, see 7.3.3.6. 12840

 TL model 11.612841

 General 11.6.112842

A TLE provides two interfaces: 12843

• A TDE TDSAP for each UAP and one for the DMAP. 12844

• A TME TMSAP for the DMAP. 12845

These interfaces are illustrated in the protocol reference model of this standard, shown in 12846
Figure 16. 12847

All interfaces between the TLE and adjacent layer entities or management entites are internal 12848
interfaces within the device, and thus are unobservable. Therefore they are not subject to 12849
standardization. 12850

Upper layers use the TDSAP to exchange data communicated via the TLE. There is a 12851
separate TDSAP instance for each UAP, plus an instance for the DMAP. 12852

The TDSAP includes a multiplexer function that adapts the address namespace of the ALE to 12853
the native address namespace of the TLE. The DMAP uses the TMSAP to configure the TLE 12854
and monitor its operation. 12855

The TLE communicates with a local NLE using an NDSAP. 12856

 Data services 11.6.212857

11.6.2.1 General 12858

For illustration purposes, an example set of primitives is provided in this standard. The TL 12859
offers an unconnected service based on the UDP model. 12860

62734/2CDV © IEC(E) – 485 –

A TLE uses the interface supplied by the TDSAP to transmit and receive protocol data units 12861
with the ALE. 12862

The TDSAP transfers the TSDU, along with control and status information parameters. 12863

11.6.2.2 T-DATA.request 12864

11.6.2.2.1 General 12865

T-DATA.request instructs the TL to transmit a protocol data unit. 12866

11.6.2.2.2 Semantics of the service primitive 12867

The semantics of T-DATA.request are as follows: 12868

T-DATA.request (12869
 ContractId 12870
 TSDU_size 12871
 TSDU 12872
 Priority 12873
 DE 12874
 TDSAP 12875
 \Destination_Port) 12876
 12877
Table 225 specifies the elements for T-DATA.request. 12878

Table 225 – T-DATA.request elements 12879

Element name Element
identifier

Element scalar type

ContractId (identifies the contracted TL resources associated with
the protocol data unit)

1 Unsigned16

Named values:
0: no contract

TSDU_size (size in octets of the protocol data unit passed from
the ASL)

2 Unsigned16

TSDU (the TSDU to be transmitted) 3 OctetString

N-priority (identifies the priority within the NL of this TSDU) 4 Unsigned2

DE (identifies the Discard Eligibility of this TSDU) 5 Unsigned1

TDSAP (ID of the TDSAP that grants UDP service over
SourcePort)

6 Unsigned16

Destination_Port (UDP destination (remote) port for the TSDU) 7 Unsigned16

 12880
The TLE maintains a table indexed by TDSAP that contains (implicitly or explicitly) the local 12881
IPv6Address and (explicitly) the local port for transmission. That table is accessed to obtain 12882
the source IPv6Address and port for transmission over a given TDSAP. The destination 12883
IPv6Address is obtained from the Destination_Address field in the contract information, 12884
indexed by the contract ID. 12885

The TLE does not retain state information related to the remote port; thus, information that is 12886
passed by the UAP is placed in the TPDU without checking. 12887

The N-priority parameter communicates the N-priority that is to be used by the NL. The 12888
N-priority settings are not used in the TL, but they are passed on through the NL to the DL, 12889
where they are used to select the priority class in the DL header. 12890

 – 486 – 62734/2CDV © IEC(E)

11.6.2.2.3 Appropriate usage 12891

An ALE invokes the T-DATA.request primitive to pass a TSDU to a local TLE for transmission 12892
on the network. 12893

11.6.2.2.4 Effect on receipt 12894

On receipt of the T-DATA.request primitive, the TLE looks up the T-security level in the 12895
KeyDescriptor to determine the processing required by the local TSC, constructs the TPDU 12896
header, forms the TPDU, and generates the N-DATA.request to a local NLE at an NSAP. 12897

11.6.2.3 T-DATA.confirm 12898

11.6.2.3.1 General 12899

T-DATA.confirm is used by the TLE to respond to a T-DATA.request. The confirmation is 12900
immediate and tells the requesting ALE either that the request was successful or that an error 12901
was detected. Error conditions include such issues as an unrecognized contract ID, a TSDU 12902
size that is incorrect or excessive, or an internal transient error such as network congestion 12903
beyond the capacity of the TSC and its agents to cope. 12904

11.6.2.3.2 Semantics of the service primitive 12905

The semantics of T-DATA.confirm are as follows: 12906

T-DATA.confirm (12907
 ContractId 12908
 TDSAP 12909
 status 12910
) 12911
Table 226 specifies the elements for T-DATA.confirm. 12912

Table 226 – T-DATA.confirm elements 12913

Element name Element
identifier

Element scalar type

ContractId (identifies the contracted TL resources associated with the
TPDU)

1 Type: Unsigned16

Named values:
0: no contract

TDSAP (ID of the TDSAP that grants UDP service over SourcePort) 2 Type: Unsigned16

Status (the result of the T-DATA.request primitive) 3 Type: Unsigned

Valid range: (see Table
227)

 12914
Table 227 provides the status codes for T-DATA.confirm. 12915

62734/2CDV © IEC(E) – 487 –

Table 227 – T-DATA.confirm status codes 12916

Name Description

SUCCESS TSDU accepted

TRANSIENT_FAILURE TSDU rejected, but can be retried after a short period of time

FAILURE Generic failure: TSDU rejected without explicit reason

INVALID_CONTRACT Specific failure: Unrecognized contract ID; TSDU rejected

INVALID_LENGTH Specific failure: TSDU is larger than Assigned_Max_TSDU_Size; rejected

PORT_ERROR Specific failure: SourcePort is not registered for TDSAP; TSDU rejected

SAP_ERROR Specific failure: Unknown TDSAP; TSDU rejected

 12917
11.6.2.3.3 When generated 12918

A TLE generates T-DATA.confirm in response to a local T-DATA.request. The T-DATA.confirm 12919
returns synchronously either a status of success or the appropriate error code. 12920

11.6.2.3.4 Appropriate usage 12921

The T-DATA.confirm notifies the ALE of the result of its request to transmit an TSDU. 12922

11.6.2.4 T-DATA.indication 12923

11.6.2.4.1 General 12924

T-DATA.indication is used to transfer a TSDU to the ALE. It is generated when a TPDU has 12925
been successfully received from a local NLE and processed by the TLE. 12926

A received TPDU that fails T-security processing or that specifies an unregistered destination 12927
port is discarded on receipt. Such errors are logged in the TLE’s PIB. 12928

11.6.2.4.2 Semantics of the service primitive 12929

The semantics of T-DATA.indication are as follows: 12930

T-DATA.indication (12931
 SrcAddr 12932
 SrcPort 12933
 TSDU_size 12934
 TSDU 12935
 ECN 12936
 TDSAP 12937
 transportTime 12938
) 12939
Table 228 specifies the elements for T-DATA.indication. 12940

 – 488 – 62734/2CDV © IEC(E)

Table 228 – T-DATA.indication elements 12941

Element name Element
identifier

Element scalar type

SourceNetworkAddress (IP address of the remote end) 1 Type: IPv6Address

SourcePort (UDP source port in incoming TPDU) 2 Type: Unsigned16

TSDU_size (size in octets of the accompanying TSDU) 3 Type: Unsigned16

TSDU (the received higher-layer content of the TPDU) 4 Type: OctetStringN

ECN (explicit congestion notification bits) 5 Type: Unsigned2

TDSAP (ID of the TDSAP that grants UDP service and matches a local
port)

6 Type: Unsigned8

TransportTime (end-to-end transit time from originating to receiving
TSC)

7 Type:Unsigned16

NOTE TransportTime is related to tpduMaxAge.

 12942
A TLE maintains a table that contains the TDSAP, which is indexed by (implicitly or explicitly) 12943
the local address and (explicitly) the local port for reception. That table is accessed to find the 12944
TDSAP used to pass the TSDU to the UAP. 12945

11.6.2.4.3 Appropriate usage 12946

A TLE invokes T-DATA.indication to notify the addressed ALE of a received TSDU. 12947

11.6.2.4.4 Effect on receipt 12948

On receipt of T-DATA.indication, the ALE processes the received TSDU. 12949

11.6.2.5 Management services 12950

11.6.2.5.1 General 12951

The TLE’s management service is controlled by the TL management object (TLMO) in the 12952
DMAP. The TLMO controls the TLE functionalities by: 12953

• measuring TL latency and making the related adaptations to comply with latency 12954
requirements dynamically; and 12955

• collecting operational parameters. 12956

The TLMO uses its TMSAP interface to configure and control the operation of the TLE. The 12957
TLE’s TME provides a TMIB that maintains the state information necessary to implement the 12958
TMSAP functionality. 12959

11.6.2.5.2 Attributes 12960

Table 229 specifies the attributes of the TLMO. 12961

62734/2CDV © IEC(E) – 489 –

Table 229 – TLMO attributes 12962

Standard object type name: TL management object (TLMO)

Standard object type identifier: 122

Attribute name Attribute
identifier

Attribute description Attribute data
information

Description of
behavior of

attribute

Reserved 1 Reserved by the standard — —

MaxNbOfPorts 2 Number of active ports Type: Unsigned8 The minimum
value covers a
typical device
with a single
DMAP and a
single UAP
TDSAPs

Classification:
Constant

Accessibility: Read
only

Default value:
Device-dependent

Valid range: 2..255

TPDUin 3 Counter reporting the
number of received
TPDUs

Type: Unsigned32 Incremented with
each TPDU
received from a
remote TLE

Classification:
Dynamic

Accessibility: Read
only

Default value: 0

TPDUinRejected 4 Counter reporting the
number of rejected
TPDUs

Type: Unsigned32 Incremented with
each data unit
received from a
remote TLE that
was discarded
(e.g., for security
reasons). Note:
there is no such
counter within
the DSMO

Classification:
Dynamic

Accessibility: Read
only

Default value: 0

TSDUout 5 Counter reporting the
number of TSDUs passed
to a local ALE

Type: Unsigned32 Incremented with
each TPDU
received from a
remote TLE that
resulted in the
conveyance of a
contained TSDU
to a local ALE

Classification:
Dynamic

Accessibility: Read
only

Default value: 0

TSDUin 6 Counter reporting the
number of received
TSDUs

Type: Unsigned32 Incremented with
each TSDU
received from a
local ALE

Classification:
Dynamic

Accessibility: Read
only

Default value: 0

TSDUinRejected 7 Counter reporting the
number of rejected
TSDUs

Type: Unsigned32 Incremented with
each TSDU
received from a
local ALE that is
rejected

Classification:
Dynamic

Accessibility: Read
only

Default value: 0

TPDUout 8 Counter reporting the
number of TPDU passed
to the NL

Type: Unsigned32 Incremented with
each TSDU
received from a
local ALE that is
conveyed to and
accepted by a
local NLE

Classification:
Dynamic

Accessibility: Read
only

Default value: 0

 – 490 – 62734/2CDV © IEC(E)

Standard object type name: TL management object (TLMO)

Standard object type identifier: 122

Attribute name Attribute
identifier

Attribute description Attribute data
information

Description of
behavior of

attribute

IllegalUseOfPortAlertDesc
riptor

9 Used to change the
priority of
IllegalUseOfPort alert;
this alert can also be
turned on or turned off

Type: Alert report
descriptor

—

Classification: Static

Accessibility:
Read/write

Default value:
[TRUE, 8] -- medium

TPDUonUnregisteredPort
AlertDescriptor

10 Used to change the
priority of
TPDUonUnregisteredPort
alert; this alert can also
be turned on or turned off

Type: Alert report
descriptor

—

Classification: Static

Accessibility:
Read/write

Default value:
[TRUE, 4] -- low

 12963
For each attribute, the TLMO provides read and write methods available to the DMAP. Those 12964
methods are implemented by requesting TME services across the TMSAP. 12965

11.6.2.5.3 Methods 12966

In addition to the read and write service for the attributes, additional TLMO methods provide 12967
access to TME services across the TMSAP. 12968

Table 230 describes the reset method. 12969

Table 230 – TL management object methods – Reset 12970

Standard object type name: TL management object (TLMO)

Standard object type identifier: 122

Method
name

Method
ID

Method Description

Reset 1 Reset the transport to initial states

Input Argument

Argument
number

Argument
name

Argument type
(data type and size)

Argument description

1 Forced Boolean Forced means that all data are updated
without any interaction with other entities.
TSAP-related tables are emptied, related
memory is freed and all counters are set to 0

Output Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Status Unsigned8 0 = success, > 0 failure

 12971
Table 231 describes the halt method. 12972

62734/2CDV © IEC(E) – 491 –

Table 231 – TL management object methods – Halt 12973

Standard object type name: TL management object (TLMO)

Standard object type identifier: 122

Method
name

Method
ID

Method Description

Halt 2 Halts a port and places it back in its initial state. Similar to a reset, but scoped to one
UDP port only. All traffic is interrupted on that port and the TSAP needs to be reopened
for that port to become operational again. The TSAP-related table entries for the port
are emptied and related memory is freed

Input Arguments

Argument
number Argument name Argument type

(data type and size) Argument description

1 DeviceAddress IPv6Address This device IPv6Address

2 PortNumber Unsigned16 The port to halt

Output Arguments

Argument
number Argument name Argument type

(data type and size) Argument description

1 Status Unsigned8 Named values:
0: success,
1: generic failure,
2: bad port number

 12974
Table 232 describes the PortRangeInfo method. 12975

Table 232 – TL management object methods – PortRangeInfo 12976

Standard object type name: TL management object (TLMO)

Standard object type identifier: 122

Method name Method ID Method Description

PortRangeInfo 3 Reports the UDP ports range information

Input Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 DeviceAddress IPv6Address This device
IPv6Address

Output Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Status Unsigned8 0 = success, > 0 failure

2 NbActivePorts Unsigned16 Number of active ports

3 FirstActivePort Unsigned16 First active port

4 LastActivePort Unsigned16 Last active port

 12977
Table 233 describes the GetPortInfo method. 12978

 – 492 – 62734/2CDV © IEC(E)

Table 233 – TL management object methods – GetPortInfo 12979

Standard object type name: TL management object (TLMO)

Standard object type identifier: 122

Method
name

Method
ID

Method Description

GetPortInfo 4 Reports the UDP port information for a given UDP port or the first active UDP port

Input Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 DeviceAddress IPv6Address This device IPv6Address

2 PortNumber Unsigned16 The port whose info is requested
(0 = lowest)

Output Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Status Unsigned8 0 = success, > 0 failure

2 PortNumber Unsigned16 This port number

3 UID Unsigned32 Owner application ID

4 Compressed Boolean Compression applies to this port

5 TPDUsInOK Unsigned32 Number of TPDUs accepted over the
port

6 TPDUsInKO Unsigned32 Number of TPDUs rejected over the
port

7 TPDUsOutOK Unsigned32 Number of TPDUs sent over the port

8 TPDUsOutKO Unsigned32 Number of TPDU transmission failures

 12980
Table 234 describes the GetNextPortInfo method. 12981

62734/2CDV © IEC(E) – 493 –

Table 234 – TL management object methods – GetNextPortInfo 12982

Standard object type name: TL management object (TLMO)

Standard object type identifier: 122

Method name Method
ID

Method Description

GetNextPortInfo 5 Reports the UDP port information for a given UDP port or the first active UDP
port

Input Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 DeviceAddress IPv6Address This device IPv6Address

2 PortNumber Unsigned16 The previous port from which info is
requested

Output Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Status Unsigned8 0 = success, > 0 failure

2 PortNumber Unsigned16 The port for which info is reported

3 UID Unsigned32 Owner application ID

4 Compressed Boolean Whether compression applies to this
port

5 TPDUsInOK Unsigned32 Number of TPDUs accepted over the
port

6 TPDUsInKO Unsigned32 Number of TPDUs rejected over the
port

7 TPDUsOutOK Unsigned32 Number of TPDUs sent over the port

8 TPDUsOutKO Unsigned32 Number of TPDU transmission
failures

 12983
11.6.2.5.4 Alerts 12984

Table 235 describes the alert to indicate illegal use of a port by an application. 12985

Table 235 – TL management object alert types – Illegal use of port 12986

Standard object type name(s): TL management object (TLMO)

Standard object type identifier: 122

Description of the Alert: Alert to indicate illegal use of a port by an application

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated: device

diagnostic, comm.
diagnostic, security,

or process)

Alert type

(Enumerated:
based on alert

category)

Alert priority

(Enumerated:
high, med, low,

journal only)

Value data
type

Description
of value

included with
alert

0 = Event 1= Communication
diagnostic

0
=IllegalUseOfPort

8 = Medium Type:
Unsigned16

16-bit port
number

 12987
Table 236 describes the alert to notify of a received TPDU that addresses an unregistered 12988
port. 12989

 – 494 – 62734/2CDV © IEC(E)

Table 236 – TL management object alert types – TPDU received on unregistered port 12990

Standard object type name(s): TL management object (TLMO)

Standard object type identifier: 122

Description of the Alert: Alert to notify of a TPDU received on unregistered port

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type

(Enumerated: based on
alert category)

Alert priority

(Enumerated:
high, med,

low, journal
only)

Value data
type

Description
of value
included
with alert

0 = Event 1 =
Communication
diagnostic

1=TPDUonUnregisteredPort 4 = Low Type:
OctetString

First 40
octets of
the TPDU

 12991
Table 237 describes the alert to notify of a received TPDU that does not meet local security 12992
policies. 12993

Table 237 – TL management object alert types – TPDU does not match security policies 12994

Standard object type name(s): TL management object (TLMO)

Standard object type identifier:

Description of the Alert: Alert to notify of a TPDU that does not match security policies

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type

(Enumerated: based on
alert category)

Alert priority

(Enumerated:
high, med,

low, journal
only)

Value data
type

Description
of value
included
with alert

0 = Event 1 =
Communication
diagnostic

2=TPDUoutOfSecurityPolicies 2 = Journal Type:
OctetString

First 40
octets of
the TPDU

 12995

62734/2CDV © IEC(E) – 495 –

12 Application layer 12996

 General 12.112997

The application layer (AL) defines software objects to model real-world objects, and also 12998
defines the communication services necessary to enable object-to-object communication 12999
between distributed applications in an open, interoperable application environment compliant 13000
with, and based on, this standard. This standard does not define the operation of the 13001
distributed applications themselves; that is, neither the local operation of the application itself, 13002
such as the manner in which an application acquires the values of the object attributes it 13003
supports for access, nor direction regarding how and when an application applies the models 13004
and/or the services defined herein, are addressed by this standard. 13005

NOTE 1 For example, a real-world analog input is modeled as an AnalogInput object. The AnalogInput object 13006
often communicates its process variable to a correspondent party by using the AL-provided publish service. 13007

The AL supports wireless devices in the field, as well as gateways that integrate a wireless 13008
network compliant with this standard and its devices with a host control system.8 13009

The application model in this standard is specifically designed to satisfy the constraints of 13010
wireless communication environments. 13011

NOTE 2 An object oriented AL approach is used for the following key reasons: 13012

Command-based protocols are able to be designed to conform to the object model defined by 13013
this standard by describing the commands as separate object methods. That is, a command-13014
based application is able to be modeled using the object model in this standard. 13015

The object model supports well accepted architectural principles of logical information 13016
separation. For example, management information is logically separate from operating data. 13017
Operational information for independent variables is logically separate. In order to maintain 13018
separation of information, the protocol is required to identify the corresponding object. This 13019
adds a one-octet overhead to identify the object, which was deemed to be a more than 13020
reasonable approach for architectural separation of information. 13021

 Energy considerations 12.213022

The need to extend battery life makes energy-efficient messaging extremely important. The 13023
use of battery power or energy scavenging/harvesting techniques for connected field devices 13024
requires additional considerations in communication layer design, compared to the approach 13025
taken for wired devices. Not only does every communicating layer need to consider device 13026
resource availability, but it also needs to consider energy consumption minimization (within 13027
architecturally appropriate constraints of course) in order to extend battery life or to operate 13028
within the scavenging/harvesting budget. 13029

Since energy is consumed by message processing, as well as by the basic control operation 13030
of the device, it is necessary to balance communications efficiency with employing proven and 13031
well-accepted architectural principles of information separation as well as message 13032
processing efficiency. The native application model in this standard is defined to meet these 13033
needs. 13034

 Legacy control system considerations 12.313035

Wireless networks compliant with this standard may be connected to legacy control systems. 13036

NOTE 1 A model that integrates with existing systems makes possible the reuse of existing and proven tools and 13037
interfaces, and also reduces overall development and test time, resulting in earlier production of robust 13038
implementations. 13039

8 See 5.2.6.5 for a more complete discussion of the roles supported by this standard.

 – 496 – 62734/2CDV © IEC(E)

An application process in a native device communicates over the network using only ASL-13040
defined services and payloads. An application process in a non-native device requires 13041
communication of constructs that are not defined by the ASL service payloads. This 13042
communication from the non-native device over the network defined by this standard is 13043
accomplished by using the subset of standard services defined in this standard that support 13044
communication of payloads that are not explicitly and entirely defined by this standard. 13045

The native AL defines special objects and services to support non-native protocol tunneling to 13046
meet system integration needs. 13047

The set of defined application objects that support non-native defined payloads are the tunnel 13048
object and the interface object. The set of standard-defined application services that support 13049
payloads beyond those defined within this standard are the tunnel service, which is used for 13050
aperiodic communication, and the publish service using non-native mode, which is used for 13051
periodic communications. For example, the payload of the tunnel service for aperiodic 13052
messaging in order to encapsulate data constructed by a legacy system is not defined within 13053
WISN. 13054

NOTE 2 One way to achieve a synthesis with existing systems is to create an energy- and resource-optimized 13055
version of a wire-oriented existing legacy approach by mapping the legacy model to the model in this standard and 13056
directly employing the native AL. Such mappings usually are defined by individual protocol consortia, such as the 13057
HART Communication Foundation (HCF), Fieldbus Foundation (FF), PROFIBUS Nutzerorganisation (PNO), ODVA, 13058
which supports managed protocols such as CIP (Common Industrial Protocol), and others.9 Another way to 13059
achieve synthesis is to use a protocol tunnel through the native AL. For both approaches, energy and resource 13060
implications are important considerations. 13061

NOTE 3 Whichever method is chosen, the higher-level system still communicates with wireless devices within a 13062
network compliant with this standard. 13063

NOTE 4 Electronic device description files often are used to meet this requirement. For this standard, a device 13064
description language (DDL) or an extended device description language (EDDL) describe native devices. 13065

NOTE 5 See Annex R for further details regarding host system interface. 13066

 Introduction to object-oriented modeling 12.413067

 General 12.4.113068

An object model is a protocol-, platform-, and language-neutral means of describing and 13069
distinguishing components (system elements) that have a unique identity. Objects separate 13070
the world into meaningful and manageable pieces. Not only do object definitions promote 13071
modularity, but they also promote component reusability. An object can represent anything 13072
that has a state and a behavior; objects expose attributes to represent state, and provide 13073
methods that operate on the object’s state to effect particular behaviors. For example, device-13074
specific methods that may be supported by a DMAP may include device-specific self-test 13075
methods or device reset methods. 13076

 Object-to-object communication concept 12.4.213077

From the user’s point of view, AL communication occurs from one object in an application 13078
process to another object in an application process. Concepts of polymorphism allow the 13079
same communication techniques to be applied to this standard’s industry-independent user 13080
application objects and industry-dependent objects, as well as to this standard’s management 13081
objects. 13082

In keeping with this principle, the application model defines both an object model and a 13083
communication interaction model (service and protocol). The application model also supports 13084
multiple application processes within a device, each of which may contain multiple standard 13085

9 HART, FF-H1, PROFIBUS, and ODVA are the trademarks of various trade organizations. This information is

given for the convenience of users of the standard and does not constitute an endorsement of the trademark
holders or any of their products. Compliance to this profile does not require use of the registered trademark.
Use of the trademarks requires permission of the trade name holder.

62734/2CDV © IEC(E) – 497 –

objects. This enables this standard to meet specific market needs, such as for process 13086
industries or factory automation, as well as to enable support for both single-processor and 13087
multi-processor device architectures. 13088

The application object may, for example use the services of the AL to: 13089

• read the value of an attribute of a remote object; 13090

• write the value of an attribute of a remote object; 13091

• request execution of an object-specific method of a remote object; 13092

• report an alert related to a remote object; 13093

• acknowledge an alert reported by a remote object; 13094

• publish data to a remote object by using scheduled communication bandwidth; 13095

• tunnel a non-WISN-native application message to a remote object. 13096

Coding for these services can be found in 12.23.1.4. 13097

 AL structure 12.4.313098

The AL is divided into two sublayers, the upper AL (UAL) and the application sublayer (ASL), 13099
as shown in Figure 16. There is a one-to-one relationship between an ASLDE-SAP and a 13100
TLDE-SAP. 13101

The UAL contains the application processes for the device. These processes may be 13102
represented as a UAP or as a management process (MP), for example the DMAP or other 13103
logical management application such as a security management application. 13104

UAPs may be used, for example, to: 13105

• handle input and/or output hardware; 13106

• distribute communications to a set of co-resident UAPs within a device (proxy function); 13107

• support tunneling of a non-native (e.g., control system legacy) protocol compatible with 13108
the network environment of this standard; and/or 13109

• perform a computational function. 13110

A UAP may perform an individual function or any combination of functions. How a UAP 13111
accomplishes these functions internally is beyond the scope of this standard. The AL is 13112
concerned with application-specific message content, the externally visible behavior of the 13113
standard objects contained within the UAP, and the logical interfaces to the ASL that 13114
represent UAP communication to and from the lower communication protocol suite of this 13115
standard. UAL processes may contain one or more objects that communicate with one 13116
another over the network described in this standard, using the standard services provided by 13117
the ASL. 13118

NOTE How the ASL implements internal message routing or inter-application communication within a device 13119
(within a UAP, across UAPs in a common processor, across UAPs in different physical processors of the same 13120
device, or between a UAP and an MP) is a local matter and hence is outside the scope of this standard. 13121

 UAP structure 12.4.413122

Figure 110 depicts the overall structure of a UAP as defined by this standard. 13123

 – 498 – 62734/2CDV © IEC(E)

Other objects within UAP
(optional)

UAP management
object (required)

UAP

UDO, required
for UAPs
supporting
individual UAP
upgrade

 13124

Figure 110 – User application objects in a UAP 13125

Representation of the applications and their functions by standard object definitions allows 13126
uniform management and construction of distributed applications. The UAP management 13127
object identifies the UAP to the standard-compliant network and allows visibility of and/or 13128
control over certain operational aspects of the UAP as a whole. This UAP management object 13129
has a reserved object identifier of 1 (one). If a UAP supports individual upgrade, the UAP 13130
shall also contain a standard UploadDownload object (UDO) to support UAP upgrade. This 13131
UDO has a reserved object identifier of 2 (two). If a UAP does not support individual UAP 13132
upgrade, the UAP shall not contain an object instance with an object identifier of 2 (two). 13133
Additional objects also may be contained within a UAP in order to provide application-specific 13134
functionality to the UAP. 13135

NOTE 1 The UAPMO is sufficient to represent the UAP to the communication system. 13136

NOTE 2 Other objects are statically or dynamically instantiated within the UAP. 13137

NOTE 3 It is outside the scope of this standard to define what happens to the data contained within a UAP when 13138
the UAP is upgraded. 13139

The interaction model describes inter-object communication, including message classification 13140
and messaging formats. The ASL contains services that support object-oriented 13141
communication and routing to the appropriate destination object within a UAP, across the 13142
network. This interaction maps the ASL to the services provided by the lower communication 13143
protocol suite layer (see Table 281 and Table 282 indicating AL use of TL services and 13144
qualities of service). Between the UAL and the ASL is an ASL data entity SAP(ASLDE-n 13145
SAP). 13146

ASL-specific management is also locally supported via a separate management SAP. 13147

 Object model 12.513148

The AL defined by this standard takes advantage of object-oriented modeling concepts to 13149
support both native protocol and non-native (legacy) protocol tunneling within applications. 13150
Non-native protocol tunneling is achieved by a specialized UAP that includes one or more 13151
tunnel objects (TUN) and protocol translation facilities. This UAP consists of exactly one UAP 13152
management object to enable uniform system and network management of the UAP, plus one 13153
or more TUNs to send/receive encapsulated messages being tunneled to the UAP. Other 13154
native objects defined by this standard may also be used within a tunneling UAP. For 13155
example, tunneling may be used for wireless device-to-wireless device communication, as 13156
well as for wireless device-to-gateway communication. 13157

NOTE 1 Addressing constructs other than these are outside the scope of this standard. Legacy protocol APDU 13158
(as opposed to native APDU) constructs are preserved by means of encapsulation when application tunneling as 13159
defined by this standard is used. 13160

62734/2CDV © IEC(E) – 499 –

An object-oriented approach is used to encapsulate data (attributes) and functionality 13161
(methods and internal state) for re-use and consistency. Objects are individually addressable 13162
using an object identifier that is unique within the application. This unique identifier allows the 13163
AL to route messages to the appropriate object destination. Each message is interpreted and 13164
acted on by the destination object based on the message context and content. Object 13165
operation is described in terms of the network-visible operation of the destination object that 13166
is the target of the AL service. 13167

This standard defines standard object identifiers. 13168

NOTE 2 The complement of standard identifiers supported by a device is indicated by the version of this standard 13169
that is supported. The supported version is available from the DMAP. See Clause 6 for further details. 13170

An object instance that is accessible within an application process is distinguished from 13171
another instance of the same object class in the same application process by its object 13172
identifier. Different object instances may also have different attribute values and/or the 13173
conditional attributes contained in its set of supported attributes. 13174

As an example, an application process may contain two instances of the AnalogInput object. 13175
The object instances within the application process can be distinguished by their object 13176
identifier. Each object may support different values for scaling, and also may require a 13177
different complement of alarms to be reported. Hence, the instances may have a different 13178
complement of analog descriptor attributes supported by each instance. 13179

The objects defined in the UAPs and MPs of this standard adhere to traditional object 13180
modeling concepts; specifically, these objects contain attributes, and appropriate object-13181
specific methods, if applicable, are defined. The AL defines standard objects to provide 13182
interoperability (within its domain of application) via access to standard attributes and 13183
invocation of standard methods. 13184

Standard objects can be classified into usage profiles to meet the needs of particular 13185
industries. 13186

Standard management objects are expected to be always available. Application user objects 13187
may be statically instantiated, or they may be dynamically instantiated as the result of a 13188
download operation. Standard objects are extensible in the following ways: 13189

• Industry-specific standard object types may be added. 13190

• Vendor-specific object types may be added. 13191

• Industry-specific attributes may be added to standard objects. 13192

• Vendor-specific attributes may be added to standard objects. 13193

• Industry-specific methods may be added to objects via industry-specific profiles. 13194

• Vendor-specific methods may be added to objects. 13195

• Industry-specific profiles of object types may be defined, such as a process industry 13196
profile, a factory automation industry profile, and other profiles. 13197

 Object attribute model 12.613198

 General 12.6.113199

Objects defined by this standard support two kinds of attributes, object key attributes and 13200
named attributes. 13201

In this standard, a resource is represented as an object, and identified by an object key 13202
attribute, which is a numeric value. 13203

 – 500 – 62734/2CDV © IEC(E)

NOTE 1 Support of an object key attribute using an alphanumeric representation of the resource, and of 13204
corresponding directory services to locate the resource and to resolve the external alphanumeric name form to an 13205
internal numeric form, are a subject of future standardization. 13206

An attribute indicates an accessible element representing a property or characteristic of a 13207
resource. In this standard, an attribute is represented by a unique numerical value that 13208
uniquely identifies the attribute relative to the containing object. The supported range of the 13209
valid values for an attribute identifier is 0..4 095. 13210

This standard defines standard object attributes. Additional standard attributes may be 13211
defined in the future. 13212

NOTE 2 The complement of standard attributes supported is established by the version of this standard that is 13213
supported. The version of the standard that is supported is available from the DMAP. 13214

Exposing the resource elements as attributes of an object allows the state of the object to be 13215
determined and also allows the behavior of the object to be modified. A resource attribute is 13216
defined by: 13217

• its influence on object behavior; 13218

• the set of values it can take (as constrained by the object definition containing the 13219
attribute); 13220

• the valid tests (for example, valid value set matching) that may be performed on it; and 13221

• the specific set of error conditions that may cause an object-defined failure as a result of 13222
performing an attribute-oriented operation. 13223

Attributes themselves do not have accessible properties or subtypes. Attribute values may be 13224
explicitly established by external means or by internal means (for example, derived by 13225
computation using the values of other attributes). 13226

Attributes shall have a data type that is a standard scalar type defined by this standard. 13227
Attributes may have a data type that is a standard data structure defined by this standard. Up 13228
to two indices are available to address constructs of standard types defined by this standard. 13229
The valid range for an index is 0..32 767. 13230

NOTE 3 For example, access to an individual element of a singly-dimensioned array of standard scalar types is 13231
supported. As another example, access to an individual element of a data structure contained in a singly-13232
dimensioned array of such structures is supported. 13233

For an attribute constructed as an array, the array size shall be fixed and all elements of an 13234
array shall be homogenously sized. For example, an array of octet strings shall all have the 13235
same size octet string for each element in the array. When it is necessary to indicate both the 13236
current and maximum dimension of an array, metadata information should be used. This 13237
metadata information is described by data type code 406 (Metadata_attribute data structure) 13238
which is defined in 6.2.6.3. 13239

 Attributes of standard objects 12.6.213240

For each standard object, standard attributes are defined. Each standard attribute has a 13241
standard attribute identifier that is used to address the attribute. 13242

Standard object attributes may be extended in the following ways: 13243

• Industry-specific attributes may be added to standard objects. 13244

• Vendor-specific attributes may be added to standard objects. 13245

Extensions to standard attributes need to be coordinated to ensure that attribute identifiers 13246
remain unique within an object type. The mechanisms used by industries and vendors to 13247
extend the attributes of the standard object are outside the scope of this standard. 13248

62734/2CDV © IEC(E) – 501 –

 Attribute classification 12.6.313249

Attributes are classified to provide guidance regarding their expected frequency of change. 13250
This information is useful, for example, to gateway devices that cache information. The 13251
frequency at which attribute values change is characterized as: 13252

• constant; 13253

• static; 13254

• static-volatile; 13255

• dynamic; or 13256

• non-cacheable. 13257

A constant attribute is unchanging throughout time. An example of a constant attribute is the 13258
serial number of a wireless device. Default values in this standard are all constant attributes. 13259
The values of these attributes shall be preserved when a device undergoes a warm restart / 13260
power-fail, when a device resets to factory defaults, or when a reset command to the relevant 13261
attribute or management object is received. 13262

Constant information may be either: 13263

• fixed information that never changes, such as information to indicate a manufacturer or 13264
serial number; and 13265

• information that does not change during normal system operation, but that may change, 13266
for example, when a firmware download occurs. 13267

A static attribute changes its value infrequently. Usually, static data is changed as the result 13268
of an external message, request, or event. Some static information may, for example, only be 13269
changed by a configuration tool. Operating ranges, units, communication end points, alarms, 13270
and constant input values are examples of static information. Attributes storing provisioning 13271
information, as well as configuration information provided to a device, are static attributes. 13272
The values of these attributes shall be preserved when a device undergoes a warm restart / 13273
power-fail or when a reset command to an un-related attribute or management object is 13274
received. 13275

A static-volatile attribute changes its value infrequently. Usually, static-volatile data is 13276
changed as the result of an external message, request, or event. Some static-volatile 13277
information may, for example, only be changed by a configuration tool. The values of these 13278
attributes need not be preserved when a device undergoes a warm restart / power-fail. The 13279
values of these attributes shall be preserved when a reset command to an un-related attribute 13280
or management object is received. 13281

A dynamic attribute may be changed spontaneously by the device containing the object and 13282
without external stimulation from the wireless network. Examples of dynamic attributes are 13283
frequently changing values such as process variables, calculations, and timers. Dynamic 13284
attributes may be treated differently by a gateway cache infrequently changing (static) values; 13285
this is entirely up to gateway internal implementation. A dynamic attribute is not required to 13286
survive when a device goes through a warm restart / power-fail or when a device resets to 13287
factory defaults. It can be reset when a reset command to the relevant attribute or 13288
management object is received. 13289

Non-cacheable information is never buffered; for example, it may be used for critical 13290
information such as safety-related information (which use may be outside the explicit scope of 13291
this standard), and for values that change too often to make caching a valid technique. 13292
Whenever the value of a non-cacheable attribute is requested, it shall be retrieved from the 13293
end device that owns the object and attribute. 13294

If device local caching is needed, it is the local responsibility of the application. 13295

 – 502 – 62734/2CDV © IEC(E)

 Attribute accessibility 12.6.413296

Network accessible attributes may be: 13297

• accessible to be read only; or 13298

• accessible to be both read and written. 13299

 Method model 12.713300

Methods represent the set of object type-specific interfaces (functions) that can be used to 13301
access an object instance. For example, the UploadDownload object supports a StartUpload 13302
method. 13303

The standard object methods shall always be available, and shall not be enhanced beyond 13304
the definition given by this standard. 13305

Methods shall not be defined if the equivalent result can be achieved using a standard (object 13306
type-independent) AL service, for example, the ASL-provided read service. Definition of a 13307
method may be warranted, for example, to replace a sequence of communication transactions 13308
in order to save energy. Definition of a method may also be warranted when synchronization 13309
issues may result if individual actions are used rather than an atomic transaction set. 13310

Standard object methods may be added in future by this standard. 13311

Time-based triggering of application process activities is not a communication subsystem 13312
responsibility. If such time-based triggering is necessary, either a parameter of a method or a 13313
dedicated attribute of an object may be employed. If coordination across objects is required, 13314
an application object may be defined with an attribute representing the coordinated action, 13315
acting as a proxy for the coordination. 13316

 Alert model 12.813317

The term alert is used to describe an application message that advises or warns the recipient 13318
of the presence of an impending or existing situation of interest. The alert model describes 13319
alerts reported by application process resident objects and the mechanism to report them. 13320

Two types of alerts are supported, alarms and events. Event is the term used to represent a 13321
stateless condition (that is, to indicate a situation has occurred). Events simply report that 13322
something happened. An alarm is a stateful condition of an existing situation, for example, 13323
that an alarm has transitioned to an abnormal state, or has returned to normal from an 13324
abnormal state. The alarm condition remains true until the alarm condition clears. Alert is the 13325
term used to describe the messaging of an event condition or alarm condition. Both alarms 13326
and events are reported through the alert reporting mechanism defined in this standard. 13327

An alarm is characterized by a state, and alerts are used to report: 13328

• the occurrence of a condition; and 13329

• the return to normal of the previously reported condition. 13330

Events and alarms supported by this standard fall into one of the following categories: 13331

– device-related; 13332
– communication-related; 13333
– security-related; or 13334
– control process-related. 13335

Each alarm and event defined for an object shall have an associated attribute that describes 13336
how it is reported. This associated attribute shall include: 13337

62734/2CDV © IEC(E) – 503 –

• whether it is enabled or disabled for reporting; and 13338

• its priority (importance). 13339

For all alarms, descriptive information shall also include, if the alert is an alarm, whether or 13340
not the condition is in or out of alarm. 13341

An analog alarm occurs when a value meets or exceeds an established limit. For analog value 13342
alarms, descriptive information shall also include limit information, if any, relating to when the 13343
alarm condition is triggered. 13344

 Alarm state model 12.913345

Table 238 and Figure 111 represent the alarm state model. 13346

Table 238 – State table for alarm transitions 13347

Transition Current State Event(s) Action(s) Next state

T1 Clear Alarm is detected Report alarm to ARMO in DMAP In alarm

T2 In alarm Clear is detected Report alarm clear to ARMO in DMAP Clear

T3 In alarm Recovery requested Report alarm to ARMO in DMAP In alarm

T4 Clear Recovery requested Ignore Clear

NOTE Recovery is usually requested by a remote device.

 13348

Clear

In alarm

T1

T3

T2

T4

 13349

Figure 111 – Alarm state model 13350

Alarm detection applies both to analog and discrete values. Examples of analog alarms 13351
include: 13352

• analog limit alarms (for example, when a value exceeds a high or low threshold); 13353

• analog deviation alarms (for example, the difference between a process variable and set 13354
point); 13355

• a Boolean alarm (for example, when the state of the Boolean matches the discrete limit 13356
parameter); and 13357

• diagnostics, such as those defined in the NAMUR 107 recommendation. 13358

NOTE 1 Alarms that depend upon evaluation of a combination of device-, inter-object-, or intra-object-specific 13359
state conditions are considered a local matter and are thus outside the scope of this standard. 13360

 – 504 – 62734/2CDV © IEC(E)

NOTE 2 Different levels of alarm conditions are indicated by different alarms. For example, for an analog input, a 13361
High alarm represents one level, and a High-High alarm represents a higher level. 13362

 Event state model 12.1013363

 General 12.10.113364

The state model for an event is a subset of the state model for an alarm. 13365

 State table and transitions 12.10.213366

Table 239 and Figure 112 represent the event state table and transitions, respectively. 13367

Table 239 – State table for event transitions 13368

Transition Current state Event(s) Action(s) Next state

T1 Clear Event condition is detected Determine report characteristics
(e.g., priority)

Detected

T2 Detected Event condition is reported Report event to ARMO in DMAP Submitted

T3 Submitted Event condition submission
to ARMO as completed

Reset to prepare for next event
report

Clear

 13369

Clear

Detected

Submitted

T1

T3

T4 T2

 13370

Figure 112 – Event model 13371

 Alert reporting 12.1113372

 General 12.11.113373

Alerts are reported promptly and accurately time-stamped using a queued unidirectional alert 13374
report communication. Queued unidirectional alert reporting involves the alert detecting 13375
device reporting the condition using a source/sink communication flow. A queued 13376
unidirectional alert acknowledgment is received in return. 13377

NOTE 1 In a published message, status information sometimes indicates that an alert is available in the reporting 13378
device, accessible via a client/server read service. This method is sometimes used for factory automation; other 13379
factory automation systems publish a tag to a server that generates alarms by testing limit values in the server. 13380

NOTE 2 Source/sink communication is used rather than client/server in anticipation of a future release of this 13381
standard that supports multicast alert reports. 13382

 Alert types 12.11.213383

The alert reporting management object (ARMO) contained in the DMAP provides 13384
encapsulation of the alert report, handles timeouts and retries, and throttles alert reporting in 13385
a common manner for all the applications contained within the device. 13386

62734/2CDV © IEC(E) – 505 –

There shall be only one ARMO in each device, in the DMAP. As described in 6.2.7.2.3, the 13387
DMAP may provide limited access to entities other than the SMAP in order to support services 13388
related to process-related alerts and device-related alerts. Alert acknowledgments shall be 13389
addressed to the ARMO. 13390

Diagnostic alerts are specific to the device reporting them. For example, diagnostic alerts may 13391
indicate that: 13392

• an error has occurred; 13393

• a symptom has been detected that may indicate that an undiagnosed error occurred; 13394

• a symptom has been detected that may indicate that an error may occur in the future; 13395

• an error will occur if preventative action is not taken. 13396

Diagnostic alerts may pertain to a device as a whole, to an individual component, or to a 13397
defined set of components of a device. Diagnostic alerts may be stateless or state-oriented. 13398
Diagnostic alerts may be specified by this standard, such as for communication-related 13399
alarms, or may be vendor-specific. Diagnostic alerts provide information that can later be 13400
examined to establish device and/or communication system behavior patterns. 13401

Process alerts are specific to the process being controlled by the device reporting the process 13402
alarm. A process alarm indicates a situation in which the alarmed variable has exceeded 13403
established operational limits. For example, a process alert may be generated when a 13404
measurable control condition occurs that is outside of desired control system operation 13405
parameters. 13406

Process alerts provide information that can later be examined to establish control system 13407
behavior patterns, such as: 13408

– alerts that often occur in a particular sequence; 13409
– alerts that often occur close in time; 13410
– alerts that were active for significant periods of time; 13411
– actions that are required to resolve an alert situation; 13412
– assistance in determining optimal trip point and hysteresis settings; or 13413
– information regarding control system performance in terms of alert prevention and 13414

resolution. 13415

Process alerts pertain to a particular control object and attribute value of that object (e.g., the 13416
PV of an analog input object). Process alerts are usually state-oriented (i.e., alarms). 13417

One octet is used in the coding of alert type information. For all objects, three standard 13418
ranges are identified for disjoint definitions of an object-specific alert type: 13419

00..49: reserved for and defined by this standard; 13420
51..100: reserved for future standard industry profiles; 13421
101..255: vendor-assignable for vendor-specific alerts. 13422

 Alert report information 12.11.313423

The APDU header indicates the application and object that initiated the communication. For 13424
alert reports, this would indicate the DMAP and the ARMO. The individual alert report 13425
information therefore also shall identify the application process and the object within it that is 13426
the detecting source of the alert. Additionally, alert reports shall include the following 13427
information: 13428

• network time of detection; 13429

• individual alert identifier (so that duplicates may be detected by the UAL process); 13430

 – 506 – 62734/2CDV © IEC(E)

• alert class (alarm or event); 13431

• alarm direction (transition into alarm, or not (i.e., either return-to-normal or an event)); 13432

• alert category (device diagnostic, communication-related, security-related, or process-13433
related); 13434

• alert priority (ranges are defined for high, medium, low, and journal-only alert priorities); 13435

• alert type (object-specific, and within the specific alert category); 13436

NOTE See 6.2.7.2 for further information on communication alerts and 6.1.2 for further information on 13437
security alerts. 13438

• associated-data size, in octets; and 13439

• associated data for the alert condition. 13440

The associated data for device diagnostics should be defined for compatibility with NAMUR 13441
Recommendation NE107; such diagnostics should indicate whether the device condition is 13442
abnormal, and if so its NAMUR class: failure, off-specification, diagnostic maintenance, or 13443
diagnostic check function. 13444

 Alarm state recovery 12.11.413445

If a loss of communication with a wireless device occurs, process industries require that 13446
existing conditions be reliably recoverable by an alert receiving device, such as by 13447
determining the state when an alert receiving device starts up. 13448

NOTE 1 It is possible for multiple alarm conditions to exist simultaneously within a process control device. 13449

Recovery of alarm state may be requested from the ARMO. A single alarm recovery request 13450
triggers the re-reporting of all existing alarm conditions in the device of a given category. 13451
When recovering alarms, the alarm reporting device shall provide alerts to indicate when the 13452
recovery is commencing and when the recovery has completed. 13453

NOTE 2 As event conditions are stateless, they are not recoverable. 13454

 Communication interaction model 12.1213455

 General 12.12.113456

Native communication in this standard supports both native protocol and encapsulation of 13457
legacy protocols via tunneling. The following types of communication flows are anticipated for 13458
compliant devices: 13459

• queued unidirectional communication (e.g., alarm reporting or alarm acknowledgment); 13460

• queued bidirectional communication (e.g., read, write, method invocation); and 13461

• buffered unidirectional publication communication (e.g., publish). 13462

The actual location of the buffers used to hold the data for scheduled unidirectional 13463
publication communication is a device local matter. 13464

NOTE Buffered scheduled data publication (periodic, change of state, and application driven publication) all occur 13465
(as needed) within the scheduled phase. Communication contracts for periodic communication employ buffered 13466
unidirectional publication communication. Communication contracts for aperiodic communication employ a queued 13467
communication paradigm. 13468

 Buffered unidirectional publication communication 12.12.213469

12.12.2.1 General 13470

Buffered unidirectional communication is used when a publishing application is sending a 13471
message to a subscribing application. The buffer contains the message to be sent. On each 13472
buffered unidirectional publication contract, there is a parameter to indicate if the buffer is to 13473

62734/2CDV © IEC(E) – 507 –

always be transmitted (whether the content has been updated or not), or if the buffer is only to 13474
be transmitted if it has been updated since the prior transmission. 13475

12.12.2.2 Buffer content always transmitted 13476

In buffered unidirectional communication, if a publishing communication protocol suite 13477
receives another ASL publish service request for a particular communication contract before 13478
the previous message has been transmitted, the new request replaces the previous request. 13479
In the subscriber, if a new message is received before the previous one has been delivered to 13480
the application, the new message shall replace the previous undelivered message. 13481

NOTE 1 In establishing a contract for periodic communication, the system manager ensures that there is 13482
adequate capacity within the intermediate devices along a route to support the periodic communication. 13483

NOTE 2 It is anticipated that an application that receives an older publication after a newer one is able to choose 13484
to discard the older publication. 13485

If a publishing communication protocol suite does not receive a new service request for the 13486
contract when it is time to transmit, the previous request shall be retransmitted. If the 13487
subscriber receives the same application service request in succession, the subscribing 13488
application shall treat this situation as receipt of a duplicate message. Application handling of 13489
a duplicate buffered message is left to the application, and is not defined by this standard. 13490

12.12.2.3 Buffer content transmitted on change only 13491

This mode of buffered communication supports a change of state communication mechanism. 13492

In buffered unidirectional communication, if a publishing communication protocol suite 13493
receives another service request for a particular communication contract before the previous 13494
message has been transmitted, the new request replaces the previous request. In the 13495
subscriber, if a new message is received before the previous one has been delivered to the 13496
application, the new message shall replace the previous undelivered message. 13497

NOTE In establishing a contract for periodic communication, the system manager ensures that there is adequate 13498
capacity within the intermediate devices along a route to support the periodic communication. 13499

If a publishing communication protocol suite does not receive a new service request for the 13500
contract when it is time to transmit, the previous request shall not be retransmitted. If the 13501
subscriber receives the same application service request in succession, the subscribing 13502
application shall treat this situation as an error situation. Application handling of a duplicate 13503
buffered message is left to the application, and is not defined by this standard. 13504

 Queued unidirectional communication 12.12.313505

Queued unidirectional communication supports queued distribution of unconfirmed 13506
(unidirectional) ASL communication services. To satisfy this type of communication need, the 13507
lower layers of the correspondents are expected to provide a queued data transfer service. 13508

Application handling of a duplicate AlertReport shall result in sending another 13509
AlertAcknowledgment. Receipt of a duplicate AlertAcknowledgment shall be ignored. 13510
Application handling of duplicate queued unidirectional Tunnel messages is left to the 13511
application, and is not defined by this standard. 13512

 Queued bidirectional communication 12.12.413513

12.12.4.1 General 13514

Queued bidirectional communication supports queued distribution of confirmed (bidirectional) 13515
ASL communication services. To satisfy this type of communication need, lower layers of the 13516
correspondents are expected to provide a queued data transfer service. 13517

 – 508 – 62734/2CDV © IEC(E)

This maximum number of simultaneously outstanding queued bidirectional (client/server) 13518
confirmed service requests permitted for a contract is indicated to the application process by 13519
the communication contract when the contract is granted. The default value for this maximum 13520
value shall be 1, i.e., the default indicates that contract supports only one outstanding request 13521
at any given time. 13522

Application handling of a duplicate request is to send another response. Application handling 13523
of a duplicate response when a response is received that does not match a pending request 13524
identifier shall result in ignoring the response. 13525

12.12.4.2 Retries and flow control 13526

12.12.4.2.1 General 13527

The AL defined by this standard is required to track what happens to the queued service 13528
client/server requests that it sends. This is necessary for two reasons, to ensure reliability of 13529
delivery and for flow control. 13530

For delivery reliability, the application needs to be able to determine when it should re-send 13531
(retry) its message. There are two situations in which message retry may be necessary, first 13532
when the message request did not arrive at its final destination, and second when the 13533
message request arrived, but the application response did not make it back to the original 13534
requestor. Flow control is necessary to ensure that the destination device is not overwhelmed 13535
with messages it cannot handle, as well as to protect the network and optimize network 13536
throughput. 13537

This standard supports both forward explicit congestion notification by the lower 13538
communication protocol suite and an application level echo back to a client of a four-part 13539
service requestor if congestion occurred on the path taken for the original service request. 13540

To enable multiple outstanding requests simultaneously while still allowing an application to 13541
achieve both reliable delivery and flow control, each client request shall contain a unique 13542
identifier. Retransmission of a request (retries) shall use the same identifier. This identifier 13543
enables the application to implement a sliding window technique to control flow. The client 13544
shall start a service related time-out timer when it initiates a client service request. This timer 13545
shall be based on round trip times (RTT) for messages, and shall allow sufficient time for a 13546
message from an application in device X to reach the destination application in device Y, for 13547
the server application in device Y to issue a response, and for the response to travel back to 13548
the service requesting application in device X. 13549

NOTE This method is commonly known in communications as communication using positive acknowledgment with 13550
retransmission. 13551

Figure 113 represents an example of three simultaneously outstanding write request 13552
messages, with a single concatenated message that contains the responses for all the 13553
outstanding write requests. Concatenation is used in order to save messaging traffic. 13554

62734/2CDV © IEC(E) – 509 –

Write(1).req

Write(1,2,3).con

UAL UAL

Write(2).req

Write(3).reqT3

T2

T1

 13555

Figure 113 – A successful example of multiple outstanding 13556
requests, with response concatenation 13557

12.12.4.2.2 Retries and timeout intervals 13558

12.12.4.2.2.1 General 13559

The method defined by IETF RFC 6298 shall be used for calculating an appropriate value for 13560
the retry timer-out interval (RTO). To compute the current RTO, a client shall maintain two 13561
state variables, SRTT (smoothed round-trip time) and RTTV (round-trip time variation), within 13562
the scope of a contract. 13563

Until a round-trip time (RTT) measurement has been made for a segment sent between the 13564
client and server, the client should set RTO equal to 3 s. 13565

When the first RTT measurement R is made, the client shall set: 13566

SRTT = R 13567
RTTV = R/2 13568
RTO = SRTT + 4 x RTTV 13569

When a subsequent RTT is available, R is made. The client shall update the RTTV, SRTT, and 13570
RTO using the following calculations, where the recommended value for β is 0,25, and the 13571
recommended value for α is 0,125: 13572

RTTV = (1 - β) × RTTV + β × |SRTT - R| 13573

SRTT = (1 - α) × SRTT + α × R 13574
RTO =SRTT + 4 x RTTV 13575

Whenever RTO is computed, the RTO shall be rounded based on the following rules: 13576

If RTO < 1 s, set RTO to 1 s. 13577

 – 510 – 62734/2CDV © IEC(E)

If RTO > 60 s, set RTO to 60 s. 13578

Determination of timeout occurrence is a local matter. When a timeout has been determined 13579
to have occurred, exponential backoff shall be employed for consecutive timeouts by setting 13580
RTO = RTO × 2 to send the retries. The maximum value of 60 s should be used to provide an 13581
upper bound to this doubling operation. Retries cease either when a response is received, or 13582
when the maximum retry limit is reached. The maximum retry permitted for a client request is 13583
indicated via an attribute of the UAP management object. The value selected for the maximum 13584
retry permitted is a local matter. 13585

NOTE IETF RFC 6298 contains a recommendation regarding management of the TimeoutInterval timer. 13586

12.12.4.2.2.2 Retries for unordered messages 13587

Unordered messages are independent in that the order of responses may be received in a 13588
different order than the order in which the requests were sent. Accordingly, each request 13589
message times out and is retried independently. 13590

Figure 114 is an example of how a timeout and retry of the second message in a sequence of 13591
three unordered messages, due to failure of the request to reach the server, is handled. 13592

Write(1).req

Write(1,3).con

UAL UAL

Write(2).req

Write(3).reqT3

T2

T1

Write(2).req

Write(2).con

T2'

 13593

Figure 114 – An example of multiple outstanding unordered requests, 13594
with second write request initially unsuccessful 13595

12.12.4.2.2.3 Retries for ordered messages 13596

Ordered messages are order-dependent; that is, the order of responses may not be received 13597
in a different order than the order in which the requests were sent. Accordingly, if a later 13598
message receives a response before an earlier message, it indicates that the message for 13599
which no response was received shall be timed-out and retried. 13600

Figure 115 is an example of how a timeout and retry of the second message in a sequence of 13601
three ordered messages, due to failure of the request to reach the server, is handled. 13602

62734/2CDV © IEC(E) – 511 –

Write(1).req

Write(1,3).con

UAL UAL

Write(2).req

Write(3).reqT3

T2

T1

Write(2).req

Write(2).con

T2'

 13603

Figure 115 – An example of multiple outstanding ordered requests, 13604
with second write request initially unsuccessful 13605

Ordered delivery only pertains to upload/download. The Max_Send_Window_Size for 13606
upload/download communication contracts shall be fixed at 1. As such, ordered message 13607
delivery is not supported by the lower layers of the protocol suite defined by this standard. 13608

12.12.4.2.3 Flow control 13609

Client/server communications are not application process rate controlled; rather, AL flow rate 13610
fairness is enforced by the application processes on a per-contract basis, in order to minimize 13611
the cost fairness of congestion on the network. 13612

Max_Send_Window_Size (Table 26) for a contract is the maximum number of client requests 13613
that may be simultaneously awaiting a response within the scope of a contract. It is 13614
recommended (but not required) that clients use sequentially contiguous request identifiers. 13615
The value of Max_Send_Window_Size is established on a contract basis by the system 13616
manager. The OutstandingList represents the messages that have been sent, and that are 13617
currently awaiting a response. 13618

The AvailableSendWindowSize represents the usable send window, that is, the set of client 13619
requests that may be sent, without violating the Max_Send_Window_Size, taking into 13620
consideration the number of messages contained in the OutstandingList. When the windows 13621
are empty, and CurrentSendWindowSize equals the Max_Send_Window_Size, the usable 13622
send window stretches from the last acknowledged client request for the next 13623
Max_Send_Window_Size number of requests, and represents the set of client requests that 13624
may be sent, without violating the Max_Send_Window_Size. 13625

 – 512 – 62734/2CDV © IEC(E)

Applications shall initially set their value for their CurrentSendWindowSize to be one (1). RTT 13626
is then measured by the application for n complete transactions. If no timeout occurs during 13627
these transactions, and if the Max_Send_Window_Size has not been reached, the 13628
CurrentSendWindowSize shall be incremented by one (1). The value of 13629
CurrentSendWindowSize shall be equal the size of the CurrentSentWindowLimit +1. 13630

NOTE This mechanism for increasing the window size is more conservative than that usually used to meet TCP 13631
congestion avoidance requirements 13632

As a response is received, the corresponding request moves from the sent window to the 13633
response completed window, and the size of AvailableSendWindowSize increases by one if 13634
the Max_Send_Window_Size has not been reached. If a timeout occurs awaiting a response, 13635
message loss or congestion is indicated. If this occurs, then: 13636

• No additional message shall be placed into the OutstandingList until after the 13637
OutstandingList has first become empty. 13638

• The CurrentSendWindowLimit shall be set to one (1). 13639

• The messages that were in the OutstandingList at time of collapse shall be retried in 13640
order, according to the retry policies defined above. Retries use exponential backoff if the 13641
first retry does not succeed. Retries shall continue until either a response is received or 13642
the maximum number of retries has been met. When either of these conditions occurs, the 13643
message handling is considered complete, and the message shall be removed from the 13644
OutstandingList. 13645

Client requests may continue again, building up the CurrentSendWindowLimit to the 13646
Max_Send_Window_Size value using the procedure described above. 13647

EXAMPLE In an example of how the windows are used in a situation when there are no retries: 13648

Let Max_Send_Window_Size be a constant, equal to the maximum number of simultaneously outstanding requests 13649
permitted by the contract. This limit is established by the system manager. 13650

Let CurrentSendWindowSize be the variable that represents the number of simultaneously outstanding requests 13651
that exist for the contract at point in time t. CurrentSendWindowSize is a non-negative integer less than or equal to 13652
Max_Send_Window_Size. 13653

Let UsedSendWindowSize be the variable that represents the number of simultaneously outstanding requests that 13654
are still awaiting responses. 13655

AvailableSendWindowSize = CurrentSendWindowSize – UsedSendWindowSize. 13656

Assume: Max_Send_Window_Size = 3 13657

T1: Initialization: CurrentSendWindowSize = 1; UsedSendWindowSize = 0; AvailableSendWindowSize = 1 13658

T2: Message M1 sent: CurrentSendWindowSize = 1; UsedSendWindowSize = 1; AvailableSendWindowSize = 0 13659

T3: Message M1 response received: CurrentSendWindowSize = 1; UsedSendWindowSize = 0; 13660
AvailableSendWindowSize = 1 13661

T4: Message M2 sent: CurrentSendWindowSize = 1; UsedSendWindowSize = 1; AvailableSendWindowSize = 0 13662

T5: Message M3 response received: Current SendWindowSize = 2; UsedSendWindowSize = 0; 13663
AvailableSendWindowSize = 2. 13664

The CurrentSendWindowSize has been incremented by one, since: 13665

 a) it has been at size 1, and 2 transactions have completed successfully 13666

 b) CurrentSendWindowSize < Max_Send_Window_Size. 13667

T6: Message M4 sent: CurrentSendWindowSize = 2; UsedSendWindowSize = 1; AvailableSendWindowSize = 1 13668

T7: Message M5 sent: CurrentSendWindowSize = 2; UsedSendWindowSize = 2; AvailableSendWindowSize = 0 13669

T8 Message M4 and M5 responses received : CurrentSendWindowSize = 2; UsedSendWindowSize = 0; 13670
AvailableSendWindowSize = 2 13671

62734/2CDV © IEC(E) – 513 –

T9: Message M6 sent: CurrentSendWindowSize = 2; UsedSendWindowSize = 1; AvailableSendWindowSize = 1 13672

T10: Message M7 sent: Current SendWindowSize = 2; UsedSendWindowSize = 2; AvailableSendWindowSize = 0 13673

T11: Message M6 response received : Current Send Window Size = 3; UsedSendWindowSize = 1; 13674
AvailableSendWindowSize = 2 13675

The CurrentSendWindowSize has been incremented by one, since: 13676

 c) it has been at size 2, and 3 transactions have completed successfully. 13677

 d) CurrentSendWindowSize < Max_Send_Window_Size. 13678

T12: Message M8 sent: CurrentSend Window Size = 3; UsedSendWindowSize = 2; Available SendWindowSize = 1 13679

T13: Message M9 sent: CurrentSendWindowSize = 3; UsedSendWindowSize = 3; AvailableSendWindowSize = 0 13680

T14: Messages M7 response received: CurrentSendWindowSize = 3; UsedSendWindowSize = 2; 13681
AvailableSendWindowSize = 1 13682

T15: Message M10 sent: CurrentSendWindowSize = 3; UsedSendWindowSize = 3; AvailableSendWindowSize = 0 13683

Figure 116 depicts a situation wherein the current send window has not yet built up to the 13684
maximum send window limit size. In this example, the maximum send window limit is three 13685
messages, one message in the outstanding list has been sent and is awaiting a response, and 13686
one message may be sent before the usable send window limit is reached. 13687

Id

3

Maximum send window with limit = 3

Id

6

Current send window

Usable
send

window

Outstanding list

Id IdIdId

1 542

Request/response handling completed

Requests were sent and corresponding responses were
received

NOTE Responses may have been received in a
different order than that in which requests were sent. 13688

Figure 116 – Send window example 1, with current send 13689
window smaller than maximum send window 13690

Figure 117 depicts a situation wherein the current send window has built up to the maximum 13691
send window limit size. In this example, the maximum send window limit is three messages, 13692
one message in the outstanding list has been sent and is awaiting a response, and two 13693
messages may be sent before the usable send window limit is reached. 13694

 – 514 – 62734/2CDV © IEC(E)

Id

3

Maximum send window with limit = 3

Current send window = 3

Usable send windowOutstanding list

Id IdIdId

1 542

Request/response handling completed

Requests were sent and corresponding responses were
received

NOTE Responses may have been received in a
different order than that in which requests were sent.

Id

6

 13695

Figure 117 – Send window example 2, with current send window the same size as 13696
maximum send window, and non-zero usable send window width 13697

Figure 118 depicts a situation wherein the current send window has built up to the maximum 13698
send window limit size. In this example, the maximum send window limit is three messages, 13699
and three messages have been sent and are awaiting responses. 13700

Id

3

Maximum send window with limit = 3

Current send window = 3

Outstanding list

Id IdIdId

1 542

Request/response handling completed

Requests were sent and corresponding responses were
received

NOTE Responses may have been received in a
different order than that in which requests were sent.

Id

6

 13701

Figure 118 – Send window example 3, with current send window the same size as 13702
maximum send window, and usable send window width of zero 13703

12.12.4.2.4 Probing for congestion 13704

Some system configurations are more likely than others to incur message loss due to network 13705
congestion. In system configurations where congestion is more likely, an application may wish 13706
to regulate its AL service requests based on whether or not network congestion is present. To 13707
do this, an application may probe for congestion. To effect such a probe, the application may 13708
engage in a simple single message exchange. 13709

NOTE 1 Probing is intended for diagnostic purposes only. A single message is used to ensure that the probes do 13710
not overload the network, and to ensure that the response to a probe is distinguishable. 13711

The message request to use when probing shall be a non-concatenated read service. The 13712
read request and corresponding read response for the probe shall each fit within a single DL 13713
fragment. Any object attribute may be used as a probe; however, it is recommended (but not 13714
required) that the same object and attribute be used consistently for probing. For example, a 13715
standard attribute of the UAPMO may be used to probe UAPs, and a standard attribute of the 13716

62734/2CDV © IEC(E) – 515 –

DMAP DMO for probing the DMAP since those objects are required to be present in the 13717
corresponding applications. 13718

If the probe timeout does not expire prior to reception of the response, then the application 13719
should assume that there is no congestion. However, if the response does not return before 13720
the retry timeout interval passes, this indicates a higher probability that network congestion is 13721
present. In this situation, the application process shall self-regulate its communication 13722
activities by setting its CurrentWindowSize to 1. See 12.12.4.2.3. If the application desires to 13723
send another congestion probe message, it may do so using exponential backoff as described 13724
in 12.12.4.2.2.1, but shall use a temporally-distinguishable request identifier for each 13725
message probe. 13726

NOTE 2 Such distinction makes it possible for an application to compute RTT specific to congestion probing, and 13727
to make congestion decisions accordingly based on the congesting probing RTT data. 13728

For example, a UAP in device X may issue a read service request for the required standard 13729
state attribute of the required UAPMO contained within the destination application in device Y. 13730
This read request may be treated as an application process-initiated congestion probe. 13731

In the specific case of a download or upload, an application may probe for congestion. In 13732
these situations, congesting probing shall be performed as follows: 13733

• To probe prior to commencing a download operation, the client probe shall be a read 13734
request to the UploadDownload attribute MaxDownloadSize. 13735

• To probe for congestion during a download operation, the client probe shall be a read 13736
service request for the UploadDownload objects LastBlockDownloaded attribute. 13737

• To probe prior to commencing an upload operation, the client probe shall be a read 13738
request to the UploadDownload attribute MaxUploadSize. 13739

• To probe for congestion during an upload operation, the client probe shall be a read 13740
service request to the UploadDownload objects LastBlockUploaded attribute. 13741

 Communication service contract 12.12.513742

A UAP makes a contact request to the local DMAP via an UAPME-n SAP in order to establish 13743
an agreement for a communication service needed by the UAP. If the need can be met, the 13744
DMAP provides a service contract identifier to the UAP that represents the agreement. The 13745
contract identifier is passed from the UAP to the ASL when it makes an ASL service request. 13746
This service contract ID is then used by the lower communication protocol suite to identify the 13747
layer-specific characteristics of the contract that have been established into the lower 13748
communication protocol suite layers by the local DMAP as part of establishing the service 13749
contract. The communication of information required from the UAP to the DMAP in order to 13750
acquire a service contract identifier is a device-internal matter, and hence not specified by 13751
this standard. 13752

All communication contracts have a base set of information. Additional required information 13753
depends on the type of communication relationships desired. For example, a 13754
publish/subscribe relationship for periodic communication requires specification of the desired 13755
phase and period. 13756

This standard does not specify how to determine the information needed by the UAP to 13757
specify the characteristics of a contract. For example, such information may be configured, 13758
such as the periodicity and phase to use in scheduled communication, or such information 13759
may be determined by the vendor of the device that contains the UAP. 13760

Contract requests may be negotiated down by the system manager. UAP policies regarding 13761
the handling of negotiated down contracts, as well as policies regarding the handling of a 13762
declined contract, are outside the scope of this standard. See 6.3.11 for further information 13763
about the information that needs to be specified to request a contract. 13764

 – 516 – 62734/2CDV © IEC(E)

The publishing period is represented by a signed 16-bit integer value. A positive value 13765
indicates a publication period as a multiple of 1 s (e.g., a value of 5 indicates a publishing 13766
period of 5 s; a value of 3 600 indicates a publishing period of 1 hr). A negative value 13767
indicates publication on a fraction of 1 s (e.g., -4 indicates publish every ¼ s, -2 indicates 13768
publish every ½ s). A zero value indicates that no publishing should occur. 13769

The periodicity selected should be based on the efficiency of the operation with this standard 13770
and the typical process practice. 13771

DMAP knowledge of the destination TSAP port is not a requirement for creating a service 13772
contract, as contract establishment is concerned with resources for communication over the 13773
network conditions, whereas the destination port is used within the destination device, after 13774
the over-the-network communication has occurred. 13775

NOTE Policies to retry establishment of a contract in the event of failure of contract establishment or revocation 13776
of a contract are behaviors of the device as a whole (as opposed to behaviors of a component within the device). 13777
Device-level behaviors are discussed in 6.3.11.2.4.2. 13778

 AL addressing 12.1313779

 General 12.13.113780

Certain information is required to address an object, an object’s attribute, an element of an 13781
object’s attribute (e.g., an element of a structure or an element of an array), or an object’s 13782
method in native communications. Figure 119 represents the general addressing model for 13783
UAL process objects. 13784

13785
 13786

Figure 119 – General addressing model 13787

62734/2CDV © IEC(E) – 517 –

 Object addressing 12.13.213788

An object is addressed in unicast communications by specifying: 13789

• its containing device physical address; 13790

• the TL TDSAP is used to communicate with the unique UAL process that contains the 13791
object (that is, the TDSAP maps 1:1 to an application process); 13792

• a T-port number corresponds to a particular TDSAP; and 13793

• the unique object identifier within the UAL process. 13794

T-ports shall be assigned in consecutive order to TDSAPs, starting from the first available 13795
T-port. For example, TDSAP number 0 shall be correlated with the first T-port 0xF0B0. 13796
TDSAP number 1 shall be correlated with the second port, 0xF0B1, and so forth. 13797

Particular TDSAPs, and their corresponding T-ports, are reserved by this standard so that 13798
they are well-known to all applications. Specifically, the DMAP in every device shall have the 13799
reserved transport port number 0xF0B0, which is associated with TDSAP number 0. The 13800
SMAP in a device shall have the reserved transport port number 0xF0B1, which is associated 13801
with TDSAP number 1. Devices that do not have an SMAP present shall not use T-port 13802
number 0xF0B1. 13803

It is recommended that UAPs that are anticipated to have a large amount of messaging use 13804
the T-ports numbered 0xF0B2 through 0xF0BF, as they are represented in compressed form 13805
over the network, thus minimizing use of network resources, as well as RF congestion and 13806
device energy demand. See 11.4.4 for further details on TDSAPs and T-ports. 13807

In order to minimize the encoding of application messages, it is recommended that object 13808
identifiers be allocated consecutively, starting at 1. 13809

NOTE Object identifier 0 is reserved by this standard for the use of the application process management object 13810
contained within all application processes. 13811

Multicast communication is not supported. 13812

 Object attribute addressing 12.13.313813

An attribute of an object is addressed by specifying: 13814

• the addressing of its containing object; and 13815

• the unique attribute identifier within the object. 13816

In order to minimize the encoding of application message attributes, it is recommended that 13817
attributes be allocated consecutively, starting at 1. 13818

NOTE Attribute identifier 0 is reserved by this standard as a means of referring to an aggregate as a whole. 13819

 Object attribute addressing 12.13.413820

12.13.4.1 General 13821

Addressing for attributes is defined based on the type of attribute. This standard supports the 13822
following attribute types: 13823

a) standard scalar types defined by this standard; 13824
b) 1-origin singly-dimensioned homogeneous or heterogeneous arrays of elements of type a); 13825
c) [1,1]-origin doubly-dimensioned arrays, where the first dimension indexes a homogeneous 13826

array of elements of type b). 13827

 – 518 – 62734/2CDV © IEC(E)

Standard data structures defined by this standard are modeled and accessed as 1-origin 13828
singly-dimensioned heterogeneous arrays of elements. Thus access to the k’th member of a 13829
data structure, as enumerated in declaration order of its member elements, is provided by 13830
accessing it’s k’th element as if the data structure were a 1-origin heterogeneous array. 13831

NOTE In programmatic terms, this means that access to the k’th member of structure s, which programmatically 13832
might be referenced as s.memberNamek, is accessed as if it were s[k], where k is the 1-origin ordinal index of the 13833
member in the containing declaraion. 13834

Elements of a doubly-dimensioned array that are themselves structures or arrays are 13835
accessible only by representing those individual elements as octet strings of uniform size. 13836

12.13.4.2 Scalars 13837

This standard supports access to attributes that are scalars of the following types: 13838

• Boolean, mapped to Boolean8, or to Boolean1 when in a packed data structure; 13839

• Integer, mapped to Integer8, Integer16, Integer32, Unsigned8, Unsigned16, Unsigned32, 13840
Unsigned64, Unsigned128, or to UnsignedN where N < 16 when in a packed data 13841
structure; 13842

• Float, mapped to Float32 or Float64; 13843

• VisibleString, mapped to VisibleStringN when N is fixed or determined by context; 13844

• OctetString, mapped to OctetStringN when N is fixed or determined by context; 13845

• BitString, mapped to BitStringN when N is fixed or determined by context; 13846

• SymmetricKey, mapped to OctetString16 in this edition of this standard. 13847

NOTE 1 Each BitString is represented as an integral number of octets, or as an appropriate number of adjacent 13848
bits when in a packed data structure; 13849

NOTE 2 See 12.22.3 on data types for the scalar types supported by this standard. 13850

NOTE 3 OctetString and BitString provide a means for transparent conveyance of information that is unintelligible 13851
to the conveying protocol layer. 13852

12.13.4.3 Structured protocol addresses treated as scalars 13853

The following are also considered scalars when used in the data structures of this standard, 13854
even though their own defining standards specify a substructure for the item: 13855

• IPv6Address, mapped to Unsigned128 to support simple numeric comparison; 13856

NOTE 1 The substructure of this class of address is specified in IETF RFC 2460 and its related standards. 13857

• EUI64Address, mapped to Unsigned64 to support simple numeric comparison; 13858

NOTE 2 The substructure of this class of address is specified by the IEEE’s Guidelines for 64-bit Global 13859
Identifier (EUI-64™) 13860

• DL16Address, mapped to Unsigned16 to support simple numeric comparison. 13861
In IEEE 802.15.4:2011, the value 0xFFFF is the broadcast DL16Address, while any value 13862
in the range 0x0000..0x7FFD may be assigned to a DLE as a unicast DL16Address. 13863
However, this standard reserves the value 0 to indicate an unassigned DL16Address, so 13864
for this standard the range of unicast DL16Addresses is 0x0001..0x7FFF. 13865

NOTE 3 IEEE 802.15.4:2011 reserves the value 0xFFFE. IETF RFC4944 (6LoWPAN over IEEE 802.15.4) 13866
specifies that the range 0x80FF..0x9FFF is reserved for D-subnet-local multicast. 9.1.6.4 specifies that the 13867
range 0xA000..0x0AFFF is reserved by this standard for graph numbers used in source routes. 13868

12.13.4.4 Singly-dimensioned arrays and standard data structures 13869

This standard supports access to standard data structures and to arrays of either scalar 13870
elements or standard data structures. 13871

62734/2CDV © IEC(E) – 519 –

Supported access to an array, or to a standard data structure not contained within an array, is 13872
as follows: 13873

• A singly-dimensioned array or standard structure a may be accessed in its entirety by 13874
specifying access to member zero (e.g., an “index” value of 0, a[0]). 13875

• A single member of a singly-dimensioned array or standard structure a may be accessed 13876
by identifying the 1-origin index of the desired member k , as specified in 12.13.4.1. 13877

• A scalar member k of a standard structure member b of a standard structure a (e.g., a.b.k, 13878
where a and b are standard structures and k is a scalar supported by this standard). 13879

• A singly-dimensioned array element b of a standard structure a may be accessed in its 13880
entirety by specifying access to member zero (e.g., a.b[0], where a is a standard structure 13881
and b is a singly-dimensioned array, and the array b is comprised either of scalars or 13882
standard structures as defined by this standard). 13883

• A single element of a singly-dimensioned array b of standard structures that is a member 13884
of a standard structure a (e.g., a.b[k], where a is a standard structure, b is a singly-13885
dimensioned array comprised either of scalars or standard structures as defined by this 13886
standard, and k is the 1-origin index of the member of interest). 13887

12.13.4.5 Singly-dimensioned arrays 13888

This standard supports access to a singly-dimensioned array, whose individual members are 13889
either scalars or standard data structures as defined by this standard, as follows: 13890

• A single element of a single dimension array, comprised of scalars (e.g., a[k], where a 13891
specifies the array and k specifies the element in the array). 13892

• A singly-dimensioned array of scalars or standard data structures may be accessed in its 13893
entirety (e.g., a[0], where a specifies the array, and 0 specifies that access is to the entire 13894
array). 13895

• An element of a singly-dimensioned array comprised of standard structures (e.g., a[k][0], 13896
where a specifies the array, k specifies the array element that is the standard structure, 13897
and 0 specifies that access is to the entire member structure). 13898

• A scalar member of a standard structure contained in a singly-dimensioned array (e.g., 13899
a[k].j, where a specifies the structure as defined by this standard, k specifies the array 13900
element that is the standard structure, and j specifies the member within that standard 13901
structure). 13902

• A singly-dimensioned array contained as a member of a singly-dimensioned array (e.g., 13903
a[k][0], where a is an array of standard structures, k specifies the element of the array, and 13904
0 specifies that access is to the entire array). 13905

• A member of a singly-dimensioned array of scalars or standard structures contained as a 13906
member of a singly-dimensioned array (e.g., a[k][j], where a specifies the outer scope 13907
array, k specifies an element of that array that is itself an array, and j specifies the 13908
element of the inner scope array). 13909

12.13.4.6 Doubly-dimensioned arrays 13910

This standard supports access to a doubly-dimensioned array, consisting of a singly-13911
dimensioned homogeneous array of singly-dimensioned homogeneous or heterogeneous 13912
arrays of scalars as defined by this standard, as follows: 13913

a) a scalar element of a doubly-dimensioned array (e.g., a[k][j]); 13914
b) a doubly-dimensioned array in its entirety (e.g., a[0][0]); 13915
c) a row of a doubly-dimensioned array (e.g., a[k][0]); or 13916
d) a column of a doubly-dimensioned array (e.g., a[0][k]). 13917

NOTE Addressing form d) specifies a slice of the array, where the result is a singly-dimensioned array whose 13918
elements are the k’th member of each subarray. This slice mode of access enables selective access to any single 13919
member (element) of each component data structure in an array of identically-structured data structures. 13920

 – 520 – 62734/2CDV © IEC(E)

 Object method addressing 12.13.513921

An object method is addressed by specifying 13922

• the addressing of its containing object, and 13923

• the object-unique index of the method identifier of the object. 13924

 Management objects 12.1413925

Standard management objects to manage the device as a whole are defined in this standard. 13926
These objects are defined in 6.2 and are accessed through a UAL-contained MP that may 13927
include, for example, a management object to support identification of the device, 13928
management objects for each layer of the communication protocol suite, and a management 13929
object to report alerts from the device. 13930

NOTE Though each object tracks its own event and alarm conditions, the reporting of such conditions is specified 13931
by a single ARMO for the device as a whole. This object manages aspects including, but not limited to, the local 13932
alert reporting queue(s), the local timer(s) associated with retransmitting if an individual alert acknowledgment is 13933
not received, the local alert queue overflow handling, and requests for alarm recovery. See 6.2.7.2 for further 13934
details. 13935

 User objects 12.1513936

 General 12.15.113937

Standard UAP-containable objects are defined to enable interworkability across industries and 13938
segments. These objects may be industry-independent (that is, applicable across industries 13939
supported by this standard), or industry-dependent (that is, applicable to a particular industry 13940
supported by this standard, but not used across industries). 13941

 Industry-independent objects 12.15.213942

12.15.2.1 General 13943

The standard objects (UAPMO, ARO, UDO, Concentrator, Dispersion, Tunnel, and Interface) 13944
are applicable across industries supported by this standard. 13945

12.15.2.2 UAP management object 13946

12.15.2.2.1 General 13947

There is exactly one addressable UAP management object (UAPMO) per UAP supported by 13948
the AL defined by this standard. The numeric object identifier of an object indicates a 13949
particular object instance. The numeric object identifier of the UAPMO in every UAP shall be 13950
fixed and shall have the value one (1). This object facilitates common management of 13951
application processes within a device. Attributes of this object are used to indicate such 13952
information as the version/revision of the application process and the logical status of the 13953
application process. For example, an attribute of the UAPMO indicates if the corresponding 13954
UAP is active or inactive. 13955

NOTE 1 It is possible for a UAPMO to support management of a particular group (set) of objects within the UAP. 13956

NOTE 2 Dynamic instantiation of UAPs is outside the scope of this standard. 13957

12.15.2.2.2 Object attributes 13958

A UAPMO has the attributes defined in Table 240. 13959

62734/2CDV © IEC(E) – 521 –

Table 240 – UAP management object attributes 13960

Standard object type name: UAP management object (UAPMO)

Standard object type identifier: 1

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior of
attribute

ObjectIdentifier Object key
identifier

Unique identifier for
the object

Type: Unsigned16 N/A

Classification:
Constant

UAP_ID Object key
identifier

Associated TLDE
SAP

Type: Local matter
(as defined by local
TL)

Local TDLE-SAP

Classification:
Constant

UAP_TL_Port Object key
identifier

Associated T-port Type: Unsigned16 NOTE 1 The specification
of the UAP to its local TL is
a local matter.

NOTE 2 Transport defines
the hexadecimal value set
0xF0B0+n (where n may
range from 0..15) to specify
the most compressed
representation (into 4 bits)
for communication.

Classification:
Constant

Reserved for
future use

0 — — —

VersionRevision 1 VersionRevision of
the UAP

Type: VisibleString Human readable
identification associated with
the UAP Management
object.

NOTE The UAP vendor
determines content of this
attribute.

Max size: 64 octets

Classification:
Constant

Accessibility: Read
only

State 2 Status of UAP Type: Unsigned8 See Table 241.

Classification: Static

Accessibility: Read
only

Default value: 1

Named values:
0: inactive;
1: active;
2: failed

Command 3 Command to change
the state of the UAP

Type: Unsigned8 The value ‘none’ shall not be
indicated in a write request.

Soft reset shall preserve
configuration/commissioning
data.

Hard reset returns
application to factory default
settings.

Classification: Static

Accessibility:
Read/write

Default value: 0

Named values:
0: none;
1: stop;
2: start;
3: soft reset;
4: hard reset

MaxRetries 4 The maximum
number of client
request retries this
application process
will send in order to
have a successful
client/server

Type: Unsigned8 The number of retries sent
for a particular message may
vary by message based on
application process
determination of the
importance of the message.

Classification: Static

Accessibility: Read
only

Default value: 3

 – 522 – 62734/2CDV © IEC(E)

Standard object type name: UAP management object (UAPMO)

Standard object type identifier: 1

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior of
attribute

communication. Valid range: 0..8 For example, some
messages may not be retried
at all, and others may be
retried the maximum number
of times.

Classification: Static

Accessibility: Read
only

Number of
objects in the
UAP including
this UAPMO

8 Number of objects in
the UAP including
this UAPMO

Type: Unsigned8 All UAPs are required to
have a UAPMO, hence the
default value is indicated as
being 1 (one). The actual
value of this attribute shall
be the total number of
objects contained in the
UAP, including the UAPMO.

Classification: Static

Accessibility: Read
only

Default value: 1

Valid range: > 0

Array of UAP
contained
objects

9 Identification of the
objects and type
contained in this
UAP

Type: Array of
ObjectIDandType

See Table 271.

Classification: Static

Accessibility: Read
only

Static_Revision_
Level

10 Revision level of the
static data
associated with all
management objects

Type: Unsigned16 Revision level is
incremented each time a
static attribute value of any
object contained in this UAP
is changed.

Classification: Static

Accessibility: Read
only

Default value: 0

Reserved for
future use by this
standard

5..7

11..63

— — N octets of presently
undefined content.

 13961
12.15.2.2.3 State table for UAP management object 13962

Table 241 describes the state table for the UAP management object. 13963

Table 241 – State table for UAP management object 13964

Transition Current
state

Event(s) Action(s) Next
state

T1 Inactive Write(Command, Start) Write.rsp(success) Active

T2 Active Write(Command,Stop) Write.rsp(success) Inactive

T3 Inactive Write (Command,Stop) Write.rsp(success) Inactive

Write(any Reset command) Write.rsp(operationAccepted)

T4 Active Write(Command,Start) Write.rsp(success) Active

Write(any other command) Write.rsp(objectStateConflict)

T5 Inactive Write(Command,Start) Write.rsp(failed)

Note: Fails to start

Failed

T6 Active Application problem N/A Failed

T7 Failed Write(Any Reset command) Write.rsp(operationAccepted) Inactive

T8 Failed Write(Any command other than
Reset)

Write.rsp(objectStateConflict) Failed

 13965
Figure 120 shows the UAP management object state diagram. 13966

62734/2CDV © IEC(E) – 523 –

Inactive

Active

Failed

T3

T4

T5

T6

T7

T8

T1 T2

 13967

Figure 120 – UAP management object state diagram 13968

12.15.2.2.4 Standard object methods 13969

A UAP management object has methods as defined in Table 242. 13970

Table 242 – UAP management object methods 13971

Standard object type name: UAP Management Object

Standard object type identifier: 1

Method name Method ID Method description

Null 0 Reserved by standard for future use

Reserved for future use by this
standard

0..127 These method identifiers are reserved for future use by
this standard

Implementation-specific use 128..255 These method identifiers are available for implementation-
specific use

 13972
12.15.2.3 Alert-receiving object 13973

12.15.2.3.1 General 13974

There may be up to four alert-receiving objects in a device, one per alert reporting category. 13975
These alert-receiving objects may receive more than one category of alert report. Categories 13976
of alert reports received by alert objects shall be unique; that is, if one alert-receiving object is 13977
receiving alerts of category X from the ASL, no other alert objects in the device may also 13978
receive alerts of category X from the ASL. These alert-receiving objects may be contained in 13979
the same or different processes (e.g., an alert-receiving object for security alerts may be 13980
contained in a one application process, while another for process alerts may be contained in 13981
another application process). 13982

NOTE Further separation of alerts, or consolidation and re-reporting of alerts, if necessary, is an application 13983
process local matter, outside the scope of the AL specification. 13984

12.15.2.3.2 Object attributes 13985

An alert-receiving object may receive alerts from one or more alert-reporting sources. The 13986
object has the attributes defined in Table 243. 13987

 – 524 – 62734/2CDV © IEC(E)

Table 243 – Alert-receiving object attributes 13988

Standard object type name: Alert-receiving object

Standard object type identifier: 2

Attribute name Attribute
identifier

Attribute
description

Attribute data information Description of
behavior of

attribute

ObjectIdentifier Object key
identifier

Unique identifier for
the object

Type: Unsigned16 N/A

Classification: Constant

Valid range: > 0

Reserved for future
use

0 — — —

Categories 1 BitString of alert
categories indicating
which object
instance supports
receiving

Type: BitString N/A

Classification: Static

Accessibility: Read only

Default value: 0

Named indices:
0: device alerts;
1: communication alerts;
2: security alerts;
3: process alerts;
4..7: reserved for future use
by this standard

Errors 2 Count of reports
received not for a
category that the
receiving object
indicated was
supported

Type: Unsigned16 Wraps to 0 when
maximum value is
reached Classification: Dynamic

Accessibility: Read only

Default value: 0

Reserved for future
use by this
standard

3..63 — — N octets of
presently
undefined content

 13989
12.15.2.3.3 State table for AlertReport handling 13990

Table 244 indicates the states for handling reception of an AlertReport. 13991

Table 244 – State table for handling an AlertReport reception 13992

Transition Current State Event(s) Action(s) Next State

T1 Ready AlertReport.ind
received

Note processing alert report from device
X

Handle
individual alert in
report

T2 Handle individual
alert in report

Check
category

Valid category:
Acknowledge alert report, and process it

Ready

Invalid category:
Increment the Alert-receiving object
instances value of its Errors attribute

 13993
Figure 121 shows the state diagram for alert reception. 13994

62734/2CDV © IEC(E) – 525 –

Ready

Handle individual alert

T1T2

 13995

Figure 121 – Alert report reception state diagram 13996

Figure 122 shows one example of alert reporting from multiple devices sources to multiple 13997
alert-receiving objects contained in a single UAP of a single sink device. 13998

 13999

Figure 122 – Alert-reporting example 14000

12.15.2.3.4 Standard object methods 14001

An AlertReceiving object has the methods defined in Table 245. 14002

Table 245 – AlertReceiving object methods 14003

Standard object type name: AlertReceiving object

Standard object type identifier: 2

Method name Method
ID

Method description

Null 0 Reserved by standard for future use

Reserved for future use by
this standard

0..127 These method identifiers are reserved for future use by this
standard

Implementation-specific use 128..255 These method identifiers are available for implementation-specific
use

 14004

 – 526 – 62734/2CDV © IEC(E)

12.15.2.4 UploadDownload object 14005

12.15.2.4.1 General 14006

An UploadDownload object is used for either uploading or downloading information to a 14007
device. The UploadDownload object may be used to support operations such as downloading 14008
a new version of operating firmware or downloading new UAP-contained code or UAP-14009
required bulk data. The UploadDownload object maintains revision control information to 14010
indicate what was downloaded or what is available for upload (or both). 14011

An UploadDownload object is likely to support upload or download for a single semantic set of 14012
information. An UploadDownload object shall support only one upload or download operation 14013
at a time. 14014

A process may have zero or more UploadDownload object instances. Multiple 14015
UploadDownload object instances are required if more than one semantic set of information is 14016
needed to upload or download its required content. 14017

NOTE 1 The local effect of an application process upload or download (e.g., the creation of new network-visible 14018
objects as a result of a download) is a local matter, outside the scope of this standard. 14019

NOTE 2 UploadDownload objects are usable to support upload operations such as the upload of statistical or 14020
historical information from the device for analysis. An UploadDownload object is usable to update 14021
software/firmware in the target device. 14022

NOTE 3 Support of multicast download is a subject of future standardization. To support multicast loads to a 14023
specific set of devices, a configuration tool is currently envisioned to be used to configure the multicast 14024
address/device/object relationships for the objects in the multicast set. 14025

12.15.2.4.2 Object attributes 14026

An UploadDownload object has the attributes defined in Table 246. Attributes are included in 14027
this object type in order to provide application-level communication timing guidance to the 14028
client that is communicating with the UploadDownload object. 14029

NOTE Further guidance to the client, such as regarding tuning of communication timing (for example, related to 14030
network communication delays due to the topology of the messaging graph traversed, potential queuing delays, 14031
etc.), usable to tune client application behavior, is transparent to an application process, and hence the application 14032
itself is unable to provide complete guidance. 14033

62734/2CDV © IEC(E) – 527 –

Table 246 – UploadDownload object attributes 14034

Standard object type name: UploadDownload object

Standard object type identifier: 3

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

ObjectIdentifier Object key
identifier

Unique
identifier for
the object

Type: Unsigned16 N/A

Classification: Constant

Valid range: >0

Reserved for future
use

0 — — —

OperationsSupported 1 Indicates if
this object
supports
uploads,
downloads, or
both

Type: Unsigned8 N/A

Classification: Constant

Accessibility: Read only

Named values:
0: Defined size unicast
upload only;
1: Defined size unicast
download only;
2: Defined Size unicast
upload and unicast
download;
3..15: reserved for future
use by this standard

Description 2 Human
readable
identification
of associated
content.

Type: VisibleString
SIZE (0..64)

Classification: Static

Accessibility: Read only

State 3 State of the
UploadDownl
oad Object
instance

Type: Unsigned8 See state table below

Classification: Dynamic

Accessibility: Read only

Default value: 0

Named values:
0: Idle;
1: Downloading;
2: Uploading;
3: Applying;
4: DLComplete;
5: ULComplete;
6: DLError;
7: ULError

Command 4 Action
command to
this object

Type: Unsigned8 See Table 254

Classification: Non-
cacheable

Accessibility: Read/write

Named values:
0: Reset;
1: Apply (used for
Download only);
2..15: reserved for future
use by this standard

 14035

 – 528 – 62734/2CDV © IEC(E)

Table 246 (continued)

Standard object type name: UploadDownload object

Standard object type identifier: 3

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

MaxBlockSize 5 Maximum
size of a
block which
can be
accepted for
a download,
or provided
for an upload

Type: Unsigned16 Unit: octets

The value shall not
exceed the maximum
amount of data that can
be conveyed in a single
APDU per the
communication contract.
Additionally, space in the
APDU shall be left for
service related encoding.

Block sizes conveyed may
be smaller than this value,
but shall not be larger

Classification: Static

Accessibility: Read only

Default value: 1 to
(MaxNPDUsize - Max TL
header size – max(sizeof
(additional coding of AL
UploadData service
request), additional coding
of sizeof(AL
DownloadData service
response))

Valid range: 0..maximum
size for data in an APDU

MaxDownloadSize 6 Maximum
size available
for download
as a whole.

Type: Unsigned32 Unit: octets

Classification: Static

Accessibility: Read only

Default value: 0

MaxUploadSize 7 Size available
for Upload

Type: Unsigned32 Unit: octets

Classification: Static

Accessibility: Read only

Default value: 0

DownloadPrepTime 8 Time
required, in
seconds, to
prepare for a
download

Type: Unsigned16 Time required between
sending the
StartDownload response
till the object can handle a
DownloadData

Classification: Static

Accessibility: Read only

Default value: 0

DownloadActivationTi
me

9 Time in
seconds for
the object to
apply newly
downloaded
content

Type: Unsigned16 N/A

Classification: Static

Accessibility: Read only

Default value: 0

UploadPrepTime 10 Time
required, in
seconds, to
prepare for
an upload

Type: Unsigned16 Time from sending the
StartUpload response till
the object can accept an
UploadData

Classification: Static

Accessibility: Read only

Default value: 0

UploadProcessingTime 11 Typical time
in seconds
for this
application
object to
process a
request to
upload a
block

Type: Unsigned16 This information is
intended to allow a client
of an Upload operation to
tune its upload related
messaging to correspond
to the operation of the
particular
UploadDownload object
instance.

For example, a client may
use this time to help
determine its timeout/retry
policy, or to determine
when to invoke a method
on the object instance

Classification: Static

Accessibility: Read only

Default value: 0

62734/2CDV © IEC(E) – 529 –

Table 246 (continued)

Standard object type name: UploadDownload object

Standard object type identifier: 3

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

DownloadProcessingTi
me

12 Typical time
in seconds
for this
application
object to
process a
downloaded
block

Type: Unsigned16 This information may be
used by a client of a
Download operation to
tune its download related
messaging to correspond
to the operation of the
particular
UploadDownload object
instance.

For example, a client may
use this time to help
determine its timeout/retry
policy, or to determine
when to invoke a method
on the object instance

Classification: Static

Accessibility: Read only

Default value: 0

CutoverTime 13 Time (in
seconds)
specified to
apply the
download
content

Type: TAINetworkTime Downloaded content will
be applied at the time
specified by this attribute Classification: Static

Accessibility: Read Write

Initial default value : 0

LastBlockDownloaded 14 Number of
last block
successfully
downloaded

Type: Unsigned16 Updated when an execute
response to a
DownloadData method is
returned. Block number
counting shall start at 1
(one). See 12.15.2.4.5.3

Classification: Static

Accessibility: Read only

Default value : 0

LastBlockUploaded 15 Number of
last block
successfully
uploaded

Type: Unsigned16 Updated when an execute
response to an
UploadData method is
returned. Block number
counting shall start at 1
(one). See 12.15.2.4.5.3

Classification: Static

Accessibility: Read only

Default value : 0

ErrorCode 16 Upload or
Download
error

Type: Unsigned8 Updated when there is an
error in uploading or
downloading to this
object.

The error is cleared when
the object transitions out
of the error state to the
idle state.

Use InconsistentContent
to indicate that the device
did not cutover as
scheduled due to problem
with download payload.

Use InsufficientDevice
Resources to indicate that
the download could not be
completed due to lack of
memory or other
resources

Classification: Static

Accessibility: Read only

Default value : 0

Named values:
0: noError;
1: timeout;
2: clientAbort;
18: InconsistentContent;
27: InsufficientDevice
Resources;
3..17, 19..26, 28..63:
reserved for future use by
this standard;
64..255:
manufacturerSpecific

 – 530 – 62734/2CDV © IEC(E)

Table 246 (continued)

Standard object type name: UploadDownload object

Standard object type identifier: 3

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

Reserved for future
use by this standard

16..63 — — —

This standard does not prescribe product lifecycle management or versioning policies.

Description may be used to indicate interchangeability of versions, or to identify features / fixes / software
builds.

The maximum value of any additional coding for the application coding for this standard is 9 octets.

Implementers may wish to consult IETF RFC 2348 regarding recommendations for a maximum size of PDUs.

 14036
12.15.2.4.3 Standard object methods 14037

Initiation of an upload or download bulk data transfer requires first reaching an agreement 14038
between the corresponding application objects to participate in the data transfer. 14039

Any additional coordination required to ensure the readiness of the responding device to 14040
accept an upload or download request is the responsibility of the UAL process that will be 14041
starting a bulk transfer operation. 14042

Client/server messaging to access coordination information from an attribute or set of 14043
attributes of the UploadDownload object may be used to support this coordination activity. 14044
Specifically, a read request may be used in advance of starting a bulk transfer in order for a 14045
client to collect bulk transfer communication-related information specific to an 14046
UploadDownload object instance. Once agreement is reached, the client application controls 14047
when the data is provided (for a download) to the UploadDownload object, or requested (for 14048
an upload) from the UploadDownload object. When transfer is complete, the client indicates 14049
the transfer has ended. Additionally, the client may close the transfer if it determines that the 14050
entire data transfer should not be completed. 14051

The serving application may request the data transfer be aborted if it determines that the data 14052
transfer cannot or should not be completed. 14053

A serving application making a decision to abort based on lack of communication from the 14054
client should at least allow for the default standard retries and retry timing policy for the 14055
client/server communication policy in order to establish an appropriate timeout. 14056

As with other application communications, it is required that transmission bandwidth be 14057
allocated by a communication service contract in order to support a bulk data transfer. 14058
Bandwidth for bulk data transfer is not considered dedicated bandwidth as used for periodic 14059
messaging, but rather is considered shared bandwidth as used for aperiodic messaging. Use 14060
of shared bandwidth among all users of shared bandwidth by a device is dependent on a 14061
combination of overall contract priority and message priority. Contract priority is defined by 14062
the system manager. Message priority is defined by the application process. 14063

NOTE 1 Any required coordination or sequencing of multiple images to different UploadDownload objects is the 14064
responsibility of the host application process. Different uploadable or downloadable images necessitate separate 14065
UploadDownload object instances. 14066

NOTE 2 The semantics and syntax of the content and use of uploaded or downloaded information are outside the 14067
scope of this standard. The resulting activity in the application process of the device providing upload data or 14068
accepting download data, other than updating the UploadDownload object itself, is a local matter, and hence is 14069
outside the scope of this standard. 14070

62734/2CDV © IEC(E) – 531 –

NOTE 3 A proxy application within the device is one way for a single device to process the download multiple 14071
times. 14072

Upload from or download to a single device uses a unicast protocol; that is, the upload or download content is sent 14073
from/to a single UploadDownload object within a single device. 14074

NOTE 4 File content and/or naming conventions, if applicable to an upload or download are outside the scope of 14075
this standard. 14076

An UploadDownload object has the methods defined in Table 247. 14077

Table 247 – UploadDownload object methods 14078

Standard object type name: UploadDownload object

Standard object type identifier: 3

Method name Method
ID

Method description

Null 0 Reserved by standard for future use

StartDownload 1 This method is used by a client to reach an agreement with an
UploadDownload object to participate in a download for which the
client will be providing the data, one block at a time

DownloadData 2 This method is used by a client to provide data to an
UploadDownload object for an agreed download operation

EndDownload 3 This method is used by a client to terminate a download operation
that either has completed successfully, or which the client wishes to
abort

StartUpload 4 This method is used by a client to reach an agreement with an
UploadDownload object to participate in an upload for which the client
will be requesting the data, one block at a time

UploadData 5 This method is used by a client to request data from an
UploadDownload object for an agreed upload operation

EndUpload 6 This method is used by a client to terminate an upload operation that
either has completed successfully, or that the client wishes to abort

Reserved for future use by
this standard

7..127 These method identifiers are reserved for future use by this standard

Implementation-specific
use

128..255 These method identifiers are available for implementation-specific
use

The approach used for upload and download has roots in the experiences of multiple accepted standards,
including but not necessarily limited to Fieldbus Foundation, Device Net International, IETF RFC 1350 and
IETF RFC 2347. Attributes of the UploadDownload object provide application-level information to assist in
timeout interval determination by a client, hence IETF RFC 2349 is not followed. Acknowledgment retry as
proposed in IETF RFC 2347 is not adopted for the following reasons:

• The use cases driving this standard, and the agreed set of technical requirements this standard was to meet,
have the vast bulk of communication being publish/subscribe, with very limited use of upload/download.

• The upload/download operations that have been defined are not time-critical.

• The client application receives feedback from the server if the server is getting duplicates, and can elect to
terminate the operation.

• The server application is aware of when it is sending error messages back to the client, and is able to elect
to abort the operation.

 14079
12.15.2.4.4 StartDownload method 14080

Table 248 describes the StartDownload method of the UploadDownload object. 14081

 – 532 – 62734/2CDV © IEC(E)

Table 248 – UploadDownload object StartDownload method 14082

Standard object type name: UploadDownload object

Standard object type identifier: 3

Method name Method
ID

Method description

StartDownload 1 A client uses the StartDownload method to indicate to an UploadDownload object
instance that it desires to download the object.

Input arguments

Argument
number Argument name Argument

type Argument description

1 BlockSize Unsigned16 The size of a block of data in octets that will
be downloaded

2 DownloadSize Unsigned32 The total size of data to be downloaded in
octets

3 DownloadMode Unsigned8 The desired mode of operation

Output arguments

Argument
number Argument name Argument

type Argument description

None

 14083
12.15.2.4.4.1 Method description 14084

A client uses the StartDownload method to indicate to an UploadDownload object instance 14085
that it desires to download the object, and to specify the parameters of the download in the 14086
input argument list. The UploadDownload object may accept or reject the download, indicating 14087
one or the other outcome via the output argument list. 14088

If an UploadDownload object accepts to participate in a download operation, it shall not 14089
accept another download operation, or an upload operation until the download operation in 14090
process has been terminated or the object has been reset. 14091

12.15.2.4.4.2 Input arguments 14092

Input arguments include: 14093

• BlockSize, which indicates the size of a block of data in octets. All blocks shall have the 14094
same size, except that the last block of a download may contain a smaller positive number 14095
of octets. 14096

• DownloadSize, which represents the total size of data to be downloaded, in octets. 14097

• DownloadMode, which indicates the operational mode desired. The valid value for this 14098
argument indicates unicast and is represented by a value of zero. 14099

12.15.2.4.4.3 Output arguments 14100

There are no output arguments for this method. 14101

12.15.2.4.4.4 Response codes 14102

The following feedback codes are valid for this method: 14103

• operationAccepted; 14104

• invalidBlockSize; 14105

• invalidDownloadSize; 14106

• unexpectedMethodSequence; 14107

62734/2CDV © IEC(E) – 533 –

• insufficientDeviceResources; 14108

• deviceHardwareCondition; and 14109

• those that are vendor-defined. 14110

12.15.2.4.5 DownloadData method 14111

12.15.2.4.5.1 General 14112

Table 249 describes the DownloadData method of the UploadDownload object. 14113

Table 249 – UploadDownload object DownloadData method 14114

Standard object type name: UploadDownload object

Standard object type identifier: 3

Method name Method
ID

Method description

DownloadData 2 A client uses the DownloadData method to provide data to an UploadDownload
object that has agreed to be downloaded.

Input arguments

Argument
number Argument name Argument

type Argument description

1 BlockNumber Unsigned16 BlockNumber being downloaded

2 Data OctetString The data for the block being
downloaded. The maximum size of this
string may vary, such as it may differ for
different destination UploadDownload
objects

Output arguments

Argument
number Argument name Argument

type Argument description

1 CurrentBlockNumber Unsigned16 This argument is present if the
serviceFeedbackCode indicates either
blockout of sequence or duplicate

 14115
12.15.2.4.5.2 Method description 14116

StartDownload is used first to have the UploadDownload object agree to the download. 14117

Data is sent one block at a time, sequentially from the lowest numbered block to the highest 14118
numbered block using the DownloadData method. Only one DownloadData method invocation 14119
may be outstanding at a time; for example, if DownloadData for block n has been invoked, 14120
DownloadData for block n+1 shall not be invoked until a successful response containing the 14121
output arguments for the download of block n has been received by the client. 14122

The UploadDownload object may indicate that it needs to abort via output argument 14123
MethodStatus. 14124

If a client of an upload or download operation is issuing multiple data transfer method 14125
invocations for the same block, it may be due to either a network-related problem (e.g., the 14126
request is not reaching the server) or a problem at the server device. In this situation, the 14127
client may employ the appropriate operation end method (EndDownload or EndUpload) to 14128
terminate the operation. 14129

If a client of an upload or download receives multiple dataSequenceError responses, it may 14130
be due either to network-related problems (for example, loss of a method invocation 14131
response), or problems at the server device. In this situation, the client may employ the 14132
appropriate operation end method (EndDownload or EndUpload) to terminate the operation. 14133

 – 534 – 62734/2CDV © IEC(E)

Correspondingly, if an UploadDownload object has sent multiple dataSequenceError 14134
responses, it may infer that there are either network-related problems or problems at the 14135
client device and may elect to abort the operation. If an UploadDownload object indicates 14136
operation abort, and this abort is lost over the network, the response sent to a subsequent 14137
data method (DownloadData or UploadData) or end method (EndDownload or EndUpload) 14138
indicates that the object is no longer participating in an upload or download operation with this 14139
client by sending a response indicating unexpectedMethodSequence. 14140

12.15.2.4.5.3 Input arguments 14141

Input arguments include: 14142

BlockNumber, which is the number of the block for which data is provided, where the 14143
count of block numbers start at 1 (one); and 14144

Data, which represents the data for the block being downloaded. 14145

12.15.2.4.5.4 Output arguments 14146

This current BlockNumber argument is present if the serviceFeedbackCode indicates either 14147
blockout of sequence or duplicate. The argument indicates the last BlockNumber received. 14148
The intent is to permit the client to resolve an out-of-sequence or duplicate block reception 14149
error without aborting the download operation. 14150

12.15.2.4.5.5 Response codes 14151

The following feedback codes are valid for this method: 14152

• success; 14153

• invalidBlockNumber; 14154

• blockDataError (e.g., wrong block size; content problem); 14155

• unexpectedMethodSequence; 14156

• insufficientDeviceResources; 14157

• deviceHardwareCondition; 14158

• operationAborted; 14159

• dataSequenceError (e.g., duplicate); 14160

• timingViolation; and 14161

• those that are vendor-defined. 14162

12.15.2.4.6 EndDownload method 14163

12.15.2.4.6.1 General 14164

Table 250 describes the EndDownload method of the UploadDownload object. 14165

62734/2CDV © IEC(E) – 535 –

Table 250 – UploadDownload object EndDownload method 14166

Standard object type name: UploadDownload object

Standard object type identifier: 3

Method
name

Method ID (non-
negative)

Method description

EndDownload 3 A client uses the EndDownload method to indicate that the download is
terminating.

Input arguments

Argument
number

Argument
name

Argument
type Argument description

1 Rationale Unsigned8 This argument indicates the client’s reason for
terminating the download operation

Output arguments

Argument
number

Argument
name

Argument
type Argument description

None

 14167
12.15.2.4.6.2 Method description 14168

A client uses the EndDownload method to indicate that the download operation is terminating. 14169
Termination may occur, for example, if the download has completed, or if the client has 14170
elected to terminate the download operation. 14171

EndDownload may be sent from a client that is presently engaged in a download operation, as 14172
agreed by the StartDownload method. 14173

12.15.2.4.6.3 Input arguments 14174

The Rationale argument indicates the client’s reason for terminating the download operation. 14175
The value used shall be from the following set: 14176

• 0: download completed successfully; or 14177

• 1: client abort. 14178

12.15.2.4.6.4 Output arguments 14179

There are no output arguments for this method. 14180

12.15.2.4.6.5 Response codes 14181

The following feedback codes are valid for this method: 14182

• success; 14183

• operationIncomplete; 14184

• unexpectedMethodSequence; 14185

• timingViolation; and 14186

• those that are vendor-defined. 14187

12.15.2.4.7 StartUpload method 14188

12.15.2.4.7.1 General 14189

Table 251 describes the StartUpload method of the UploadDownload object. 14190

 – 536 – 62734/2CDV © IEC(E)

Table 251 – UploadDownload object StartUpload method 14191

Standard object type name: UploadDownload object

Standard object type identifier: 3

Method
name

Method
ID

Method description

StartUpload 4 A client uses the StartUpload method to indicate to an UploadDownload object
instance that it desires to upload data from the object.

Input arguments

Argument
number Argument name Argument type Argument description

1 DownloadMode Unsigned8 The desired mode of operation

Output arguments

Argument
number Argument name Argument type Argument description

1 BlockSize Unsigned16 The size of a block of data in octets

2 UploadSize Unsigned32 The total size of the data to be uploaded
in octets

 14192
12.15.2.4.7.2 Method description 14193

A client uses the StartUpload method to indicate to an UploadDownload object instance that it 14194
desires to upload data from the object. The UploadDownload object may accept or reject the 14195
upload, indicating the outcome via the output argument list. 14196

If an UploadDownload object accepts to participate in an upload operation, it shall not accept 14197
another upload operation or a download operation until the upload operation in process has 14198
been terminated or the object has been reset. 14199

12.15.2.4.7.3 Input arguments 14200

Input arguments include: 14201

DownloadMode, which specifies the desired mode of operation. The valid value for this 14202
argument indicates unicast and is represented by a value of zero. 14203

12.15.2.4.7.4 Output arguments 14204

Output arguments include: 14205

• BlockSize, which is the size of a block of data in octets. All blocks shall have the same 14206
size, except that the last block of an upload may contain a smaller positive number of 14207
octets. 14208

• UploadSize, which indicates the size of the data to be uploaded, in octets. 14209

12.15.2.4.7.5 Response codes 14210

The following feedback codes are valid for this method: 14211

• success; 14212

• unexpectedMethodSequence; 14213

• insufficientDeviceResources; 14214

• deviceHardwareCondition; 14215

• those that are vendor-defined. 14216

62734/2CDV © IEC(E) – 537 –

12.15.2.4.8 UploadData method 14217

12.15.2.4.8.1 General 14218

Table 252 describes the UploadData method of the UploadDownload object. 14219

Table 252 – UploadDownload object UploadData method 14220

Standard object type name: UploadDownload object

Standard object type identifier: 3

Method
name

Method
ID

Method description

UploadData 5 A client uses the UploadData method to acquire data from an UploadDownload
object that has agreed to be uploaded.

Input arguments

Argument
number

Argument
name

Argument
type Argument description

1 BlockNumber Unsigned16 The number of the block for which data is requested

Output arguments

Argument
number

Argument
name

Argument
type Argument description

1 Data OctetString This argument contains the data for the requested
block. This argument is present if and only if the
serviceFeedbackCode indicates success.

The maximum size of this may vary by
UploadDownload object instance being uploaded

 14221
12.15.2.4.8.2 Method description 14222

A client uses the UploadData method to acquire data from an UploadDownload object which 14223
has agreed to be uploaded. 14224

The StartUpload is used first to have the UploadDownload object agree to the upload. Data is 14225
requested one block at a time, sequentially from the lowest numbered block to the highest 14226
numbered block. Only one UploadData method invocation may be outstanding at a time. For 14227
example, if UploadData for block n has been invoked, UploadData for block n+1 shall not be 14228
invoked until the corresponding successful response containing the output arguments has 14229
been received by the client. 14230

The UploadDownload object may indicate that it needs to abort via an output argument. 14231

12.15.2.4.8.3 Input arguments 14232

The BlockNumber argument specifies the number of the block for which data is requested. 14233
Block number counting shall start at 1 (one). 14234

12.15.2.4.8.4 Output arguments 14235

The Data argument contains the data for the requested block. This argument is present if and 14236
only if the serviceFeedbackCode indicates success. 14237

12.15.2.4.8.5 Service feedback codes 14238

The following feedback codes are valid for this method: 14239

• success; 14240

• unexpectedMethodSequence; 14241

 – 538 – 62734/2CDV © IEC(E)

• insufficientDeviceResources; 14242

• deviceHardwareCondition; 14243

• operationAborted; 14244

• dataSequenceError (e.g., duplicate, invalid block number, unexpected block number); 14245

• timingViolation; and 14246

• those that are vendor-defined. 14247

12.15.2.4.9 EndUpload method 14248

12.15.2.4.9.1 General 14249

Table 253 describes the EndUpload method of the UploadDownload object. 14250

Table 253 – UploadDownload object EndUpload method 14251

Standard object type name: UploadDownload object

Standard object type identifier: 3

Method
name

Method ID (non-
negative)

Method description

EndUpload 6 A client uses the EndUpload method to indicate that the upload operation is
terminating.

Input arguments

Argument
number

Argument
name

Argument
type Argument description

1 Rationale Unsigned8 This argument indicates the client’s reason for
terminating the upload operation

Output arguments

Argument
number

Argument
name

Argument
type Argument description

None

 14252
12.15.2.4.9.2 Method description 14253

A client uses the EndUpload method to indicate that the upload operation is terminating. 14254
Termination may occur for example if the upload has completed, or if the client has elected to 14255
terminate the upload operation. 14256

EndUpload may be sent from a client that is presently engaged in an upload operation, as 14257
agreed by the StartUpload method. 14258

12.15.2.4.9.3 Input arguments 14259

The Rationale argument indicates the client’s reason for terminating the upload operation. 14260
The value used shall be from the following set: 14261

• 0: upload completed successfully; or 14262

• 1: client abort. 14263

12.15.2.4.9.4 Output arguments 14264

There are no output arguments for this method. 14265

12.15.2.4.9.5 Service feedback codes 14266

The following feedback codes are valid for this method: 14267

62734/2CDV © IEC(E) – 539 –

• success; 14268

• operationIncomplete; 14269

• unexpectedMethodSequence ; 14270

• timingViolation; 14271

• those that are vendor-defined. 14272

12.15.2.4.10 State table for download 14273

Table 254 shows the download state table. 14274

Table 254 – Download state table for unicast operation mode 14275

Transition Current
State

Event(s) Action(s) Next State

T1 Idle Execute.indicate(StartDown
load)

Execute.response(success) Downloading

T2 Downloading Execute.indicate(Download
Data)

Request for block is from
same client object that
started the download, and
download data parameters
are acceptable

Execute.response(success) Downloading

Execute.indicate(StartDown
load) or

Execute.indicate(any
Upload Method)

Execute.response
(objectStateConflict)

Execute.indicate(Download
Data)

and request is from wrong
client, or something is
wrong with the download
data parameters or timing

Execute.response(appropriate
error)

where the appropriate error may
be, for example, invalidArgument,
incompatibleMode,
timingViolation, …

NOTE It is a local matter for the
UploadDownload object to
determine if/when to abort the
download.

Execute.indicate(EndDownl
oad [Success])

and UploadDownload object
does not agree download
was completed successfully

Execute.response(
incompatibleMode)

Write.indicate(StateComma
nd.Any value)

Write.response(
objectStateConflict)

T3 Downloading Execute.indicate(EndDownl
oad [Success])

Execute.response(Success) DLComplete

T4 DLComplete Write.indicate(StateComma
nd, Apply)

Write.response(
operationAccepted)

Applying

T5 Applying Application successful None Idle

T6 Downloading Timeout waiting for
subsequent method
invocation

Update ErrorCode attribute of
UploadDownload object

DLError

Execute.indicate(EndDownl
oad[Abort])

Update ErrorCode attribute of
UploadDownload object.

Execute.response (Success)

 – 540 – 62734/2CDV © IEC(E)

Transition Current
State

Event(s) Action(s) Next State

T7 Idle Execute.indicate(any
Download method other
than StartDownload)

Execute.response(
objectStateConflict)

Idle

Execute.indicate(StartDown
load)

and

Request is unacceptable.
For example, one or more
input arguments are not
agreeable

Execute.response(appropriate
error)

(e.g., invalidObjectID)

Write.indicate(StateComma
nd.Any value other than
Reset)

Write.response(
objectStateConflict)

Write.indicate(StateComma
nd.Reset)

Write.response(success)

T8 DLComplete Execute.indicate(any
Download method or any
Upload method)

Execute.response(objectStateConf
lict)

DL_Complet
e

T9 Applying Execute.indicate(any
Download method or any
Upload method)

Execute.response(
objectStateConflict)

Applying

Write.indicate(StateComma
nd.Any value)

Write.response(
objectStateConflict)

T10 DLComplete Write(StateCommand,
Reset)

1. Discard download content; and

2. Write.req(success)

Idle

T11 DLError Write(StateCommand,
Reset)

1. Discard download content;

2. Clear ErrorCode attribute; and

3. Write.req(success)

Idle

T12 DLError Any Upload or Download
method

Execute.response
(objectStateConflict)

DLError

Any state command other
than
Write(StateCommand.Reset
)

Write.req(objectStateConflict)

T13 Applying Application failure Update ErrorCode attribute of
UploadDownload object

DLError

T14 DLComplete Timeout waiting for
command to apply

Update ErrorCode attribute of
UploadDownload object

DLError

 14276
Figure 123 shows the Upload/Download object download state diagram. 14277

62734/2CDV © IEC(E) – 541 –

Idle

Applying

DLError

T1

DL complete

Downloading

T3

T4

T2
T12

T5

T6

T8

T9

T7

T13

T10

T11

T14

 14278

Figure 123 – Upload/Download object download state diagram 14279

12.15.2.4.11 State table for upload 14280

Table 255 shows the upload state table. 14281

Idle

DLError

T1

UL complete

Uploading

T3

T4

T2

T5

T6

T8

T9

T7

 14282

Figure 124 – Upload/Download object upload state diagram 14283

 – 542 – 62734/2CDV © IEC(E)

Table 255 – Upload state table for unicast operation mode 14284

Transition Current
State

Event(s) Action(s) Next State

T1 Idle Execute.indicate(StartUpload) Execute.response(Success) Uploading

T2 Uploading Execute.indicate(UploadData)
.

Request for block is from
same client object that
started the upload, and
upload data parameters are
as acceptable

Execute.response(Success) Uploading

Execute.indicate
(StartUpload) or any
Download method

Execute.response
(objectStateConflict)

Execute.indicate(UploadData)

and request is from wrong
client, or something is wrong
with the upload data
parameters or timing

Execute.response(appropriate
error)

where the appropriate error may
be, for example, invalidArgument,
incompatibleMode,
timingViolation, …

NOTE It is a local matter for the
UploadDownload object to
determine if/when to abort the
upload if this occurs more than
once consecutively.

Execute.indicate(EndUpload
[Success])

and UploadDownload object
does not agree upload was
successful

Execute.response(
incompatibleMode)

Write.indicate(StateCommand
.Any value)

Write.response(
objectStateConflict)

T3 Uploading Execute.indicate(EndUpload
[Success])

Execute.response(Success) ULComplete

T4 Uploading Timeout waiting for
subsequent method
invocation

Update ErrorCode attribute of
UploadDownload object

UL_Error

Execute.indicate(EndUpload
[Abort])

1. Update ErrorCode attribute of
UploadDownload object;

2. Execute.response (Success)

T5 Idle Execute.indicate(Any Upload
method other than
StartUpload)

Execute.response(
objectStateConflict)

Idle

Execute.indicate(StartUpload)
and Request is unacceptable.
For example, one or more
input arguments are not
agreeable.

Execute.response(appropriate
error)
(e.g., invalidObjectID)

Write.indicate(StateCommand
.
any other than Reset)

Write.response(
objectStateConflict)

Write.indicate(StateCommand
.Reset)

Write.response(success)

T6 ULComplet
e

Execute.indicate(any
DownloadMethod or
any UploadMethod)

Execute.response

(objectStateConflict)

UL_Complet
e

T7 ULComplet
e

Write(StateCommand, Reset) Write.req(success) Idle

T8 ULError Write(StateCommand, Reset) 1. Clear “ErrorCode attribute; and

2. Write.req(success)

Idle

62734/2CDV © IEC(E) – 543 –

Transition Current
State

Event(s) Action(s) Next State

T9 ULError Any Upload or Download
method

Execute.response
(objectStateConflict)

ULError

Write(StateCommand.other
than Reset)

Write.req (error)

 14285
Figure 124 shows the Upload/Download object’s upload state diagram. 14286

12.15.2.4.12 Client responsibilities for upload/download operations 14287

In order to handle message delays in both requests and responses, and to avoid a congestion 14288
collapse due to a retransmission loop, only the first instance of a response indicating success 14289
shall cause the next data block to be sent via a DownloadData or requested via an 14290
UploadData method invocation by the client. 14291

NOTE The intent is to avoid recreating historical situations such as occurred with the trivial file transfer protocol 14292
(TFTP), creating the Sorcerer’s Apprentice Syndrome. 14293

12.15.2.5 Concentrator object 14294

12.15.2.5.1 General 14295

A concentrator object represents an assembly of data, collected from multiple objects in the 14296
same UAP, that is to be published by a single publish request service. This object optimizes 14297
publication messages sent from a device. Multiple concentrator object instances may be used 14298
to represent multiple assemblies of data if required. A list of attributes is provided to indicate 14299
the data values that are published. 14300

NOTE The published content represented by this object is established by configuration. This standard does not 14301
specify the device configuration tool. 14302

A subscriber to data produced by a concentrator object shall only be a dispersion object. The 14303
data types associated with the list of attributes of the dispersion object should be configured 14304
to match those produced by the concentrator object. 14305

When a concentrator object is configured by a host application, such as a gateway, the device 14306
is responsible for establishing contracts as needed to support the corresponding publications. 14307
The design is intended to support two use cases. In one case, the device joins the network 14308
and then the host configures the concentrator object. In the other case, the concentrator 14309
object is pre-configured and the device autonomously starts publication after it joins the 14310
network. 14311

A UAP may have zero or more concentrator object instances. 14312

12.15.2.5.2 Object attributes 14313

A concentrator object has the attributes defined in Table 256. 14314

The first time a UAP receives a read/write/execute request from an endpoint for which it has 14315
no contract, it shall request a contract so that it can send a service response to the requesting 14316
endpoint. The UAP shall, as necessary, delay the first service response to allow for time to 14317
establish/modify the contract. 14318

 – 544 – 62734/2CDV © IEC(E)

Table 256 – Concentrator object attributes 14319

Standard object type name: Concentrator object

Standard object type identifier: 4

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

ObjectIdentifier Object
key
identifier

Unique
identifier for
the object

Type: Unsigned16 N/A

Classification: Constant

Valid range: > 0

Reserved for future use 0 — — —

Concentrator
ContentRevision

1 Tracks a
change in
what is
published;
ensures
Concentrator
(publisher)
and
Dispersion
(subscriber)
objects are in
harmony

Type: Unsigned8 Revision shall be
incremented when the
complement of data to
publish changes, i.e.
CommunicationEndpoint or
Array of
ObjectAttributeIndexAndSi
ze are changed.

Attribute included in Table
347 header

Classification: Static

Accessibility: Read/write

Default value: 0

CommunicationEndpoint 2 Serves to
identify the
object that
receives the
publication
from this
object

Type: Communication
association endpoint
structure

Write to this attribute last
when configuring this
object; see Table 265

Classification: Static

Accessibility: Read/write

Default value: The
configured connection
endpoint valid element
indicates not configured
(i.e., endpoint is not valid)

Communication contract
data for scheduled
communication

3 Data
correspondin
g to the
communicatio
n contract

Type: Communication
contract data

Updated when the
corresponding contract is
established or terminated;
see Table 266 Classification: Static

Accessibility: Read only

MaximumItems
Publishable

4 Maximum
number of
items that can
be published

Type: Unsigned8 If this attribute has a value
of 0, it indicates it is not
configured for publishing Classification: Constant

Accessibility: Read only

Default value: Local matter

NumberItemsPublishing 5 Actual
number of
items being
published

Type: Unsigned8 Updated as
ObjectAttributeIndexAndSi
ze attributes are
configured : incremented
when another value to
publish is added, and
decremented when a value
to publish is removed

Classification: Static

Accessibility: Read only

Default value: 0

ObjectAttributes 6 Array of data
to identify
each piece of
data
published

Type: Array of Object
AttributeIndexAndSize

Object ID, attribute ID,
attribute index, and size
for each value published.
See Table 264 Classification: Static

Accessibility: Read/write

Default value: Element
size is 0

Reserved for future use
by this standard

7..63 — — —

 14320

62734/2CDV © IEC(E) – 545 –

Revision, NumItemsSubscribing, and ObjAttrIdx attributes can be implemented in a device in 14321
such a way that they can be written atomically in a single network transaction via 14322
concatenation of APDUs. 14323

12.15.2.5.3 Standard object methods 14324

A concentrator object has the methods defined in Table 257. 14325

Table 257 – Concentrator object methods 14326

Standard object type name: Concentrator object

Standard object type identifier: 4

Method name Method
ID

Method description

Null 0 Reserved by standard for future use

Reserved for future use by this
standard

0..127 These method identifiers are reserved for future use by this
standard

Implementation-specific use 128..255 These method identifiers are available for implementation-
specific use

 14327
12.15.2.6 Dispersion object 14328

12.15.2.6.1 General 14329

A dispersion object is the subscribing object corresponding to a concentrator object. This 14330
object is configured to indicate how to parse a concentrator object’s published content. If 14331
multiple disassemblies are required, multiple dispersion user objects are to be used. A UAP 14332
may have zero or more dispersion object instances. 14333

NOTE Concentrator and dispersion objects are special objects supporting a publication proxy within a UAP. 14334
These objects are distinct from proxy application processes, which are able to distribute information across 14335
multiple UAPs within the UAL. 14336

12.15.2.6.2 Object attributes 14337

A dispersion object has the attributes defined in Table 258. 14338

 – 546 – 62734/2CDV © IEC(E)

Table 258 – Dispersion object attributes 14339

Standard object type name: Dispersion object

Standard object type identifier: 5

Attribute name Attribute
identifier

Attribute
description

Attribute data information Description of
behavior of

attribute

ObjectIdentifier Object
key
identifier

Unique
identifier for the
object

Type: Unsigned16 N/A

Classification: Constant

Valid range: > 0

Reserved for future use 0 — — —

Concentrator
ContentRevision

1 Tracks changes
to content
subscribed.
Ensures
Concentrator
publishing
object and
Dispersion
subscribing
object are in
harmony

Type: Unsigned8 Updated when
the complement
of data to
publish changes.
In the event of a
mismatched
ContentRevision
(Table 347), the
publication shall
not be
processed

Classification: Static

Accessibility: Read/write

Default value: 0

CommunicationEndpoint 2 Endpoint of
concentrator
object that
publishes data
to this
dispersion
object

Type: Communication
association endpoint
structure

Write to this
attribute last
when configuring
this object

Classification: Static

Accessibility: Read/write

Default value: The configured
connection endpoint valid
element indicates not
configured (i.e., endpoint is
not valid)

Valid range: See structure
definition

MaximumItemsSubscribing 3 Maximum
number of items
that can be
subscribed

Type: Unsigned8 Maximum
number of items
in corresponding
publication

Classification: Constant

Accessibility: Read only

Default value: Local matter

Valid range: >0

NumItemsSubscribing 4 Number of
items being
subscribed to

Type: Unsigned8 Actual number of
items in
corresponding
publication.

A value of zero
indicates the
object is not
configured to
subscribe

Classification: Static

Accessibility: Read/write

Default value: 0

62734/2CDV © IEC(E) – 547 –

Standard object type name: Dispersion object

Standard object type identifier: 5

Attribute name Attribute
identifier

Attribute
description

Attribute data information Description of
behavior of

attribute

Array of
ObjectAttributeIndexAndSize

5 Array of data to
identify each
piece of data
published

Type: Array of
ObjectAttributeIndexAndSize

Object ID,
Attribute ID,
Attribute index,
and size of data
for the
destination
within the
application for
the published
information.

NOTE To skip
over data, the
destination
object and
attribute may
locally represent
a Null object and
Null attribute.

Classification: : Static

Accessibility: Read/write

Default value: Element size is
0

Reserved for future use by
this standard

6..63 — — —

 14340
Revision, NumItemsSubscribing, and ObjAttrIdx attributes can be implemented in a device in 14341
such a way that they can be written atomically in a single network transaction via 14342
concatenation of APDUs. 14343

12.15.2.6.3 Standard object methods 14344

A dispersion object has the methods defined in Table 259. 14345

Table 259 – Dispersion object methods 14346

Standard object type name: Dispersion object

Standard object type identifier: 5

Method name Method
ID

Method description

Null 0 Reserved by standard for future use

Reserved for future use by this
standard

0..127 These method identifiers are reserved for future use by this
standard

Implementation-specific use 128..255 These method identifiers are available for implementation-
specific use

 14347
12.15.2.7 Tunnel object 14348

12.15.2.7.1 General 14349

The tunnel object (TUN) is used to support the energy efficient transport of encapsulated 14350
messages over the network for a single non-native protocol. The tunnel service and a 14351
variation of the publication service are defined for this encapsulation. Support structures are 14352
provided for deconstruction, mapping and reconstruction of non-native protocol packets in 14353
order to reduce transactions and packet size. 14354

NOTE The usage of the tunnel object to create protocol translators is intended to be defined by the organization 14355
that has defined the non-native protocol used in the tunnel. 14356

 – 548 – 62734/2CDV © IEC(E)

12.15.2.7.2 Object attributes 14357

A tunnel object has the attributes defined in Table 260. 14358

Table 260 – Tunnel object attributes 14359

Standard object type name: Tunnel object

Standard object type identifier: 6

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

ObjectIdentifier Object
key
identifier

Unique identifier
for the object

Type: Unsigned16 N/A

Classification:
Constant

Valid range: > 0

Reserved for future use 0 — — —

Protocol 1 Type of protocol
supported by this
object

Type: Unsigned8 Sets the specific
protocol that is
encapsulated in
tunnel messages.
Only matching
protocol tunnels
exchange meaningful
data

Classification:
Constant

Accessibility: Read
only

Default value: Local
matter (protocol-
specific)

Valid range:
See Annex M

Status
(configuration status)

2 Communication
configuration
status of this
object

Type: Unsigned8 The object status is
not configured when
the Protocol is set to
None and no
communication
occurs. Once the
object is configured
and another protocol
is set, the object
attempts to apply the
configuration and
changes the status
appropriately

Classification: Static

Accessibility:
Read/write

Default value: 0

Named values:
0: not configured;
1: validly configured;
2: invalidly configured

Flow_Type 3 Communication
service used by
this object

Type: Unsigned8 Configures the tunnel
for a specific type of
communication and
role

Classification: Static

Accessibility:
Read/write

Named values:
0: 2-part tunnel;
1: 4-part tunnel;
2: publish;
3: subscribe

Update_Policy 4 Periodic
communication
update policy for
this object

Type: Unsigned8 Sets the periodic
publication policy for
a linked publisher and
subscriber. A periodic
update publishes on
every opportunity.
Change of state
publishes on fresh
data or at least as
often as Stale_Limit
specifies

Classification: Static

Accessibility:
Read/write

Named values:
0: periodic;
1: change of state

62734/2CDV © IEC(E) – 549 –

Standard object type name: Tunnel object

Standard object type identifier: 6

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Period

(data publication period)

5 Periodic
communication
update period for
this object

Type: Integer16 Sets the periodic
publication time for a
linked publisher and
subscriber.
Isochronous
publication is enabled
by an implicit rule.
Publication does not
begin until a period is
set. See 12.12.5

Classification: Static

Accessibility:
Read/write

Default value: 0

Named values:
0: not configured

Phase

(ideal publication phase)

6 Periodic
communication
phase within
period for this
object

Type: Unsigned8 Sets the requested
publication time
within the period for a
linked publisher and
subscriber. The
actual phase may
differ by contract
requirements. Units
should be indicated
as a percentage (%)

Classification: Static

Accessibility:
Read/write

Valid range: 0..99

Stale_Limit

(stale data limit)

7 Periodic
communication
stale data limit
for this object

Type: Unsigned8 Defines the maximum
subscriber expected
arrival time as a
multiple of the period.

Defines the minimum
publication rate for
change of state
reporting as a
multiple of the period

Classification: Static

Accessibility:
Read/write

Max_Peer_Tunnels 8 Maximum
number of
correspondent
tunnels with
which this object
can
communicate

Type: Unsigned8 N/A

Classification:
Constant

Accessibility: Read
only

Num_Peer_Tunnels 9 Actual number of
correspondent
tunnels with
which this object
is
communicating

Type: Unsigned8 Incremented /
decremented as
Tunnel endpoints
array elements are
added and deleted

Classification: Static

Accessibility:
Read/write

Default value: 0

Array of Tunnel endpoint 10 Array of Protocol
association
endpoints

Type: Array of Tunnel
endpoint

Links remote tunnel
objects for
communication with
this tunnel object Classification: Static

Accessibility:
Read/write

Valid range: Address
information pointing to
one or more tunnel
objects

Foreign_Source_Address 11 Foreign source
address mapped
to this objects
communication

Type: IPv6Address Holds static
addressing
information to be
delivered to initiator
or correspondent
upon message receipt

Classification: Static

Accessibility:
Read/write

 – 550 – 62734/2CDV © IEC(E)

Standard object type name: Tunnel object

Standard object type identifier: 6

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

Foreign_Destination_Address 12 Foreign
destination
address mapped
to this objects
communication

Type: IPv6Address Holds static
addressing
information to be
delivered to initiator
or correspondent
upon message receipt

Classification: Static

Accessibility:
Read/write

Connection_Info[] 13 Foreign
connection
information
mapped to this
objects
communication

Type: OctetString Holds static
information to be
delivered to initiator
or correspondent
upon message receipt

Classification: Static

Accessibility:
Read/write

Transaction_Info[] 14 Foreign
transaction
information
mapped to this
objects
communication

Type: OctetString Holds transaction
specific information to
be delivered to
initiator on
completion of a
transaction

Classification:
Dynamic

Accessibility:
Read/write

Reserved for future use by
this standard

15..63 — —

 14360
12.15.2.7.3 Standard object methods 14361

A tunnel object has the methods defined in Table 261. 14362

Table 261 – Tunnel object methods 14363

Standard object type name: Tunnel object

Standard object type identifier: 6

Method name Method
ID

Method description

Null 0 Reserved by standard for future use

Reserved for future use by this
standard

0..127 These method identifiers are reserved for future use by this
standard

Implementation-specific use 128..255 These method identifiers are available for implementation-
specific use

 14364
12.15.2.8 Interface object 14365

12.15.2.8.1 General 14366

The interface object provides a generic messaging end point for interfacing to a network. This 14367
object may be used as the source or destination object in native messaging interactions 14368
required for support of gateway protocol translation and various native messaging 14369
applications. 14370

The interface object may be indicated in client/server communication services necessary for 14371
native read, write, and execute services. The interface object may also be referenced as the 14372
client object communicating with an upload/download object for bulk transfer. 14373

Communications referencing the interface object as a client shall adhere to the client/server 14374
congestion control policies defined in this standard. 14375

62734/2CDV © IEC(E) – 551 –

Where possible, implementers shall consider buffering client server retrieved values for local 14376
usage rather than creating additional communications over the wireless network to repeatedly 14377
retrieve these values from devices which need to preserve power. User application objects 14378
contained in the field devices provide guidance, via their specification of attribute data 14379
classification, regarding what object-related information should be buffered. 14380

NOTE 1 Native object publication and subscription is accomplished by using the concentrator and dispersion 14381
objects. 14382

NOTE 2 The actual structure of buffering/cache and local requirements for handling messages to the cache are 14383
considered local matters, outside the scope of this standard. 14384

12.15.2.8.2 Object attributes 14385

An interface object has the attributes defined in Table 262. 14386

Table 262 – Interface object attributes 14387

Standard object type name: Interface object

Standard object type identifier: 7

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of attribute

ObjectIdentifier Object key
identifier

Unique identifier
for the object

Type: Unsigned16 N/A

Classification:
Constant

Valid range: > 0

Reserved for future use 0 — — —

Reserved for future use
by this standard

1..63 — — —

 14388
12.15.2.8.3 Standard object methods 14389

An interface object has the methods defined in Table 263. 14390

Table 263 – Interface object methods 14391

Standard object type name: Interface object

Standard object type identifier: 7

Method name Method ID Method description

Null 0 Reserved by standard for future use

Reserved for future use
by this standard

0..127 These method identifiers are reserved for future use by this standard

Implementation-specific
use

128..255 These method identifiers are available for implementation-specific
use

 14392
 Data types 12.1614393

 Basic data types 12.16.114394

The basic data types supported for attributes are: 14395

• binary values; 14396

• 8-, 16-, and 32-bit signed integers; 14397

• 8-, 16-, 32-, 64- and 128-bit unsigned integers; 14398

• ISO/IEC/IEEE 60559 (IEEE 754) 32-bit and 64-bit floating point values; 14399

 – 552 – 62734/2CDV © IEC(E)

• strings representing visible text, a block of octets, or a sequence of bit values (BitString); 14400

• time: TAINetworkTime, TAITimeDifference, TAITimeRounded. 14401

 Derived atomic data types 12.16.214402

The derived atomic data types supported for attributes are: 14403

• addresses: 14404
– IPv6Address (mapped to a 128-bit unsigned integer), 14405
– EUI64Address (mapped to a 64-bit unsigned integer), 14406
– DL16Address (mapped to a 16-bit unsigned integer); 14407

• layer-specific identifiers (generally mapped to 8-bit or 16-bit unsigned integers): ; 14408

• MIB indices (generally mapped to 8-bit or 16-bit unsigned integers): . 14409

 Industry-independent standard data structures 12.16.314410

12.16.3.1 General 14411

Standard data structures used shall be the data structures conveyed by the protocol defined 14412
by this standard. Industry-independent standard data structures are summarized in Annex L. 14413

NOTE Vendor-specific data structure definitions are not supported. 14414

12.16.3.2 Object, attribute, index, and size 14415

The elements of ObjectAttributeIndexAndSize are shown in Table 264. 14416

Table 264 – Data type: ObjectAttributeIndexAndSize 14417

Standard data type name: ObjectAttributeIndexAndSize

Standard data type code: 469

Element
name

Element
identifier

Element scalar type

ObjectID 1 Type: Unsigned16

Classification: Static

Accessibility: Varies by use

AttributeID 2 Type: Unsigned16

Classification: Static

Accessibility: Varies by use

AttributeIndex 3 Type: Unsigned16

Classification: Static

Accessibility: Varies by use

Size 4 Type: Unsigned16

Classification: Static

Accessibility: Varies by use

NOTE In practice, this maximum size depends on the capabilities of the
device.

 14418
12.16.3.3 Communication association endpoint 14419

The data structure shown in Table 265 is used for communication endpoints for both inputs 14420
and outputs. 14421

62734/2CDV © IEC(E) – 553 –

Table 265 – Data type: Communication association endpoint 14422

Standard data type name: Communication association endpoint

Standard data type code: 468

Element name Element
identifier

Element scalar type

Network address of remote
endpoint

1 Type: IPv6Address

This is a logical construct configured for the device by the system
manager

NOTE The system manager ensures that such configuration
supports both device replacement and mobile device scenarios.

Classification : Static

Accessibility: Read/write

T-port at remote endpoint 2 Type: Unsigned16

Classification : Static

Accessibility: Read/write

Object ID at remote endpoint 3 Type: Unsigned16

Classification : Static

Accessibility: Read/write

Stale data limit 4 Type: Unsigned8

Classification : Static

Accessibility: Read/write

NOTE 1 This attribute is primarily of interest to a subscriber.

NOTE 2 This is a count of consecutive stale input values that a
subscriber fails to receive before the subscriber considers the
value previously received to be Bad (Table 299). Staleness is
implied by an unchanging freshness sequence number (Table
347).

Data publication period 5 Type: Integer16

Classification : Static

Accessibility: Read/write

NOTE For units of time, see 12.12.5

Ideal publication phase 6 Type: Unsigned8

Classification : Static

Accessibility: Read/write

Valid range: 0..99 (as a percentage %)

NOTE This attribute is primarily of interest to a publisher.

PublishAutoRetransmit 7 Type: Unsigned1

Classification: Static

Accessibility: Read/write

Named values: (Note 1)
0: Transmit only if application content changed since last
publication;
1 : Transmit at every periodic opportunity (regardless of whether
application content changed since last transmission or not)

 – 554 – 62734/2CDV © IEC(E)

Standard data type name: Communication association endpoint

Standard data type code: 468

Element name Element
identifier

Element scalar type

Configuration status 8 Unsigned8

Classification: Static

Accessibility: Read access

Named values:
0 : not configured (connection endpoint not valid);
1: configured (connection endpoint valid)

NOTE The data owner sets this element to a value of 0 to
indicate that the endpoint is not configured, and to 1 to indicate
the endpoint is configured. An endpoint is considered not
configured if the value of Object ID at remote endpoint is 0.

NOTE 1 The coding of this attribute is the inverse of the related attribute 12 of Table 27.

 14423
12.16.3.4 Communication contract data 14424

The data structure shown in Table 266 is used for the dynamic data important to the local 14425
application process that is associated with a particular communication contract. 14426

NOTE 1 It is a local matter to ensure that applications are well-behaved in terms of the communication contracts 14427
they employ. The AL does not standardize the policing of compliance with requested contracts. 14428

NOTE 2 As part of contract negotiation, sufficient information is provided to the contract requesting device in 14429
order to enable it to determine the maximum size APDU that the contract supports. For example, if contract 14430
negotiation determines the maximum network service data unit (NSDU) size, then the type of security in effect for 14431
the contract is locally determinable for the contract. If the type of security in use is known, the transport header 14432
size is locally acquired and subtracted from the maximum NPDU size, thus yielding the value for the maximum 14433
APDU size usable for communications employing that particular communication contract. 14434

62734/2CDV © IEC(E) – 555 –

Table 266 – Data type: Communication contract data 14435

Standard data type name: Communication contract data

Standard data type code: 470

Element name Element
identifier

Element type

ContractID 1 Type: Unsigned16

Classification: Static

Accessibility: Read only

Valid range: The set of valid values is defined by system
management

Contract_Status 2 Type: Unsigned8:

Classification: Static

Accessibility: Read only

Default value = 0

Named values:
0: endpoint_not_configured,
1: awaiting_contract_establishment,
2: contract_active_as_requested,
3: contract_active_negotiated_down,
4: awaiting_contract_termination,
5: contract_establishment_failed,
6: contract_inactive

Actual_Phase 3 Type:Unsigned8

Classification: Dynamic

Accessibility: Read only

Default value: 0 (indicating not assigned)

Valid range: 0..99 (in units of percentage %)

Further information on the actual contract, such as the negotiated-down parameters, may be available from the
DMAP and does not need to be maintained by the UAP.

 14436
12.16.3.5 Alert communication endpoint 14437

The data structure shown in Table 267 is used for communication endpoints for alert reports. 14438

 – 556 – 62734/2CDV © IEC(E)

Table 267 – Data type: Alert communication endpoint 14439

Standard data type name: Alert communication endpoint

Standard data type code: 471

Element name Element
identifier

Element scalar type

Network address of
remote endpoint

1 Type: IPv6Address

This is a logical construct configured for the device by the system
manager

NOTE The system manager ensures that such configuration
supports both device replacement and mobile device scenarios.

Classification : Static

Accessibility: Read/write

T-port at remote
endpoint

2 Type: Unsigned16

Classification : Static

Accessibility: Read/write

Object ID at remote
endpoint

3 Type: Unsigned16

Classification : Static

Accessibility: Read/write

 14440
12.16.3.6 Tunnel endpoint 14441

The data structure shown in Table 268 is used in tunnel objects to identify remote tunnel 14442
endpoints for exchange of encapsulated payloads. 14443

Table 268 – Data type: Tunnel endpoint 14444

Standard data type name: Tunnel endpoint

Standard data type code: 475

Element name Element
identifier

Element scalar type

Network_Address
(network address of remote
endpoint)

1 Type: IPv6Address

This is a logical construct configured for the device by the system
manager

NOTE The system manager ensures that such configuration
supports both device replacement and mobile device scenarios.

Classification: Static

Accessibility: Read/write

Transport_Port

(T-port at remote endpoint)

2 Type: Unsigned16

Classification: Static

Accessibility: Read/write

OID
(object ID at remote
endpoint)

3 Type: Unsigned16

Classification: Static

Accessibility: Read/write

 14445
12.16.3.7 Alert report descriptor 14446

Elements of the alert report descriptor are shown in Table 269. 14447

62734/2CDV © IEC(E) – 557 –

Table 269 – Data type: Alert report descriptor 14448

Standard data type name: Alert report descriptor

Standard data type code: 499

Element name Element identifier Element type

Alert report disabled 1 Type: Boolean8

Classification: Static

Accessibility: Read/write

Default value : Local matter

Alert report priority 2 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Default value : 0

Valid range: 0..15, as specified in 12.17.5.2.2.22

 14449
12.16.3.8 Analog alarm descriptor 14450

The analog alarm descriptor is used to define alarm reporting for an analog value with a 14451
single reference condition. Its elements are shown in Table 270. 14452

Table 270 – Data type: Process control alarm report descriptor 14453
for analog with single reference condition 14454

Standard data type name: Process control alarm report descriptor for analog with single reference
condition

Standard data type code: 498

Element name Element identifier Element scalar type

Alert report disabled 1 Type: Boolean8

Classification: Static

Accessibility: Read/write

Default value : TRUE

Alert report priority 2 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Default value : 0

Valid range: 0..15

Alarm limit 3 Type: Float32

Classification: Static

Accessibility: Read/write

 14455
12.16.3.9 Binary alarm descriptor 14456

The binary alarm descriptor is the same structure as the data type for the alert report 14457
descriptor, so no additional data type description is required. 14458

12.16.3.10 ObjectIDandType 14459

The elements of ObjectIDandType are shown in Table 271. 14460

 – 558 – 62734/2CDV © IEC(E)

Table 271 – Data type: ObjectIDandType 14461

Standard data type name: ObjectIDandType

Standard data type code: 472

Element name Element identifier Element scalar type

ObjectID 1 Unsigned16

ObjectType 2 Unsigned8

ObjectSubType 3 Unsigned8

VendorSubType 4 Unsigned8

 14462
12.16.3.11 Unscheduled correspondent 14463

The elements of Unscheduled Correspondent are shown in Table 272. 14464

Table 272 – Data type: Unscheduled correspondent 14465

Standard data type name: Unscheduled Correspondent

Standard data type code: 473

Element name Element identifier Element scalar type

Address 1 IPv6Address

T-port 2 Unsigned16

 14466
 Application services provided by application sublayer 12.1714467

 General 12.17.114468

All interfaces between the DLE and adjacent layer (or sublayer) entities or management 14469
entites are internal interfaces within the device, and thus are unobservable. Therefore they 14470
are not subject to standardization. 14471

Application services are provided by the ASL (at the ASLDE-n SAP) for communication with 14472
native objects, which are either UAP objects or MP objects. These are the only services that 14473
should be used for behavior compliant with this standard. Not all devices will need to use all 14474
of the services defined herein, and not all objects will support all the services herein. 14475
However, if these services are employed for communication between or among native objects, 14476
they should be employed as defined in this standard. 14477

Application processes using ASL services should be designed to tolerate receipt of duplicate 14478
ASL service indications and confirmations. For example, if a lower layer acknowledgment is 14479
lost when a response to a read request is sent, the lower layer may retry, and as a result the 14480
application client may receive a duplicate response to the read request. 14481

It is left to the device to determine how best to handle congestion/back pressuring if locally 14482
indicated by the local lower protocol suite. This handling may, for example, limit transmission 14483
of messages from the device for a certain period of time, or for a certain set of communication 14484
priorities, or both. Congestion may occur, for example, in situations of network communication 14485
load, and handling by the device is intended to limit additional congestion. 14486

NOTE 1 Capacity planning is a systems issue and is outside the scope of AL consideration. 14487

Table 273 summarizes the services provided. 14488

NOTE 2 Local services that do not result in network communication are not included in Table 273, as they are 14489
local matters and hence implementation-dependent. 14490

62734/2CDV © IEC(E) – 559 –

NOTE 3 Local ASL service confirmation back to the AP is a local matter, and hence is not defined by this 14491
standard. 14492

Table 273 – AL services 14493

ASL-provided
service

Applicable
primitives

Description How used

Object access services

Read Request

Indication

Response

Confirmation

Read an attribute value from
an object

Client/server

Write Request

Indication

Response

Confirmation

Write an value to an object Client/server

Execute Request

Indication

Response

Confirmation

Execute a method on an
object

Client/server

Publication services

Publish Request

Indication

Publish a single or multiple
values from one source
object

Publish/subscribe

NOTE Native content, as well as non-
native content, is supported

Alert report-related services

AlertReport Request

Indication

Report an alert Source/sink (unicast only).

The source of this service shall only be the
ARMO. The sink of this service shall only
be the alarm receiving object

AlertAcknowledge Request

Indication

Response

Confirmation

Acknowledge an individual
alert reception

Client/server

The source of this service may only be an
alarm receiving object

Explicit support for tunneling

Tunnel Request

Indication

Response

Confirmation

Tunnel payload without ASL
parsing (for non-native
protocol compatibility)

Tunnel payload without ASL parsing (for
non-native protocol compatibility).

This service shall be used only if the
source and destination objects are both
tunnel objects

 14494
NOTE 4 If a local service request is malformed, reporting the error to the requesting UAP is a local matter, and 14495
thus is not addressed in this standard. If desired, it is possible for an implementation to keep statistics regarding 14496
locally received services requests that are malformed. 14497

 Publish/subscribe application communication model 12.17.214498

Publication is a communication process that is initiated by an object in the publishing UAL and 14499
received by an object in the subscribing UAL. Publication uses ASL services specific to the 14500
supporting publication. Publication occurs from a publisher object to a subscribing object. Any 14501
object may act as publisher or subscriber. To optimize communication bandwidth usage, 14502
special objects (a concentrator object for publishing and a dispersion object for subscribing) 14503
are defined to enable publication from/to a set of objects within a single UAP using a single 14504
publish service invocation. 14505

 – 560 – 62734/2CDV © IEC(E)

The semantic reason for publishing is purely an application concern. This model supports 14506
communication for: 14507

• schedule-triggered periodic buffered communications; 14508

• application-triggered buffered communications; and 14509

• change-of-state-triggered buffered communications. 14510

All of the above published communications use the publish/subscribe communication flow 14511
paradigm. For scheduled periodic communications, subscriber applications may support 14512
timeout response methods to deal with a loss of individual publications and/or a loss of the 14513
publisher endpoint. For example, a subscribing application may use prior publication value 14514
content, but may degrade the corresponding quality of the value. Loss of individual messages 14515
may have a shorter timeout than the timeout used by the subscriber to determine the loss of 14516
the publisher. 14517

Coordination of a publication with the network schedule is accomplished via appropriate 14518
endpoint configuration, which drives communication contract requests. A communication 14519
contract request is used to request that the system manager allocate scheduled bandwidth for 14520
publish communication. 14521

NOTE 1 Determination of actual timeout policy when an expected publication is not received is an application 14522
process-specific matter that is not specified by this standard. 14523

NOTE 2 Published messages with native content always contain a sequence counter and the current data 14524
value(s). If there is no change in value, the sequence counter indicates that the publishing application is still 14525
operating and has no new data to report (this is also known as a heartbeat). Some receiving devices retain this 14526
sequence counter to determine if the value has changed in order to limit reprocessing, while other receiving 14527
devices elect to ignore the sequence counter. 14528

NOTE 3 For scheduled periodic communications, application processes often use common network time to 14529
synchronize their activities across the network. This synchronization is locally applicable by publishers and 14530
subscribers to synchronize their activities to the publication schedule. 14531

NOTE 4 Continuous data and measurement in this standard employ a control system field proven 14532
publish/subscribe communication model and leverage use of scheduled bandwidth for more precise communication 14533
timing. If there is a more customized communication requirement, it is considered a custom situation outside the 14534
scope of this standard, or possibly a situation for future consideration. 14535

 Scheduled periodic buffered communication 12.17.314536

12.17.3.1 General 14537

The publish service is used for unidirectional buffered communication to at most one 14538
subscriber. 14539

Publishing should be configured in accordance with the capabilities of the system. If a 14540
subscriber is not present, it is generally an interim or error situation and is not expected to be 14541
long-lived. Potential energy loss due to improperly configured or failed devices may be 14542
addressed by reconfiguration or device replacement. These are rare abnormal situations for 14543
which design optimization is not required; hence, the complexity required for publication only 14544
in the presence of an actual subscriber outweighs any communications savings. 14545

No acknowledgments or retries are applied to publish/subscribe interactions. A publishing 14546
ASL is given an unconfirmed service request and constructs an appropriate APDU, which is 14547
then passed to the lower communication layers for communication transfer. If a publishing 14548
ASL receives a request for service before the prior request has been conveyed, the new 14549
request should overwrite the previous request and the previous request should not be 14550
transmitted. If a subscribing ASL receives a new request before the previous request was 14551
delivered to the destination object, the new request overwrites the previous request, and the 14552
previous request is lost. 14553

The defined services support publication of an arbitrary attribute (for example, a process 14554
variable) from a simple device, or publication of a set of attributes from a more complex (for 14555

62734/2CDV © IEC(E) – 561 –

example, a multi-variable capable) wireless device. publish/subscribe communications take 14556
place over a configured communication relationship, as shown in Figure 125. 14557

Application
process

Publisher
ALDE-SAP

Subscriber
ALDE-SAP

Publish
request

Action

Publish
indicate

Action

Application
process

 14558

Figure 125 – Publish sequence of service primitives 14559

The subscriber for a publication may be, for example, a gateway. 14560

NOTE 1 The content of non-native publications is outside the scope of this standard. 14561

Native publications include the attribute value itself, and status information for the value. In 14562
order to support duplicate detection and out-of-order delivery, a simple one-octet monotonic 14563
counter is included with each published value. 14564

NOTE 2 Other schemes for uniquely identifying a published message, such as using a timestamp instead of a 14565
counter, were considered but eliminated because they incur more power to communicate. Time of TPDU 14566
construction, combined with a lower layer-provided freshness indication, often is locally available. Timestamps on 14567
data publications are useful in remote terminal unit (RTU)-style buffering gateways, but for such gateways, a 14568
reception timestamp is also usable for that purpose, particularly since all publications use a shared channel-14569
hopping schedule, leaving a small variance between data generation time and data reception time. 14570

Publish/subscribe message priority may be fixed; in that case, a local implementation may 14571
elect not to provide per-message priority. If an application requires publications with different 14572
priority levels, such as low priority publication for control monitoring and high priority 14573
publication for high-rate (1 Hz and 4 Hz) control loops variables, separate publish/subscribe 14574
relationships may be required. 14575

The AL publisher and AL subscriber do not communicate explicitly to establish or break their 14576
relationship; however, establishment of secure communication relationships may force 14577
transport relationships to be established. Publishers and subscribers each establish their 14578
portion of the relationship independently (asynchronously). That is, either the publishing UAP 14579
or any of the subscribing UAPs may act first to establish its part of a publish/subscribe 14580
relationship. End-to-end messaging cannot commence before both the publisher and the 14581
subscriber(s) have established their respective sides of the communication relationship. Once 14582
the publisher creates one side of the communication relationship and a subscriber creates the 14583
other side of the communication relationship, publication messages can be sent and delivered 14584
to the corresponding application objects. 14585

Locating publishers dynamically using either a tag discovery service or a centralized directory 14586
lookup service is outside the scope of this standard. Therefore, publish/subscribe is intended 14587
to be compatible with a static configuration mechanism. In future releases, a discovery 14588
mechanism may be employed. In either situation, the same information needs to be available 14589
to establish the publish/subscribe relationship. 14590

 – 562 – 62734/2CDV © IEC(E)

Communication routes are formed transparently to the AL. 14591

NOTE 3 The formation of transmission routes in support of publish/subscribe is important to ensure timely 14592
delivery, but is left as a responsibility for the system manager, which forms routes to use during communication 14593
contract establishment. See 6.3.11 for further details. 14594

Publication is always an unconfirmed data transfer service request. Subscription always 14595
results in receiving an unconfirmed data transfer service indication. 14596

NOTE 4 It is considered a management topic to ensure security configuration / changes support publish/subscribe 14597
without AL impact. It is understood that security considerations often constrain permitted relationships. 14598

The timing of a scheduled publication is coordinated across the network, and as such 14599
depends on a coordinated view of time across the network. Bandwidth allocated for schedule-14600
triggered publications needs to be reserved to ensure that subscribers can receive what their 14601
publishers send. The schedule should be configured to ensure best effort to meet delivery 14602
deadlines, but ultimately, the responsibility of the publisher to create new publications, and 14603
the subscriber to act on receipt of them, depends on the device’s internal scheduling of the 14604
application process. 14605

Published communications rely on the publication service support provided by the 14606
communication protocol suite that is underlying the ASL. An important aspect of this lower 14607
communication protocol suite is the ability to provide specific communication timing in order to 14608
meet scheduling demands. 14609

12.17.3.2 Publish 14610

12.17.3.2.1 General 14611

The publish service for this standard is a unicast service used to update data periodically from 14612
a single publication source in a single AP to (at most) a single subscriber destination. 14613

The publish service may also be used in an aperiodic manner to support both application-14614
triggered and change-of-state-triggered changes. Since buffer content is transmitted 14615
according to a schedule, native published communication includes a freshness indicator to 14616
enable the subscriber to determine whether or not a value has changed. 14617

NOTE Freshness does not mean unchanged data, but rather that the value has been newly (freshly) acquired 14618
since it was last published. 14619

Table 274 defines the service primitives. 14620

62734/2CDV © IEC(E) – 563 –

Table 274 – Publish service 14621

Parameter name Request Indication

Argument M M

 Service contract identifier M —

 Priority M —

 Discard eligible M —

 End-to-end transmission time — M

 Published data size M M

 Subscriber T-port M —

 Subscriber TDSAP — M

 Subscribing object identifier M M(=)

 Publisher IPv6Address — M

 Publisher TDSAP M —

 Publisher T-port — M(=)

 Publishing object identifier M M(=)

 DataStructureInformation M M(=)

 NativeIndividualValue S S(=)

 Freshness sequence number M M(=)

 Individual analog value and status S S(=)

 Individual digital value and status S S(=)

 NativeValueList S S(=)

 Publishing content version M M(=)

 List of publish data M M(=)

 Fresh value sequence number M M(=)

 Analog value and status S S(=)

 Digital value and status S S(=)

 Non-native S S(=)

 Non-native data M M(=)

 14622
12.17.3.2.2 Arguments 14623

12.17.3.2.2.1 Service contract identifier 14624

This parameter identifies the communication service contract agreement that was made 14625
between the UAP requesting the service and the local DMAP. The value shall be in the set of 14626
valid values for a contract identifier as defined by 6.3.11. 14627

12.17.3.2.2.2 Priority 14628

This parameter defines the message priority of service that is required of the communication. 14629
The permitted values for this service parameter may be an indication of either a high priority 14630
message or a low priority message. Transmission and delivery of high-priority messages is 14631
more important than transmission and delivery of messages of low priority. 14632

12.17.3.2.2.3 Discard eligible 14633

This parameter defines the guidance to the communication network regarding the application 14634
impact of discarding the application message in the event of network congestion. Possible 14635
values are TRUE (the message may be considered for discard), or FALSE (do not consider the 14636
message for discard). 14637

 – 564 – 62734/2CDV © IEC(E)

NOTE This guidance is provided for use by routers that are constructed to employ an intelligent message discard 14638
policy rather than a random discard policy in situations of network congestion. 14639

12.17.3.2.2.4 End-to-end transmission time 14640

This is the transmission time from the TLE at the requesting device to the TLE at the receiving 14641
device. The interval is marked by two instants, the first instant being delivery to the TLE in the 14642
requesting device, and the second instant being receipt by the TLE in the destination device. 14643

12.17.3.2.2.5 Published data size 14644

This parameter provides the subscriber with the number of octets of the data to publish. 14645

12.17.3.2.2.6 Subscriber T-port 14646

This parameter identifies the subscriber UAP’s associated T-port. 14647

12.17.3.2.2.7 Subscriber TDSAP 14648

This parameter identifies the subscriber TDSAP associated with the subscriber T-port. 14649

12.17.3.2.2.8 Subscribing object identifier 14650

This parameter specifies the object identifier destination in the application that is subscribed 14651
to this publication. 14652

12.17.3.2.2.9 Publisher IPv6Address 14653

This identifies the IPv6Address of the publisher. 14654

12.17.3.2.2.10 Publisher TDSAP 14655

This parameter uniquely identifies the publisher UAP’s associated with the TDSAP. The 14656
TDSAP maps 1-to-1 to a UAP. The value shall be a member of the set of valid TDSAPs, as 14657
specified by the TL. 14658

12.17.3.2.2.11 Publisher T-port 14659

This parameter identifies the publisher UAP’s associated T-port. 14660

NOTE An implementation is able to infer this parameter from the publisher TDSAP. Thus it is included here for 14661
completeness, as required by this standard for the logical mapping to the transport data service request definition. 14662

12.17.3.2.2.12 Publisher object identifier 14663

This parameter identifies the publisher object that is the source of the published data. 14664

NOTE If there is more than one entry in the list of published data, the publishing object source is an instance of 14665
the concentrator object type. 14666

12.17.3.2.2.13 Data structure information 14667

This parameter indicates the construct of the information to be conveyed via publication. It 14668
may indicate one of the following constructs: 14669

• native individual value; 14670

• native sequence of values; or 14671

• non-native data (that is, information being tunneled via a publication service). 14672

The details of these alternatives are as follows: 14673

62734/2CDV © IEC(E) – 565 –

a) The data structure of each single native value is as follows: 14674

1) Freshness value sequence number 14675
This parameter is present if the data structure information indicates the structure of the 14676
data is a native individual value. This parameter indicates the freshness of the data. 14677

2) Individual analog value and status 14678
This parameter is present if the individual native value is an analog. This contains 14679
standard value status data structure that indicates information such as quality of the 14680
corresponding analog value and the analog value itself. 14681

3) Individual digital value and status 14682
This parameter is present if the individual native value is digital. This contains 14683
standard value status data structure that indicates information such as quality of the 14684
corresponding digital value and the digital value itself. 14685

b) The data structure of a list of native values is as follows: 14686
1) Publishing content version 14687

This parameter is present if the publication is for native list data, such as sent from a 14688
concentrator object. This information ensures harmonious interpretation of the 14689
published information by the subscriber. 14690

2) List of publish data 14691
This parameter represents the list of data conveyed via the publish service. 14692

3) Status and analog value 14693
This contains standard value status data structure that indicates information such as 14694
quality of the corresponding analog value and the analog value itself. 14695

4) Status and digital value 14696
This contains standard value status data structure that indicates information such as 14697
quality of the corresponding digital value and the digital value itself. 14698

c) The data contained in the publish service that is non-native is as follows: 14699
This parameter contains the non-native data to publish. Non-native data is conveyed as a 14700
string of octets. 14701

 Client/server interactions 12.17.414702

12.17.4.1 General 14703

Client/server interactions are used for one-to-one aperiodic communications. These 14704
relationships employ on-demand queued bidirectional communication. client/server services 14705
defined by this standard are either two-part service (having two service primitives, .req 14706
and .ind), as in Figure 126, or four-part service (having four service primitives, .req, .ind, .rsp, 14707
and .cnf), as in Figure 127, Figure 128 and Figure 129. 14708

When the ASL receives a client/server service request, it constructs a corresponding 14709
application protocol data unit (APDU) and requests queued transfer from the lower 14710
communication protocol suite. The server ASL is given a confirmed service response 14711
indication, which it delivers to the destination UAP and object. 14712

For services with four-part primitives defined, the server UAP constructs a corresponding 14713
response. When the ASL receives the client/server service response, it constructs a response 14714
APDU and submits it to its lower communication protocol suite, which provides queue-14715
oriented communication services to deliver the response. 14716

In a client/server interaction, either endpoint of the communication can act as client or server 14717
or both. A client request is sent to a single destination (server). This request indicates the 14718
destination to which the response should be sent. A single response is then issued from the 14719
server. 14720

 – 566 – 62734/2CDV © IEC(E)

Interactions as shown in Figure 127, Figure 128, and Figure 129 require a communication 14721
contract identifier and the communication protocol suite to be appropriately configured to 14722
support the client/server messaging requirements of the application. The bandwidth 14723
represented by the contract identifier is considered unscheduled shared bandwidth which 14724
need not be reserved solely for use by this contract. 14725

Client
application

process
Client

ALDE-SAP

Server
ALDE-SAP

action

Client/server
request

Action

Client/server
indicate

Action

Server
application

process

 14726

Figure 126 – client/server model two-part interactions 14727

Client
SAP
user

Client
SAP

provider

Server
SAP

provider

Server
SAP

Client/server
request

Action

Client/server
indicate

Client/server
confirm Client/server

response

Request
timer

user

Action

 14728

Figure 127 – client/server model four-part interactions: Successful delivery 14729

62734/2CDV © IEC(E) – 567 –

Client
SAP
user

Client
SAP

provider

Server
SAP

provider

Server
SAP
user

Client/server

Request
timer

Client/server
confirm

Client/server
indicate

Client/server
response

request

Action

Client/server
request

 14730

Figure 128 – client/server model four-part interactions: Request delivery failure 14731

SAP
user

SAP
provider

SAP
provider

SAP
user

Client/server
request

Client/server
indicate

Client/server
response

Request
timer

Action

Client/server
confirm

Client/server
indicate

Client/server
response

Action

Action

Action

Client/server
request

 14732

Figure 129 – client/server model four-part interactions: Response delivery failure 14733

When a client/server association is secured, a security session is involved. To optimize 14734
elimination of connections that the UAL process knows are no longer required, a local 14735
interface to terminate the contract may be employed. Contract termination may be used to 14736
release a security session (if one exists). 14737

 – 568 – 62734/2CDV © IEC(E)

To initiate communication, the client requests to send a message to a server. The client 14738
specifies the local contract identifier which indicates the server’s IPv6Address. The 14739
communication also identifies the particular source application and object making the request, 14740
the destination application and object intended to receive the request, as well as the actual 14741
service instance specific request information. 14742

The server sends a response to the client specifying its local contract identifier, which 14743
indicates the client’s IPv6Address. The communication also specifies sufficient information to 14744
deliver the response to the appropriate application object and to collate the response with the 14745
original request. 14746

A communication contract shall be established between client and server to carry the client’s 14747
request, and correspondingly from the server to the client to carry the server response. 14748

Acting in the role of a client, a client may send requests to a server. Acting in the role of a 14749
server, a server may send responses to a client. The client is responsible for server timeout 14750
response and transactional integrity. 14751

A simple server might support as few as one outstanding transaction with a particular client. If 14752
an extended delay occurs in receiving a response, the client may, for example, timeout and 14753
resend the request. If this occurs, duplicate responses may be received. If a server has 14754
resources to support multiple outstanding transactions with a client, requests and responses 14755
may arrive out of order. To support this situation, a request identifier is used to enable 14756
request/response collation. 14757

If there is a need for multiple client or multiple server messages as part of a communication 14758
sequence, the implementation may consider employing ASL concatenation. Beyond 14759
concatenation, streaming of messages is an application process-specific responsibility outside 14760
the scope of this standard. 14761

Communications characteristics for client/server interactions such as response timeout are 14762
local matters, beyond the scope of this standard. For example, they may be fixed by device 14763
construction, or determined by an application program within the device, or configured for the 14764
device on a per-application process basis or even a per contract basis. client/server 14765
interactions are usually used for configuration (such as process control related configuration 14766
or management object configuration) and ad-hoc exchange of information. 14767

Client/server communications should not interfere with scheduled communications as it is 14768
essential that transmission bandwidth be allocated to support client/server messaging 14769
communication contracts. The intent is to ensure the ability to reconfigure a device. 14770

Occasionally, only a single client/server exchange is required. This may entail substantial 14771
overhead in route and security establishment. At other times, multiple client/server exchanges 14772
occur between the same endpoints. 14773

NOTE Any alteration of communication routes (for example, to compensate for interference) occurs transparently 14774
to the AL. 14775

The client specifies the desired message priority for service requests; the server specifies the 14776
desired message priority for service responses. 14777

Higher priority messages should ideally move to the front of prioritized communication 14778
protocol suite message queues supporting client/server communications. If possible, 14779
client/server message bandwidth allocation on the network should grant access first to higher 14780
priority message requests. Security is presumed to be on a contract basis, so per-message 14781
security is not provided. 14782

Further considerations for transmission back-off, such as based on network congestion are an 14783
overall device responsibility, and are not a specific responsibility of the AL. 14784

62734/2CDV © IEC(E) – 569 –

12.17.4.2 Client/server services 14785

12.17.4.2.1 General 14786

The following services are provided as client/server communications: 14787

• read; 14788

• write; 14789

• execute; and 14790

• tunnel. 14791

NOTE Tunnel as a two-part primitive is also useful for source/sink communication. 14792

12.17.4.2.2 Service feedback codes 14793

Four-part client/server services provide a service feedback code to indicate the result of the 14794
service from the viewpoint of the server. A range of codes is reserved for vendor-specific 14795
additions. 14796

12.17.4.3 Read 14797

12.17.4.3.1 General 14798

The read service is used to read an attribute of an object from a UAL process. 14799

Table 275 defines the read service primitives. 14800

Table 275 – Read service 14801

Parameter name Request Indication Response Confirm

Argument M M — —

Service contract identifier M — — —

Priority M — — —

Discard eligible M — — —

End-to-end transmission time — M — —

Forward congestion notification — M — —

Server T-port M — —

Server TDSAP — M — —

Server object identifier M M(=) — —

Client IPv6Address — M — —

Client TDSAP M — — —

Client T-port — M — —

Client object identifier M M(=) — —

Application request ID M M(=) — —

Data to be read M M(=) — —

Attribute identifier M M(=) — —

Attribute index(es) C C(=) — —

 – 570 – 62734/2CDV © IEC(E)

Parameter name Request Indication Response Confirm

Result — — M M

Service contract identifier — — M —

Priority — — M —

Discard eligible — — M —

End-to-end transmission time — — — M

Forward congestion notification — — — M

Forward congestion notification
echo

— — M M(=)

Server IPv6Address — — — M

Server TDSAP — — M —

Server T-port — — — M

Server object identifier — — M M(=)

Client T-port — — M —

Client TDSAP — — — M

Client object identifier — — M M(=)

Application request ID — — M M(=)

Value read — — M M(=)

Service feedback code — — M M(=)

Value size — — C C(=)

Data value — — C C(=)

 14802
12.17.4.3.2 Arguments 14803

12.17.4.3.2.1 Service contract identifier 14804

See 12.17.3.2.2.1. 14805

12.17.4.3.2.2 Priority 14806

See 12.17.3.2.2.2. 14807

12.17.4.3.2.3 Discard eligible 14808

See 12.17.3.2.2.3. 14809

12.17.4.3.2.4 End-to-end transmission time 14810

See 12.17.3.2.2.4. 14811

12.17.4.3.2.5 Forward congestion notification 14812

This parameter indicates if the request has encountered network congestion on its path from 14813
the client to the server. 14814

12.17.4.3.2.6 Server T-port 14815

This parameter identifies the server UAP’s associated T-port. 14816

12.17.4.3.2.7 Server TDSAP 14817

This parameter identifies the server TDSAP associated with the server T-port. 14818

62734/2CDV © IEC(E) – 571 –

12.17.4.3.2.8 Server object identifier 14819

This parameter identifies a server object from which data is desired to be read. 14820

12.17.4.3.2.9 Client/source address 14821

This parameter identifies the IPv6Address for the client of this request. 14822

12.17.4.3.2.10 Client/source TDSAP 14823

This parameter identifies the client or source UAP’s associated TDSAP. The UAP contains the 14824
object originating the request. 14825

12.17.4.3.2.11 Client T-port 14826

This parameter identifies the client UAP’s associated T-port. 14827

12.17.4.3.2.12 Client object identifier 14828

This parameter identifies the client object that is initiating the service request. 14829

12.17.4.3.2.13 Application request identifier 14830

An identifier provided by the UAP to uniquely represent this request. 14831

12.17.4.3.2.14 Data to be read 14832

This parameter identifies the data values that the client desires to read. 14833

12.17.4.3.2.15 Attribute identifier 14834

This parameter identifies the attribute of the server object, the value of which is desired to be 14835
read. 14836

12.17.4.3.2.16 Attribute index/indices 14837

This parameter identifies the index/indices for the information of interest from the attribute. 14838
There may be: 14839

• no index, such as for a scalar value; 14840

• one index, for example, to access 14841
– an element of a singly-dimensioned array, or 14842
– a member of a standard data structure; or 14843

• two indices, for example, to access 14844
– an element of a doubly-dimensioned array, or 14845
– a member of a data structure that is contained in a singly-dimensioned array of 14846

identical standard data structures, or 14847
– a singly-dimensioned of a doubly-dimensioned array, or 14848
– a singly-dimensioned slice of a singly-dimensioned array of identical standard data 14849

structures, extracting as a singly-dimensioned array a cross-sectional slice of a single 14850
member through those identical data structures. 14851

12.17.4.3.3 Results 14852

12.17.4.3.3.1 Service contract identifier 14853

See 12.17.3.2.2.1. 14854

 – 572 – 62734/2CDV © IEC(E)

12.17.4.3.3.2 Priority 14855

See 12.17.3.2.2.2. 14856

12.17.4.3.3.3 Discard eligible 14857

See 12.17.3.2.2.3. 14858

12.17.4.3.3.4 End-to-end transmission time 14859

See 12.17.3.2.2.4. 14860

12.17.4.3.3.5 Forward congestion notification 14861

See 12.17.4.3.2.5. 14862

12.17.4.3.3.6 Forward congestion notification echo 14863

This parameter indicates if the service request encountered network congestion on its path 14864
from the client to the server. 14865

12.17.4.3.3.7 Server IPv6Address 14866

This parameter identifies the IPv6Address for the server for this request. 14867

12.17.4.3.3.8 Server TDSAP 14868

See 12.17.4.3.2.7. 14869

12.17.4.3.3.9 Server T-port 14870

See 12.17.4.3.2.6. 14871

12.17.4.3.3.10 Server object identifier 14872

See 12.17.4.3.2.8. 14873

12.17.4.3.3.11 Client T-port 14874

The UAP contains the object originating the request. See 12.17.4.3.2.11. 14875

12.17.4.3.3.12 Client TDSAP 14876

The UAP contains the object originating the request. See 12.17.4.3.2.10. 14877

12.17.4.3.3.13 Client object identifier 14878

See 12.17.4.3.2.12. 14879

12.17.4.3.3.14 Application request identifier 14880

This parameter is an identifier provided by the client to uniquely represent this request. 14881

12.17.4.3.3.15 Value read 14882

The value read indicates the result of the requested operation, and if the read was successful, 14883
the size and value of the object attribute to be read. 14884

62734/2CDV © IEC(E) – 573 –

12.17.4.3.3.16 Service feedback code 14885

The service feedback code indicates if the requested operation was successful or not. If not 14886
successful, it provides information indicating why it was not successful. 14887

12.17.4.3.3.17 Value size 14888

Value size indicates the number of octets contained in the data value. It is present if and only 14889
if the corresponding service feedback code indicates success. 14890

12.17.4.3.3.18 Data value 14891

Data value is the data value that was read from the identified server object, attribute, and 14892
attribute index. It is present if and only if the corresponding service feedback code indicates 14893
success, and the value size is non-zero. 14894

12.17.4.4 Write 14895

12.17.4.4.1 General 14896

The write service is used to write a value or set of values to one or more attributes of one or 14897
more objects in an application process. 14898

A write to a structure containing both writeable and read-only elements is permitted. In this 14899
situation, the read-only elements shall be unaffected. 14900

Table 276 defines the write service primitives. 14901

 – 574 – 62734/2CDV © IEC(E)

Table 276 – Write service 14902

Parameter name Request Indication Response Confirm

Argument M M — —

Service contract identifier M — — —

Priority M — — —

Discard eligible M — — —

End-to-end transmission time — M — —

Forward congestion notification — M — —

Server T-port M — — —

Server TDSAP — M — —

Server object identifier M M(=) — —

Client IPv6Address — M — —

Client TDSAP M — — —

Client T-port — M — —

Client object identifier M M(=) — —

Application request ID M M(=) — —

Data to write M M(=) — —

Attribute identifier M M(=) — —

Attribute index(es) M M(=) — —

Value size M M(=) — —

Data value M M(=) — —

Result — — M M

Service contract identifier — — M —

Priority — — M —

Discard eligible — — M —

End-to-end transmission time — — — M

Forward congestion notification — — — M

Forward congestion notification
echo

— — M M(=)

Server IPv6Address — — — M

Server TDSAP — — M —

Server T-port — — — M(=)

Server object identifier — — M M(=)

Client T-port — — M —

Client TDSAP — — — M

Client object identifier — — M M(=)

Application request ID — — M M(=)

Service feedback code — — M M(=)

 14903
12.17.4.4.2 Arguments 14904

12.17.4.4.2.1 Service contract identifier 14905

See 12.17.3.2.2.1. 14906

62734/2CDV © IEC(E) – 575 –

12.17.4.4.2.2 Priority 14907

See 12.17.3.2.2.2. 14908

12.17.4.4.2.3 Discard eligible 14909

See 12.17.3.2.2.3. 14910

12.17.4.4.2.4 End-to-end transmission time 14911

See 12.17.3.2.2.4. 14912

12.17.4.4.2.5 Forward congestion notification 14913

See 12.17.4.3.3.6. 14914

12.17.4.4.2.6 Server T-port 14915

See 12.17.4.3.2.6 14916

12.17.4.4.2.7 Server TDSAP 14917

See 12.17.4.3.2.7 14918

12.17.4.4.2.8 Server object identifier 14919

See 12.17.4.3.2.8 14920

12.17.4.4.2.9 Client/source address 14921

This parameter identifies the client or source UAP’s associated IPv6Address. The UAP 14922
contains the object originating the request. 14923

12.17.4.4.2.10 Client/source TDSAP 14924

This parameter identifies the client or source UAP’s associated TDSAP. The UAP contains the 14925
object originating the request. 14926

12.17.4.4.2.11 Client T-port 14927

See 12.17.4.3.2.11. 14928

12.17.4.4.2.12 Client object identifier 14929

See 12.17.4.3.2.12. 14930

12.17.4.4.2.13 Application request identifier 14931

An identifier provided by the UAP to uniquely represent this request. 14932

12.17.4.4.2.14 Data to write 14933

This parameter identifies the target attribute and data value that the client desires to write. 14934

12.17.4.4.2.15 Attribute identifier 14935

This parameter identifies the attribute of the server object, the value of which is desired to be 14936
read. 14937

 – 576 – 62734/2CDV © IEC(E)

12.17.4.4.2.16 Attribute index/indices 14938

This parameter identifies the index/indices for the information of interest from the attribute. 14939
See 12.17.4.3.2.16. 14940

12.17.4.4.2.17 Value size 14941

Value size indicates the number of octets contained in data value. 14942

12.17.4.4.2.18 Data value 14943

Data value is the data value that is desired to be written to the identified server object, 14944
attribute, and attribute index. 14945

12.17.4.4.3 Results 14946

12.17.4.4.3.1 Service contract identifier 14947

See 12.17.3.2.2.1. 14948

12.17.4.4.3.2 Priority 14949

See 12.17.3.2.2.2. 14950

12.17.4.4.3.3 Discard eligible 14951

See 12.17.3.2.2.3. 14952

12.17.4.4.3.4 End-to-end transmission time 14953

See 12.17.3.2.2.4. 14954

12.17.4.4.3.5 Forward congestion notification 14955

See 12.17.4.3.2.5. 14956

12.17.4.4.3.6 Forward congestion notification echo 14957

See 12.17.4.3.3.6. 14958

12.17.4.4.3.7 Server IPv6Address 14959

See 12.17.4.3.3.7. 14960

12.17.4.4.3.8 Server TDSAP 14961

See 12.17.4.3.2.7. 14962

12.17.4.4.3.9 Server T-port 14963

See 12.17.4.3.2.6. 14964

12.17.4.4.3.10 Server object identifier 14965

This parameter identifies a server object to which data is desired to be written. 14966

12.17.4.4.3.11 Client/source T-port 14967

This parameter identifies the client UAP’s associated T-port. 14968

62734/2CDV © IEC(E) – 577 –

12.17.4.4.3.12 Client TDSAP 14969

This parameter identifies the client TDSAP associated with the T-port. The UAP contains the 14970
object originating the request. 14971

12.17.4.4.3.13 Client object identifier 14972

See 12.17.4.3.2.12. 14973

12.17.4.4.3.14 Application request identifier 14974

See 12.17.4.3.3.14. 14975

12.17.4.4.3.15 Service feedback code 14976

See 12.17.4.3.3.16. 14977

12.17.4.5 Execute 14978

12.17.4.5.1 General 14979

The execute service is used to execute a network visible method on an object. 14980

NOTE Use of the execute service to establish a callback method is one way to provide a server with adequate 14981
time for a delayed response, providing information back to the client via a callback, rather than having to provide 14982
timely execution results in the response. 14983

Table 277 defines the execute service primitives. 14984

 – 578 – 62734/2CDV © IEC(E)

Table 277 – Execute service 14985

Parameter name Request Indication Response Confirm

Argument M M — —

Service contract identifier M — — —

Priority M — — —

Discard eligible M — — —

End-to-end transmission time — M(=) — —

Forward congestion notification — M — —

Server T-port M — — —

Server TDSAP — M — —

Server object identifier M M(=) — —

Client IPv6Address — M — —

Client TDSAP M — — —

Client T-port — M — —

Client object identifier M M(=) — —

Application request ID M M(=) — —

Method to execute M M(=) — —

Method identifier M M(=) — —

Size of input parameters M M(=) — —

Input parameters C C(=) — —

Result — — M M

Service contract identifier — — M —

Priority — — M —

Discard eligible — — M —

End-to-end transmission time — — — M

Forward congestion notification — — — M

Forward congestion notification
echo

— — M M(=)

Server IPv6Address — — — M

Server TDSAP — — M —

Server T-port — — — M

Server object identifier — — M M(=)

Client T-port — — M —

Client TDSAP — — — M

Client object identifier — — M M(=)

Application request ID — — M M(=)

Execution result — — M M(=)

Service feedback code — — M M(=)

Size of output parameters — — M M(=)

Output parameters — — C C(=)

 14986

62734/2CDV © IEC(E) – 579 –

12.17.4.5.2 Argument 14987

12.17.4.5.2.1 Service contract identifier 14988

See 12.17.3.2.2.1. 14989

12.17.4.5.2.2 Priority 14990

See 12.17.3.2.2.2. 14991

12.17.4.5.2.3 Discard eligible 14992

See 12.17.3.2.2.3. 14993

12.17.4.5.2.4 End-to-end transmission time 14994

See 12.17.3.2.2.4. 14995

12.17.4.5.2.5 Forward congestion notification 14996

See 12.17.4.3.2.5. 14997

12.17.4.5.2.6 Server T-port 14998

See 12.17.4.3.2.6. 14999

12.17.4.5.2.7 Server TDSAP 15000

See 12.17.4.3.2.7. 15001

12.17.4.5.2.8 Server object identifier 15002

See 12.17.4.3.2.8. 15003

12.17.4.5.2.9 Client/source address 15004

See 12.17.4.3.2.9 15005

12.17.4.5.2.10 Client/source TDSAP 15006

12.17.4.3.2.10. 15007

12.17.4.5.2.11 Client T-port 15008

See 12.17.4.3.2.11. 15009

12.17.4.5.2.12 Client object identifier 15010

See 12.17.4.3.2.12. 15011

12.17.4.5.2.13 Application request identifier 15012

See 12.17.4.3.2.13. 15013

12.17.4.5.2.14 Method identifier 15014

This parameter identifies the method of the server object that is desired to be executed. 15015

 – 580 – 62734/2CDV © IEC(E)

12.17.4.5.2.15 Size of input parameters 15016

Size of input parameters indicates the number of octets contained in input parameters. 15017

NOTE Execute requests and responses include the size in octets of the contained parameter stream to enable 15018
parsing (this is especially useful in APDU concatenation scenarios). 15019

12.17.4.5.2.16 Input parameters 15020

The input parameters’ string is an octet string that contains the input parameters for the 15021
method that is being requested to be executed. This is present if and only if size of input 15022
parameters is present and has a value greater than zero. 15023

12.17.4.5.3 Result 15024

12.17.4.5.3.1 Service contract identifier 15025

See 12.17.3.2.2.1. 15026

12.17.4.5.3.2 Priority 15027

See 12.17.3.2.2.2. 15028

12.17.4.5.3.3 Discard eligible 15029

See 12.17.3.2.2.3. 15030

12.17.4.5.3.4 End-to-end transmission time 15031

See 12.17.3.2.2.4. 15032

12.17.4.5.3.5 Forward congestion notification 15033

See 12.17.4.3.2.5. 15034

12.17.4.5.3.6 Forward congestion notification echo 15035

See 12.17.4.3.3.6. 15036

12.17.4.5.3.7 Server IPv6Address 15037

See 12.17.4.3.3.7. 15038

12.17.4.5.3.8 Server TDSAP 15039

See 12.17.4.3.2.7. 15040

12.17.4.5.3.9 Server T-port 15041

See 12.17.4.3.2.6. 15042

12.17.4.5.3.10 Server object identifier 15043

See 12.17.4.4.3.10. 15044

12.17.4.5.3.11 Client/source T-port 15045

See 12.17.4.4.3.11. 15046

62734/2CDV © IEC(E) – 581 –

12.17.4.5.3.12 Client TDSAP 15047

See 12.17.4.4.3.12. 15048

12.17.4.5.3.13 Client object identifier 15049

See 12.17.4.3.2.12. 15050

12.17.4.5.3.14 Application request identifier 15051

See 12.17.4.3.3.14. 15052

12.17.4.5.3.15 Execution result 15053

This contains the result of the method execution service request. 15054

12.17.4.5.3.16 Service feedback code 15055

The service feedback code indicates if the corresponding method execution was successful or 15056
not. If not successful, it provides information indicating why it was not successful. 15057

12.17.4.5.3.17 Size of output parameters 15058

Size of output parameters indicates the number of octets contained in output parameters. 15059

12.17.4.5.3.18 Output parameters 15060

The output parameters’ string is an octet string that contains the output parameters for the 15061
method that was executed. This is present if and only if size of output parameters is present 15062
and has a value greater than zero. 15063

 Unscheduled acyclic queued unidirectional messages (source/sink) 12.17.515064

12.17.5.1 General 15065

Unscheduled acyclic queued unidirectional messaging is also sometimes referred to as 15066
source/sink messaging. This interaction type is used for alerts. Messages sent using this 15067
protocol are queued by the lower communication layers for transmission. Message receipt is 15068
unconfirmed. There is no application process flow or rate control or lost message detection for 15069
this mode of interaction. Like client/server communications, these communications require 15070
use of a communication contract, and specify message priority on a per-message basis. 15071

Bandwidth for source/sink communications is not considered dedicated, but rather is 15072
considered to come from non-dedicated (i.e., shared) bandwidth. 15073

Unscheduled acyclic unidirectional interactions in this standard support on-demand one-to-15074
one queued message distribution. Alert reports for network communication are always issued 15075
from one initiator, the ARMO, and are always sent to one type of message recipient, an alert-15076
receiving object (ARO). 15077

Acknowledgment of reception of an individual alert may only be issued from one alert report 15078
recipient (ARO), and is sent to the (ARMO) object that reported the alert. 15079

The following services are provided to support unscheduled acyclic queued unidirectional 15080
message communications: 15081

• AlertReport; 15082

• AlertAcknowledge; and 15083

• Tunnel. 15084

 – 582 – 62734/2CDV © IEC(E)

The Tunnel service is included as a source/sink service so that it will be able to take advantage of multi-cast 15085
capabilities in the future. Such a potential development is a subject for future standardization. 15086

12.17.5.2 AlertReport service 15087

12.17.5.2.1 General 15088

AlertReport is used to report an alert using queued unidirectional communication services. 15089
The content of the alert report depends on the type of alert being reported and the category of 15090
the alert. AlertReports may be retried until an AlertAcknowledge for the AlertReport has been 15091
received. 15092

Figure 130, Figure 131, and Figure 132 indicate alert reporting message sequencing. 15093

SAP
user

SAP
provider

SAP
provider

SAP

AlertReport
request

Action

AlertReport
indicate

AlertAcknowledge
indicate AlertAcknowledge

request

Alert
timer

user

Action

 15094

Figure 130 – AlertReport and AlertAcknowledge, delivery success 15095

SAP
user

SAP
provider

SAP
provider

SAP
user

AlertReport

Alert
timer

AlertReport
request

AlertReport
indicate

AlertAcknowledge
request

request

Action

AlertAcknowledge
indication

 15096

Figure 131 – AlertReport, delivery failure 15097

62734/2CDV © IEC(E) – 583 –

SAP
user

SAP
provider

SAP
provider

SAP
user

AlertReport
request AlertReport

indication

AlertAcknowledge
request

Alert
timer

Action

AlertReport
request

AlertReport
indication

AlertAcknowledge
requestAlertAcknowledge

indication

Action

Action

Action

 15098

Figure 132 – AlertReport, acknowledgment failure 15099

NOTE 1 AlertReport timeout/retry policy is defined on the ARMO. See 6.2.7.2 for further details. 15100

Alert reporting employs two separate two-part application communication services. To report 15101
an alert, the AP uses the AlertReport service. In this version of the standard, the recipient of 15102
an AlertReport shall acknowledge the AlertReport by using the AlertAcknowledge service. 15103

NOTE 2 The use of two separate services, AlertReport and AlertAcknowledgment, enable a single alert to be sent 15104
to multiple destinations in a future revision to this standard. 15105

Monitoring and checking for acknowledgment, as well as re-reporting an alert condition for 15106
which acknowledge has not been received is the responsibility of the alert reporting device. 15107
Re-reporting an alert that is no longer prevalent, and for which an AlertAcknowledge 15108
indication has not been received, is a local matter. For example, if a diagnostic situation 15109
occurs and an alert is reported, and then the reporting device reboots such that the diagnostic 15110
situation is no longer prevailing, the device might not re-report the diagnostic alert that was in 15111
effect prior to reboot even though no AlertAcknowledge was received. 15112

AlertReport employs the same communication model as a two-part client/server primitive. 15113
Table 278 defines the service primitives for the AlertReport service. 15114

 – 584 – 62734/2CDV © IEC(E)

Table 278 – AlertReport service 15115

Parameter name Request Indication

Argument M M

Service contract identifier M —

Priority M —

Discard eligible M —

End-to-end transmission time — M

ARMO TDSAP M —

ARMO T-port — M

ARMO M M(=)

Sink T-port M —

Sink TDSAP — M

Sink object identifier M M(=)

Individual alert report M M(=)

Individual alert identifier M M(=)

Alert detector T-port M M(=)

Alert detector object M M(=)

Detection time M M(=)

Alert class M M(=)

Alarm direction C C(=)

Alert category M M(=)

Alert priority M M(=)

Alert type M M(=)

Associated-data size M M(=)

Associated data O O(=)

 15116
12.17.5.2.2 Arguments 15117

12.17.5.2.2.1 Service contract identifier 15118

See 12.17.3.2.2.1. 15119

12.17.5.2.2.2 Priority 15120

See 12.17.3.2.2.2. 15121

12.17.5.2.2.3 Discard eligible 15122

See 12.17.3.2.2.3. 15123

12.17.5.2.2.4 End-to-end transmission time 15124

See 12.17.3.2.2.4. 15125

12.17.5.2.2.5 Alert reporting management object TDSAP 15126

This parameter indicates the TDSAP of the application which is issuing this alert report. 15127

62734/2CDV © IEC(E) – 585 –

12.17.5.2.2.6 Alert reporting management object T-port 15128

This parameter indicates the T-port of the application which is issuing this alert report. 15129

12.17.5.2.2.7 Alert reporting management object 15130

This parameter represents the object identifier of the ARMO that is reporting the alert. 15131

12.17.5.2.2.8 Sink T-port 15132

This parameter identifies the sink UAP’s associated T-port. 15133

12.17.5.2.2.9 Sink TL data service access point 15134

This parameter indicates the TDSAP corresponding to sink T-port. 15135

12.17.5.2.2.10 Sink object identifier 15136

This parameter specifies the destination sink object in the application to which this service 15137
request is to be sent. 15138

12.17.5.2.2.11 Alert source IPv6Address 15139

This parameter identifies the IPv6Address of the source of this request. 15140

12.17.5.2.2.12 Alert source TDSAP 15141

This parameter identifies the source UAP’s associated TDSAP. 15142

12.17.5.2.2.13 Source T-port 15143

This parameter identifies the transmitting application source UAP associated with the T-port. 15144

12.17.5.2.2.14 Individual alert report 15145

This parameter contains an individual alert being reported by this service invocation. 15146

12.17.5.2.2.15 Individual alert identifier 15147

This parameter uniquely identifies the individual alert report. Separate identifier value 15148
sequences for the alert reporting categories shall be maintained. The value of this parameter 15149
shall be monotonically increasing, and shall wrap around when the maximum value is 15150
reached. It is included when an individual alert report is acknowledged. It also is used by an 15151
alert receiver to determine if an alert report or a set of alert reports of a particular category 15152
have been missed. If a missed report condition is detected, an alarm recovery operation 15153
should be performed. Refer to the Alarm_Regen attributes of the ARMO in 6.2.7.2 for further 15154
details on triggering the regeneration. 15155

12.17.5.2.2.16 Alert source transport port 15156

This parameter identifies the UAP containing the object that detected the alert via its 15157
associated T-port. 15158

12.17.5.2.2.17 Alert source object 15159

The alert source object indicates the object instance that detected the alarm condition. 15160

NOTE The alert reporting management object reports alert conditions detected by one or more alert detecting 15161
objects. 15162

 – 586 – 62734/2CDV © IEC(E)

12.17.5.2.2.18 Detection time 15163

This parameter specifies the time at which the alert condition was detected. This value 15164
indicates the network time at which the alert was detected. How time information is made 15165
available to an application reporting an alert is a device local matter, not specified by this 15166
standard. 15167

NOTE Translating network time to social time (wall clock time), when desired, is performed in the gateway. See 15168
5.6 for further details. 15169

12.17.5.2.2.19 Alert class 15170

This parameter indicates if this is an event (stateless) or alarm (state-oriented) type of alert. 15171

12.17.5.2.2.20 Alarm direction 15172

For alerts that are state-oriented (alarms), this indicates if the report is for an alarm condition, 15173
or a return to normal from an alarm condition. 15174

12.17.5.2.2.21 Alert category 15175

Alert category indicates if the alert is a device diagnostic alert, a communication diagnostic 15176
alert, a security alert, or a process alert. 15177

12.17.5.2.2.22 Alert priority 15178

Alert priority is a value that suggests the importance of the alert. A larger value implies a 15179
more important alert. Host systems map device priorities into host alert priorities that usually 15180
include urgent, high, medium, low, and journal. The recommended mapping of alert priority 15181
values into these categories is as follows: 15182

• 0..2: journal 15183

• 3..5: low 15184

• 6..8: medium 15185

• 9..11: high 15186

• 12..15: urgent 15187

Since the interpretation of alert priorities occurs primarily in the originating and intended 15188
receiving devices, other assignments that reflect a differing categorization are permitted. 15189

12.17.5.2.2.23 Alert type 15190

Alert type provides additional information regarding the alert, specific to the alert category. 15191

12.17.5.2.2.24 Associated-data size 15192

Associated-data size specifies the size of any alert-specific data conveyed with the alert. 15193

12.17.5.2.2.25 Associated data 15194

Associated data provides a means of conveying alert-specific data. 15195

12.17.5.3 AlertAcknowledge service 15196

12.17.5.3.1 General 15197

AlertAcknowledge is a two-part service that is used to acknowledge an individual alert to an 15198
alert reporting management object. For unicast alert reports, receipt of an AlertAcknowledge 15199
shall result in the ceasing of AlertReport retry requests for the corresponding individual alert. 15200

62734/2CDV © IEC(E) – 587 –

An AlertAcknowledge shall be sent for every AlertReport received. 15201

NOTE If a duplicate AlertReport has been received, either the application that sent the AlertReport did not receive 15202
the AlertAcknowledge within its timeout/retry time, or the AlertAcknowledgment message was not received. Since 15203
the application sending the AlertAcknowledge does not know which situation occurred, a duplicate acknowledgment 15204
is sent. 15205

The AlertAcknowledge service is described in Table 279. 15206

Table 279 – AlertAcknowledge service 15207

Parameter name Request Indication

Argument M M

Service contract identifier M —

Priority M —

Discard eligible M —

End-to-end transmission time — M

Source IPv6Address — M

Source TDSAP M —

Source T-port — M

Source object identifier M M(=)

Destination transport port M —

Destination TDSAP — M

Destination object identifier M M(=)

Individual alert identifier M M(=)

 15208
12.17.5.3.2 Arguments 15209

12.17.5.3.2.1 Service contract identifier 15210

See 12.17.3.2.2.1. 15211

12.17.5.3.2.2 Priority 15212

See 12.17.3.2.2.2. 15213

12.17.5.3.2.3 Discard eligible 15214

See 12.17.3.2.2.3. 15215

12.17.5.3.2.4 End-to-end transmission time 15216

See 12.17.3.2.2.4. 15217

12.17.5.3.2.5 Source IPv6Address 15218

This parameter identifies the IPv6Address for the source of this request. 15219

12.17.5.3.2.6 Source TDSAP 15220

This parameter identifies the service primitive source AP’s associated TDSAP. The TDSAP 15221
maps 1-to-1 to a UAP. 15222

 – 588 – 62734/2CDV © IEC(E)

12.17.5.3.2.7 Source T-port 15223

This parameter identifies the transmitting application source UAP associated with the T-port. 15224

12.17.5.3.2.8 Source object identifier 15225

This parameter identifies the object that is initiating the alert acknowledgment. 15226

12.17.5.3.2.9 Destination T-port 15227

This parameter identifies the application process to receive the alert acknowledgment as a 15228
single application is associated with a T-port. 15229

12.17.5.3.2.10 Destination TDSAP 15230

This parameter identifies the TDLE SAP corresponding to the destination transport port. 15231

12.17.5.3.2.11 Destination object identifier 15232

This parameter identifies the object in the application process of the device to receive the 15233
acknowledgment. 15234

12.17.5.3.2.12 Individual alert identifier 15235

This parameter identifies the individual alert that is being acknowledged. 15236

 Client/server and source/sink commonalities 12.17.615237

12.17.6.1 Individual or concatenated messaging for client/server and/or source/sink 15238

Client/server and source/sink messages may be sent as an individual transport service data 15239
unit (TSDU), or may be concatenated together within a single TSDU. Concatenation supports 15240
both four-part primitive messages (requests and responses) and two-part primitive messages 15241
(requests only). Concatenation allows client/server messages to be combined in the TSDU 15242
with source/sink messages. How APDU concatenation is determined and accomplished is a 15243
device local matter. It is recommended that concatenations refrain from including more than 15244
two services, as this may result in more bursty communication. 15245

NOTE 1 The discussion of stretch acknowledgment violation in IETF RFC 2525 provides background on message 15246
acknowledgment concatenation and the ramifications of having more than two such acknowledgments in a PDU. 15247

NOTE 2 Publish/subscribe already supports including multiple values from a UAP in a single message. See 15248
12.15.2.5 and 12.15.2.6 for further details. 15249

Concatenation may be used to reduce transmission overhead and/or deliver a set of 15250
messages to the corresponding ASL as a unit. 15251

All messages within the concatenation shall have a common message priority, and shall 15252
indicate communication via a common communication contract. 15253

The number of ASL services that may be concatenated by an ASL building the concatenated 15254
PDU is limited by the maximum APDU size corresponding to the communication contract to be 15255
used for the messages. 15256

The ASL receiving a concatenated APDU is required to parse and handle each APDU 15257
individually from start to finish until the end of the TSDU has been met. If a protocol error is 15258
detected during parsing of a concatenated APDU, a single malformed APDU error is indicated 15259
and the remaining portion of the APDU shall be discarded. 15260

An ASL concatenation of services may contain: 15261

62734/2CDV © IEC(E) – 589 –

• homogeneous ASL service primitives (e.g., all service requests); or 15262

• heterogeneous ASL service primitives (e.g., for client/server flows, requests and 15263
responses, which may be mixed). 15264

• homogeneous application communication flow primitives (e.g., all client/server); or 15265

• heterogeneous application communication flow type primitives (e.g., client/server and 15266
source/sink). 15267

The AL itself makes no requirements on how responses to services included in a 15268
concatenation are returned; determination of such responses is at the discretion of the 15269
receiving application. For example, if a concatenated client/server request contains service 15270
requests (A, B, C) and another concatenated client/server service request contains service 15271
requests (D, E), the client/server responses for these may: 15272

– not be required (e.g., A, B, and D may be four-part services that require a response, but C 15273
and E may be two-part services that do not require a response); 15274

– not be concatenated at all, and returned in any order (e.g., response A, response B, 15275
response E, response D, response C, all in separate APDUs); 15276

– be partially concatenated, in any order (e.g., response returned may be B,C in one APDU, 15277
A in another APDU); 15278

– employ a single APDU to respond to a concatenated request, but responses may be 15279
concatenated in any order (e.g., response returned may be concatenated as BCA); 15280

– be fully concatenated in the same order (e.g., response returned concatenated as ABC); 15281
– be entirely differently concatenated than the requests received (e.g., response may be 15282

returned BD, ACE). 15283

How and when an ASL initiating a communication determines when to create a concatenation 15284
as well as when to deliver the concatenation to the lower communication protocol suite for 15285
conveyance is a local matter. However, this standard shall specify the overall structure of a 15286
TSDU containing concatenated APDUs. 15287

This standard does not prescribe the order in which services included in concatenated 15288
messaging are handled by the destination. Thus the order of responses is not required to be 15289
the same as the order of the requests included in the concatenation. 15290

NOTE 3 An implementation that defines local services to bracket concatenated constructions is able to provide 15291
further control over concatenation content. 15292

Figure 133 illustrates a concatenated response for multiple outstanding write requests with no 15293
message loss. Timeouts are described in 12.12.4.2.2.1. 15294

 – 590 – 62734/2CDV © IEC(E)

Write(#1).req

Write(#1,#2,#3).con

UAL UAL

Write(#2).req

Write(#3).reqT#3

T#2

T#1

 15295

Figure 133 – Concatenated response for multiple outstanding write requests 15296
(no message loss) 15297

12.17.6.2 Application sublayer common services for client/server and source/sink 15298
messaging – Tunnel 15299

12.17.6.2.1 General 15300

The tunnel service may use either a two-part (source/sink) or a four-part (client/server) 15301
communication service primitive model. 15302

Information to enable matching service primitives, effecting appropriate application level 15303
handling of error situations such as duplicate message detection and detection of out-of-order 15304
delivery, etc. shall be the responsibility of the application process to include within the non-15305
native payload of the tunnel messages. 15306

The tunnel service can be used to encapsulate both client/server and source/sink 15307
communications as defined by this standard. This service identifies a message as destined for 15308
a non-native protocol tunnel. The service identifier is required so that the ASL can parse a 15309
message and determine whether to pass it on to a legacy protocol tunnel or handle it as a 15310
native message. The tunnel service provides a single level of message encapsulation for a 15311
protocol tunnel. The non-native APDU is passed through to the destination object specified in 15312
the tunnel service request. 15313

A tunneling application may establish the retry policy for two-part (source/sink) tunnel 15314
requests that it sends. 15315

Table 280 defines the tunnel service primitives. 15316

62734/2CDV © IEC(E) – 591 –

Table 280 – Tunnel service 15317

Parameter name Request Indication Response Confirm

Argument M M — —

Service contract identifier M — — —

Priority M — — —

Discard eligible M — — —

End-to-end transmission time — M — —

Forward congestion notification — M — —

Application destination T-port M — — —

Application destination TDLE SAP — M — —

Application destination object identifier M M(=) — —

Application source IPv6Address — M — —

Application source TLDE SAP M — — —

Application source T-port — M — —

Application source object identifier M M(=) — —

Payload size (in octets) M M(=) — —

Tunnel payload data M M(=) — —

Result — — U U

Service contract identifier — — M —

Priority — — M —

Discard eligible — — M —

End-to-end transmission time — — — M

Forward congestion notification — — — M

Forward congestion notification echo — — M M(=)

Application destination T-port — — M —

Application destination TDLE SAP — — — M

Application destination object identifier — — M M(=)

Application source IPv6Address — — — M

Application source TLDE SAP — — M —

Application source T-port — — — M(=)

Application source object identifier — — M M(=)

Payload size (in octets) — — M M(=)

Tunnel payload data — — M M(=)

 15318
12.17.6.2.2 Arguments 15319

12.17.6.2.2.1 Service contract identifier 15320

See 12.17.3.2.2.1. 15321

12.17.6.2.2.2 Priority 15322

See 12.17.3.2.2.2. 15323

12.17.6.2.2.3 Discard eligible 15324

See 12.17.3.2.2.3. 15325

 – 592 – 62734/2CDV © IEC(E)

12.17.6.2.2.4 End-to-end transmission time 15326

See 12.17.3.2.2.4. 15327

12.17.6.2.2.5 Forward congestion notification 15328

This parameter indicates if the request has encountered network congestion on its path from 15329
the client to the server. 15330

12.17.6.2.2.6 Application destination T-port 15331

This parameter identifies the UAP at the destination for this service request. 15332

12.17.6.2.2.7 Application destination TDSAP 15333

This parameter represents the TDSAP corresponding to the AL transport destination port. 15334

12.17.6.2.2.8 Application destination object identifier 15335

This parameter identifies the object in the receiving application. 15336

12.17.6.2.2.9 Application source IPv6Address 15337

This parameter identifies the IPv6Address for the client of this request. 15338

12.17.6.2.2.10 Application source TDSAP 15339

This parameter identifies the application source UAP’s associated TDSAP. The TDSAP maps 15340
1-to-1 to a UAP. The UAP contains the object originating the request in the client. 15341

12.17.6.2.2.11 Application source T-port 15342

This parameter identifies the UAP that is the source for this service request. 15343

12.17.6.2.2.12 Application source object identifier 15344

This parameter indicates the application source object that is originating the tunnel service 15345
request. 15346

12.17.6.2.2.13 Payload size 15347

This parameter indicates the number of octets of the tunnel payload parameter. 15348

12.17.6.2.2.14 Tunnel payload data 15349

This parameter represents the data (e.g., legacy protocol APDU) that is to be conveyed to the 15350
server object. 15351

12.17.6.2.3 Results 15352

12.17.6.2.3.1 Service contract identifier 15353

See 12.17.3.2.2.1. 15354

12.17.6.2.3.2 Priority 15355

See 12.17.3.2.2.2. 15356

62734/2CDV © IEC(E) – 593 –

12.17.6.2.3.3 Discard eligible 15357

See 12.17.3.2.2.3. 15358

12.17.6.2.3.4 End-to-end transmission time 15359

See 12.17.3.2.2.4. 15360

12.17.6.2.3.5 Forward congestion notification 15361

This parameter indicates if the service response encountered network congestion on its path 15362
from the server to the client. 15363

12.17.6.2.3.6 Forward congestion notification echo 15364

This parameter indicates if the service request encountered network congestion on its path 15365
from the client to the server. 15366

12.17.6.2.3.7 Application destination T-port 15367

This parameter identifies the UAP at the destination for this service request. 15368

12.17.6.2.3.8 Application destination TDSAP 15369

This parameter represents the TDSAP corresponding to AL transport destination port. 15370

12.17.6.2.3.9 Application destination object identifier 15371

This parameter indicates the application destination object that is originating the tunnel 15372
service request. 15373

12.17.6.2.3.10 Application source IPv6Address 15374

This parameter identifies the IPv6Address for the client of this request. 15375

12.17.6.2.3.11 Application source TDSAP 15376

This parameter identifies the application source UAP’s associated TDSAP. The TDSAP maps 15377
1-to-1 to a UAP. The UAP contains the object originating the request in the client. 15378

12.17.6.2.3.12 Application source T-port 15379

This parameter indicates the application source object that is originating the tunnel service 15380
request. 15381

12.17.6.2.3.13 Application source object identifier 15382

This parameter indicates the application source tunnel object that is originating the tunnel 15383
service request. 15384

12.17.6.2.3.14 Payload size 15385

This parameter indicates the number of octets of the tunnel payload parameter. 15386

12.17.6.2.3.15 Tunnel payload data 15387

This parameter represents the data (e.g., legacy protocol APDU) that is to be conveyed to the 15388
server object. 15389

 – 594 – 62734/2CDV © IEC(E)

 AL flow use of lower layer services 12.1815390

 General 12.18.115391

All types of messaging (e.g., publication, client/server, source/sink, bulk transfer) and all 15392
qualities of service may flow through the common TDSAP for the application process. Table 15393
281 indicates the mapping of the AL flows to the TL services provided. 15394

Table 281 – Application flow characteristics 15395

Application
flow type

Buffered
or

queued

Periodic
(scheduled)

Order
sensitive

Reliable Unacknowledged Message importance

High Medium Low

Periodic
publish/
subscribe

Buffered Yes Yes No Yes a) a) a)

Client/ server Queued No No No Yes a) a) a)

Source/sink Queued No No No Yes a) (Note 1) a)

a) The message importance alternative that is selected is the one that applies.

Note 1 No use case identified.

 15396
 AL use of TDSAPs 12.18.215397

The ASL communicates with the lower layers of the communication protocol suite via 15398
TDSAPs. The information communicated to the TL for TDSAP mapping is a subset of the 15399
information communicated to the ASL from the UAP at the ASAP. There is one well-known 15400
TDSAP in this standard, TDSAP number 0, that is used for communications with the objects 15401
represented by the DMAP application. 15402

TDSAPs that are not well known may be associated with one and only one particular 15403
application process. That is, there is a one-to-one mapping relationship between a TDSAP 15404
and a UAL process. Because TDSAPs are local, remote entities indicate a T-port that 15405
represents a corresponding application. T-ports map 1-to-1 to TDSAPs. UAL process / TDSAP 15406
/ transport data port relationships shall survive application restart. 15407

NOTE Fifteen TDSAPs are available for compressed transmission. See 11.6 for further details. 15408

 Mapping AL service primitives to TL service primitives 12.18.315409

Table 282 indicates the mapping of application service primitives to transport services. 15410

62734/2CDV © IEC(E) – 595 –

Table 282 – AL service primitive to TL service primitive mapping 15411

Application service primitive Transport
service

Data conveyed between application sublayer and
transport service

Publish.request

Read.request, Read.response
Write.request, Write.response

Execute.request,
Execute.response

Tunnel.request, Tunnel.response

AlertReport.request

AlertAcknowledge.request

T-DATA.request Contract_ID

APDU_size

APDU

Message priority

Discard eligibility

Source TDSAP

Destination T-port

NOTE 1 The contract ID indicates destination address,
and contract priority.

NOTE 2 The source T-port can be determined from the
source TDSAP, but is explicitly passed to match the
interface provided by the TL.

Publish.indicate

Read.indicate, Read.confirmation

Write.indicate, Write.confirmation

Execute.indicate,
Execute.confirmation

Tunnel.indicate,
Tunnel.confirmation

AlertReport.indicate

AlertAcknowledge.indicate

T-DATA.indicate source IPv6Address

Source T-port

APDU_size (equivalent to TSDU size)

APDU (equivalent to TSDU)

Explicit congestion notification (ECN)

Destination TDSAP

Destination T-port

Transport time (one-way end-to-end delivery time, in
seconds)

 15412
 AL management 12.1915413

 General 12.19.115414

AL management supports the local DMAP application sublayer management object. Access to 15415
the attributes and methods of this object are defined by the ASL. For this standard, the ASL 15416
provides access to read a configured value from the ASL-MIB, to write a configured value to 15417
the ASL-MIB, and to support reset of the ASL. 15418

 Application sublayer handling of malformed application protocol data units 12.19.215419

The ASL supports informing the local DMAP of a potential device/communication problem if 15420
an AL management-configured threshold is reached within a configured time period, for 15421
malformed APDUs received from a particular source device. Some examples of malformed 15422
APDUs are: 15423

• APDU size incorrect (too long or too short); 15424

• invalid service identifier; or 15425

• service misuse (e.g., response primitive was indicated in the PDU for a two-part 15426
client/server or source/sink service). 15427

The intent of this information is to enable the DMAP to provide information to higher level 15428
management. This may be important, for example, to enable detection of a malformed APDU 15429
attack occuring. 15430

The ASL may be configured to advise the DMAP whenever a malformed APDU is received. 15431

 – 596 – 62734/2CDV © IEC(E)

The ASL may be configured with non-zero values for a threshold and a time interval. When so 15432
configured, the ASL will maintain individual counters and timers internally for each network 15433
source address from which a malformed APDU has been received. Counting commences with 15434
the receipt of the first malformed APDU from a device and continues until either the 15435
malformed APDU threshold value is reached or the ASL_TimePeriodForMalformedAPDUs 15436
expires. 15437

If the malformed APDU threshold value is reached prior to or at the expiration of the 15438
configured time interval, the DMAP is advised and the count and time interval for the device 15439
are reset. 15440

If the malformed APDU threshold is not reached within the configured time interval, the 15441
counters and timers are internally reset. 15442

NOTE How the DMAP is advised of a malformed APDU, or that a threshold has been reached within a specific 15443
time interval, is a local matter, and hence is not specified by this standard. 15444

Figure 134 illustrates the handling of malformed APDUs. 15445

 15446

Figure 134 – Management and handling of malformed APDUs received from device X 15447

 Application sublayer management object attributes 12.19.315448

Table 283 describes the attributes supported by the application sublayer management object 15449
(ASLMO). 15450

62734/2CDV © IEC(E) – 597 –

Table 283 – ASLMO attributes 15451

Standard object type name: Application sublayer management object (ASLMO)

Standard object type identifier: 121

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

ObjectIdentifier Object
key
identifier

Unique identifier for
the object

Type: Unsigned16 N/A

Classification:
Constant

Default value: 7

Valid range: 7

Reserved for future use 0 — — —

MalformedAPDUsAdvise 1 Indicates if ASL
should indicate to
local DMAP whenever
a malformed APDU is
encountered

Type: Boolean If this parameter
has a value of
TRUE, the ASL
shall pass each
malformed APDU
it receives on to
the local DMAP

Classification:
Static

Accessibility:
Read/write

Initial default
value : FALSE

TimeIntervalForCounting

MalformedAPDUs

2 This attribute
specifies the time
interval for the ASL to
count malformed
APDUs received from
a particular device.
Counting occurs from
detection of the first
malformed APDU
from a device. This
interval is applied
commonly to APDUs
from all source
IPv6Addresses.

The units of this
attribute is seconds

Type:
TAITimeDifference

If the time
interval expires
without the
threshold being
met, the
corresponding
internal
malformed ASL
counter and timer
information shall
be reset to zero
(0)

Classification:
Static

Accessibility:
Read/write

Initial default
value : 0

Valid range:

0 < value < to
86 400 s

Number of days is
not included (it is
always equal to
zero)

MalformedAPDUsThreshold 3 Common threshold
value to apply to
malformed APDUs
received from each
device

Type: Unsigned16 If this threshold
is met in the
specified time
interval, a
communication
alert shall be
reported
indicating the
device that has
been sending
malformed
APDUs.

If a threshold
value is set while
counting is in
progress, and the
value set is lower
than the prior
threshold such
that the new
threshold has
been exceeded,
a malformed
APDU alert shall
be reported

Classification:
Static

Accessibility:
Read/write

Initial default
value : 0

 – 598 – 62734/2CDV © IEC(E)

Standard object type name: Application sublayer management object (ASLMO)

Standard object type identifier: 121

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

MalformedAPDUAlertDescriptor 4 Describes how the
malformed alert is
reported on the
network

Type : Alert report
descriptor

Classification:
Static

Accessibility:
Read/write

Default value:
[TRUE, 7]

MaxDevicesForWhichMalformed

APDUsCanBeCounted

5 Describes the
malformed APDU
counting capability of
the ASL in terms of
the maximum number
of devices for which
counts can be
simultaneously
maintained

Type: Unsigned16 A minimum value
required may be
established for
example based
on the role of the
device

Classification:
Constant

Accessibility: Read
only

Reserved for future use by this
standard

6..63 — — —

 15452
Attributes classified as either constant or static shall be preserved across restarts and power-15453
fails. 15454

 Application sublayer management object methods 12.19.415455

12.19.4.1 Standard object methods 15456

An ASLMO has the methods defined in Table 284. 15457

Table 284 – Application sublayer management object methods 15458

Standard object type name: Application sublayer management object (ASLMO)

Standard object type identifier: 121

Method name Method ID Method description

Null 0 Reserved by standard for future
use

Reset 1 Reset application sublayer

Reserved for future use by this
standard

2..127 These method identifiers are
reserved for future use by this
standard

Implementation-specific use 128..255 These method identifiers are
available for implementation-
specific use

 15459
12.19.4.2 Reset method 15460

Table 285 specifies the reset method primitives. 15461

62734/2CDV © IEC(E) – 599 –

Table 285 – Reset method 15462

Standard object type name: Application sublayer management object (ASLMO)

Standard object type identifier: 121

Method
name

Method
ID

Method description

Reset 1 Reset application sublayer

Input arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

1 ResetType Type: Unsigned8

Named values:
0: not used;
1: reset to factory default settings;
2: reset to provisioned settings;
3: warm reset (reset to provisioned settings and any
communication contract related information);
4: reset all dynamic data (e.g., related to statistics);
5..255: reserved

Type of reset
desired

Output arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

None

 15463
12.19.4.3 Input arguments 15464

The ResetType parameter indicates the type of reset desired. The sublayer may be reset to: 15465

• factory default settings; 15466

• only maintain provisioned settings (if any); 15467

• only maintain the set of both provisioned settings and communication contract settings (if 15468
any); or 15469

• only all dynamic statistics. 15470

NOTE An example of default factory settings is: 15471

– MalformedAPDUsAdvise configuration parameter, indicating disabled; 15472

– TimeIntervalForCountingMalformedAPDUs configuration parameter, indicating 100 APDUs; and 15473

– MalformedAPDUsThreshold configuration parameter, indicating a zero time interval. 15474

12.19.4.4 Output arguments 15475

There are no output arguments for this method. 15476

12.19.4.5 Response codes 15477

The following feedback codes are valid for this method: 15478

• success; 15479

• invalidArgument; and 15480

• those that are vendor-defined. 15481

 Application sublayer management object alerts 12.19.515482

Table 286 defines the alerts for the ASLMO. 15483

 – 600 – 62734/2CDV © IEC(E)

Table 286 – ASLMO alerts 15484

Standard object type name(s): Application sublayer management object (ASLMO)

Standard object type identifier: 121

Description of the alert: Malformed APDU alert

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type

(Enumerated:
based on alert

category)

Alert
priority

Associated data Description of
associated data

included with alert

Event Communication
diagnostic

malformedAPDU

CommunicationAlert

7
(i.e., a
mid-
range
medium-
priority
alert)

No special
standard type is
defined, because
the protocol
content does not
correspond to an
attribute of the
ASLMO. Rather, it
is constructed
within the protocol
as an implicit
sequence,
identifiable by the
combination of
alert class, alert
category and alert
type

Three elements are
included in the
following sequence:

a) Source address
of malformed
APDUS
(IPv6Address)

b) Threshold value
exceeded
(Unsigned16)

c) Time interval in
which threshold was
exceeded
(TAITimeDifference)

 15485
 DMAP services invoked by application sublayer 12.19.615486

If the configured ASL malformed APDUs interval and ASL malformed APDUs threshold are 15487
both non-zero, the ASL shall commence keeping malformed APDU statistics. If the threshold 15488
is reached prior to or upon expiration of the configured time interval, the ASL shall report to 15489
the DMAP that a communication diagnostic alert should be generated. The data provided by 15490
ASL to the DMAP shall include: 15491

a) an indication that malformedAPDUsThresholdReached situation has been reached; and 15492

NOTE This is indicated if and when the ASL malformed APDUs threshold is reached for malformed APDUs 15493
received from a single source IPv6Address within the configured ASL malformed APDUs interval. 15494
b) diagnostic information regarding the malformed APDUs detected, such as: 15495

– number of APDUs received that did not have correct size, 15496
– number of APDUs received with an invalid service identifier, and 15497
– number of APDUs received with service identifier misused; and 15498

c) the source IPv6Address of the malformed APDUs; and 15499
d) the threshold value that was reached; and 15500
e) the time duration over which the malformed APDUs were received. 15501

This time interval is calculated as the time from detection of the first malformed APDU 15502
from the indicated device by the ASL and the detection of the malformed APDU that 15503
resulted in the ASL threshold limit being reached for the indicated device. This time 15504
duration shall be less than or equal to the configured time interval established in the ASL 15505
management parameters. 15506

62734/2CDV © IEC(E) – 601 –

 Process industries standard objects 12.19.715507

12.19.7.1 General 15508

The standard objects defined in this standard are included to address the basic needs of the 15509
process industry. The unified field theory (for process control) that underlies this standard 15510
defines standard field objects by leveraging existing field device object definitions from field-15511
proven object-oriented process control system standards. The set of objects has been 15512
selected based on commonality of use and are defined to facilitate interworkability and limited 15513
interoperability (within its domain of application) among devices. 15514

NOTE 1 Terminology used here, including SOE, PV, OP, OOS, MAN and AUTO, is that common to the process 15515
industries. 15516

NOTE 2 This standard presumes that any access restrictions to object attributes that are necessary to satisfy 15517
system usage requirements, are enforced by human interface devices and/or gateway devices. 15518

To support timestamps used in process control industry alarm reports, the time value 15519
construct used to represent time shall support a coding accuracy of 1 ms. This accuracy is 15520
necessary when supporting the high speed resolution typical of the process industry SOE 15521
(sequence of events) applications. 15522

12.19.7.2 Process industries user application objects 15523

A basic list of user application objects is anticipated for the process control industries profile. 15524
The unified field objects (UFOs) defined in this standard are: 15525

• analog input object, 15526

• analog output object, 15527

• binary input object, and 15528

• binary output object. 15529

Application object control mode supports the following modes: 15530

• Target mode is the mode to which the device was commanded to transition. This may be 15531
different from the actual mode if the device cannot accept the target mode due to error, 15532
etc. 15533

• Actual mode is the current mode of the object. 15534

• Normal mode is the operating mode of the block that is desired by the responsible control 15535
engineer. Normal mode is one of the modes other than OOS, that is designated as 15536
“normal operation” for the block. 15537

• Permitted modes represent the set of modes that are valid for this object. This is a filter 15538
that can be applied to limit the target mode of the block. For example, manual mode may 15539
be disabled this way. OOS is always included in the set of permitted modes. 15540

The following modes are supported: 15541

– OOS (out-of-service): The device is not actively measuring the PV (process variable) 15542
value or not accepting the OP (output point) value. Another common name for this mode is 15543
“inactive”. The value and associated status indicating the OOS condition are still 15544
communicated by the device. This is not intended to disable communication. 15545

– MAN (manual): The PV can be manually entered by the operator and used for open loop 15546
control with a human in the loop or for overriding faulty measurement. MAN is also useful 15547
for testing. 15548

– AUTO (automatic): Device is actively measuring its PV value or accepting its OP value. 15549

A structured attribute is required to be added for each type of alert report supported by the 15550
object. This attribute supports enabling/disabling of an alert report and establishes the alert 15551
priorities. 15552

 – 602 – 62734/2CDV © IEC(E)

For alarms, a structured attribute may additionally be required to establish alarm limits, to 15553
indicate if an alarm is present. 15554

12.19.7.3 Analog input user object 15555

12.19.7.3.1 General 15556

A standard analog input user object representing an encapsulation of an analog input is 15557
defined. If multiple analog inputs are represented by a device, multiple analog input user 15558
objects should be instantiated. Object type-specific attributes of this object include: 15559

• process value: a floating point value represented in engineering units and status; 15560

• mode: a structured attribute representing target mode, actual mode, permitted mode, and 15561
normal mode; 15562

• corresponding concentrator object: specifies the concentrator associated to publish the 15563
PV; and 15564

• scale: represents the range and units of the process value via a structured attribute that 15565
indicates the 0% and 100% limites of the nominal value range, a coded representation of 15566
engineering units, and the number of significant digits that should be used for display. 15567

Standard alerts for this object will also be defined. 15568

12.19.7.3.2 Object attributes 15569

An analog input object has the attributes defined in Table 287. 15570

62734/2CDV © IEC(E) – 603 –

Table 287 – Analog input object attributes 15571

Standard object type name: Analog input object

Standard object type identifier: 99

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

ObjectIdentifier Object key
identifier

Unique identifier for
the object

Type: Unsigned16 N/A

Classification: Constant

Valid range: >0

Reserved for future
use

0 — — —

PV 1 Measurement variable
in engineering units of
the sensor

Type: Process control value
and status for analog value

Analog process
value and status of
that value.
Accessibility is
read/write only when
MODE.Target=MAN.
See 12.19.7.2.
When a write to
PV is done, the
device may
implement this as
a write to a non-
network visible
internal variable,
and use the non-
visible value when
constructing the
value it represents
for the PV. As
appropriate, the
device may report
a different status
for the PV than
that which was
provided in the
write request

Classification: Dynamic

Accessibility: Read only

Default value: NaN

Status: Unknown;

Substatus: Unknown

Limit condition: Not limited

Valid range: See definition
of process control value
and status for analog value
structure

Mode 2 Mode Type: Process control mode Actual, target,
permitted, and
normal mode
values

Classification: Static

Accessibility: Read only for
actual mode; target mode,
permitted mode, and normal
mode all have read/write
access

Default value: Actual mode
value indicates OOS

Valid range: See Process
control mode structure type
definition

Reserved for future
use

3 — — —

 – 604 – 62734/2CDV © IEC(E)

Standard object type name: Analog input object

Standard object type identifier: 99

Attribute name Attribute
identifier

Attribute description Attribute data information Description of
behavior of

attribute

Scale 4 Range and units of the
measurement variable

Type: Process control
scaling data

Scaling
information for the
analog process
value Classification: Static

Accessibility: Read/write

Default value: Engineering
units values for 0% and for
100% BOTH indicate 0

Valid range: See definition
of scale structure type

Reserved for future
use by this
standard

5..25 — — N octets of
presently
undefined content

 15572
12.19.7.3.3 Standard object methods 15573

An analog input object has the methods defined in Table 288. 15574

Table 288 – Analog input object methods 15575

Standard object type name: Analog input object

Standard object type identifier: 99

Method name Method
ID

Method description

Null 0 Reserved by standard for future use

Reserved for future use by
this standard

0..127 These method identifiers are reserved for future use by this
standard

Implementation-specific use 128..255 These method identifiers are available for implementation-specific
use

 15576
12.19.7.3.4 Alerts 15577

An analog input may report the alerts shown in Table 289. If an alert is supported, a 15578
corresponding alert descriptor attribute shall be added to the analog input object to describe 15579
the characteristics of the alert. 15580

62734/2CDV © IEC(E) – 605 –

Table 289 – Analog input alerts 15581

Standard object type name(s):Analog input

Standard object type identifier: 99

Description of the alert: Analog input alerts

Alert class
(Enumerated:

alarm or event)

Alert category
(Enumerated:

device diagnostic,
comm. diagnostic,

security, or
process)

Alert type(s)

(Enumerated:
based on alert

category)

Alert
priority

Associated
data: type and

size

Description of
associated

data included
with alert

Alarm Process 1 High Any Type: Float32 Process
variable

Alarm Process 2 HighHigh Any Type: Float32 Process
variable

Alarm Process 3 Low Any Type: Float32 Process
variable

Alarm Process 4 LowLow Any Type: Float32 Process
variable

Alarm Process 5 DeviationLow Any Type: Float32 Process
variable

Alarm Process 6 DeviationHigh Any Type: Float32 Process
variable

Alarm Process 0 OutOfService Any Type: Float32 Process
variable

 15582
12.19.7.4 Analog output user object 15583

12.19.7.4.1 General 15584

A standard analog output user object represents an encapsulation of an analog output. If 15585
multiple analog outputs are represented by a device, multiple analog output user objects 15586
should be instantiated. Object type-specific attributes of this object include: 15587

• commanded output value: a floating point value represented in engineering units and 15588
status; 15589

• mode: a structured attribute representing target mode, actual mode, permitted mode, and 15590
normal mode; 15591

• Readback: value and status of the actual position; 15592

• provider of OP value: indicates the source of the OP value; 15593

• corresponding concentrator object: specifies the concentrator associated to publish the 15594
Readback value; and 15595

• scale: represents the range and units of the process value via a structured attribute that 15596
indicates the 0% and 100% limites of the nominal value range, a coded representation of 15597
engineering units, and the number of significant digits that should be used for display. 15598

12.19.7.4.2 Object attributes 15599

An analog output object has the attributes defined in Table 290. 15600

 – 606 – 62734/2CDV © IEC(E)

Table 290 – Analog output attributes 15601

Standard object type name: Analog output object

Standard object type identifier: 98

Attribute name Attribute
identifier

Attribute
description

Attribute data information Description of
behavior of

attribute

ObjectIdentifier Object key
identifier

Unique
identifier for the
object

Type: Unsigned16 N/A

Classification: Constant

Valid range: >0

Reserved for future use 0 — — —

OP 1 Output value for
the actuator

Type: Process control value
and status for analog value
structure

This is the standard
attribute that serves
as the destination
attribute for a
publication from
another object

Classification: Dynamic

Accessibility: Read/write

Default value: NaN

Status: Unknown

Substatus: Unknown

Limit condition: Not limited

Valid range: See definition
of process control value
and status for analog value
structure

Mode 2 Mode Type: Process control mode Actual, target,
permitted, and
normal mode values Classification: Static

Accessibility: Read only for
actual mode; target mode,
permitted mode, and normal
mode all have read/write
access

Default value: Actual mode
value indicates OOS

Valid range: See Process
control mode structure type
definition

Reserved for future use 3 — — —

Readback 4 Readback value
– the actual
position of the
OP

Type: Process control value
and status for analog value

Analog process
value and status of
that value.

This is the standard
attribute that is
published from this
object.

If this object is
extended, such that
another attribute
needs to be
published, (a)
concentrator
object(s)
represent(s) the
resulting
publication(s)

Classification: Dynamic

Accessibility: Read only

Default value: NaN;

 Status: Unknown

Substatus: Unknown

Limit condition: Not limited

Valid range: See definition
of process control value
and status for analog value
structure

Reserved for future use 5 — — —

62734/2CDV © IEC(E) – 607 –

Standard object type name: Analog output object

Standard object type identifier: 98

Attribute name Attribute
identifier

Attribute
description

Attribute data information Description of
behavior of

attribute

Scale 6 Range and
units of the
output variable

Type: Process control
scaling data structure

Scaling information

Classification: Static

Accessibility: Read/write

Default value: Engineering
units values for 0% and for
100% BOTH indicate 0

Valid range: See definition
of Scale structure type

Reserved for future use
by this standard

7..25 — — N octets of presently
undefined content

 15602
12.19.7.4.3 Standard object methods 15603

An analog output object has the methods defined in Table 291. 15604

Table 291 – Analog output object methods 15605

Standard object type name: Analog output object

Standard object type identifier: 98

Method name Method ID Method description

Null 0 Reserved by standard for future use

Reserved for future use by this
standard

0..127 These method identifiers are reserved for future use by
this standard.

Implementation-specific use 128..255 These method identifiers are available for implementation-
specific use

 15606

 – 608 – 62734/2CDV © IEC(E)

12.19.7.4.4 Alerts 15607

An analog output may report the alerts shown in Table 292. If an alert is supported, a 15608
corresponding alert descriptor attribute shall be added to the analog output object to describe 15609
the characteristics of the alert. 15610

Table 292 – Analog output alerts 15611

Standard object type name(s): Analog output

Standard object type identifier: 98

Description of the alert: Analog output alerts

Alert class
(Enumerated:

alarm or event)

Alert category
(Enumerated: device

diagnostic, comm.
diagnostic, security, or

process)

Alert type(s)

(Enumerated:
based on alert

category)

Alert
priority

Associated
data: type
and size

Description of
associated

data included
with alert

Alarm Process 1 High Any Type:
Float32

Process
variable

Alarm Process 2 HighHigh Any Type:
Float32

Process
variable

Alarm Process 3 Low Any Type:
Float32

Process
variable

Alarm Process 4 LowLow Any Type:
Float32

Process
variable

Alarm Process 5 DeviationLow Any Type:
Float32

Process
variable

Alarm Process 6 DeviationHigh Any Type:
Float32

Process
variable

Alarm Process 0 OutOfService Any Type:
Float32

Process
variable

 15612
12.19.7.5 Binary input user object 15613

12.19.7.5.1 General 15614

A standard binary input user object represents an encapsulation of a single binary input. If 15615
multiple binary inputs are represented by a device, multiple binary input user objects should 15616
exist to represent them. Object type specific attributes of this object include: 15617

• process value: binary value and status; 15618

• mode: a structured attribute representing target mode, actual mode, permitted mode, and 15619
normal mode; and 15620

• corresponding concentrator object: specifies the concentrator associated to publish the 15621
process value. 15622

12.19.7.5.2 Object attributes 15623

A binary input object has the attributes defined in Table 293. 15624

62734/2CDV © IEC(E) – 609 –

Table 293 – Binary input object attributes 15625

Standard object type name: Binary input object

Standard object type identifier: 97

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of behavior
of attribute

ObjectIdentifier Object key
identifier

Unique identifier for
the object

Type: Unsigned16 N/A

Classification: Constant

Valid range: >0

Reserved for
future use

0 — — —

PV_B 1 Discrete
measurement
variable

Type: Process control
value and status for
discrete value

Binary process value
and status of that value.

This is the standard
attribute that is
published from this
object.

If this object is
extended, such that
another attribute needs
to be published, (a)
concentrator object(s)
represent(s) the
resulting publication(s).

Accessibility is
read/write only when in
MAN mode. See
12.19.7.2. When a write
to PV_B is done, the
device may implement
this as a write to a non-
network visible internal
variable, and use the
non-visible value when
constructing the value it
represents for the PV_B.
As appropriate, the
device may report a
different status for the
PV_B than that which
was provided in the write
request.

Classification: Dynamic

Accessibility: Read only

Default value: 0

Status: Unknown

Substatus: Unknown

Limit condition: Not
limited

Valid range: See
definition of process
control value and status
for discrete value
structure

Mode 2 Mode Type: Process control
mode

Actual, target, permitted,
and normal mode values

Classification: Static

Accessibility: Read only
for actual mode; target
mode, permitted mode,
and normal mode all
have read/write access

Default value: Actual
mode value indicates
OOS

Valid range: See
Process control mode
structure type definition

Reserved for
future use by this
standard

3..25 — — N octets of presently
undefined content

 15626
12.19.7.5.3 Standard object methods 15627

A binary input object has the methods defined in Table 294. 15628

 – 610 – 62734/2CDV © IEC(E)

Table 294 – Binary input object methods 15629

Standard object type name: Binary input object

Standard object type identifier: 97

Method name Method
ID

Method description

Null 0 Reserved by standard for future use

Reserved for future use by this
standard

0..127 These method identifiers are reserved for future use by this
standard

Implementation-specific 128..255 These method identifiers are available for implementation-
specific use

 15630
12.19.7.5.4 Alerts 15631

An analog output may report the alerts shown in Table 295. If an alert is supported, a 15632
corresponding alert descriptor attribute shall be added to the binary input object to describe 15633
the characteristics of the alert. 15634

Table 295 – Binary input alerts 15635

Standard object type name(s): Binary input object

Standard object type identifier: 97

Description of the alert: Binary input alerts

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated:

device diagnostic,
comm. diagnostic,

security, or
process)

Alert type(s)

(Enumerated:
based on alert

category)

Alert
priority

Associated data: type
and size

Description
of

associated
data

included
with alert

Alarm Process 1 DiscreteAlarm Any Type: Boolean Process
value

Alarm Process 0 OutOfService Any Type: Boolean Process
value

 15636
12.19.7.6 Binary output user object 15637

12.19.7.6.1 General 15638

A standard binary output user object represents an encapsulation of a single binary output. If 15639
multiple binary outputs are represented by a device, multiple binary output user objects 15640
should exist to represent them. Object type specific attributes of this object include: 15641

• commanded output value: binary value and status; 15642

• mode: a structured attribute representing target mode, actual mode, permitted mode, and 15643
normal mode; 15644

• provider of OP_B Value: indicates the source of the OP_B value; 15645

• Readback value: binary value and status; and 15646

• corresponding concentrator object: specifies the concentrator associated to publish the 15647
Readback_B value. 15648

12.19.7.6.2 Object attributes 15649

A binary output object has the attributes defined in Table 296. 15650

62734/2CDV © IEC(E) – 611 –

Table 296 – Binary output attributes 15651

Standard object type name: Binary output object

Standard object type identifier: 96

Attribute name Attribute
identifier

Attribute
description

Attribute data information Description of
behavior of

attribute

ObjectIdentifier Object key
identifier

Unique identifier
for the object

Type: Unsigned16 N/A

Classification: Constant

Valid range: >0

Reserved for future use 0 — — —

OP_B 1 Discrete
measurement
variable

Type: Process control value
and status for discrete
value structure

This is the standard
attribute that is the
destination for a
publication from
another object Classification: Dynamic

Accessibility: Read/write

Default value: 0

Status: Unknown

Substatus: Unknown

Limit condition: Not limited

Valid range: See definition
of process control value
and status for discrete
value structure

Mode 2 Mode Type: Process control mode Actual, target,
permitted, and
normal mode values Classification: Static

Accessibility: Read only for
actual mode; target mode,
permitted mode, and
normal mode all have
read/write access

Default value: Actual mode
value indicates OOS

Valid range: See Process
control mode structure type
definition

Reserved for future use 3 — — —

Readback_B 4 Readback value
of actual
position of the
actuator

Type: Process control value
and status for discrete
value

Analog process
value and status of
that value.

This is the standard
attribute that is
published from this
object.

If this object is
extended, such that
another attribute
needs to be
published, a
concentrator
object(s) represents
the resulting
publication(s)

Classification: Dynamic

Accessibility: Read only

Default value: 0;

Status: Unknown

Substatus: Unknown

Limit condition: Not limited

Valid range: See definition
of process control value
and status for analog value
structure

Reserved for future use
by this standard

5..25 — — N octets of presently
undefined content

 15652

 – 612 – 62734/2CDV © IEC(E)

12.19.7.6.3 Standard object methods 15653

A binary output object has the methods defined in Table 297. 15654

Table 297 – Binary output object methods 15655

Standard object type name: Binary output object

Standard object type identifier: 96

Method name Method ID Method description

Null 0 Reserved by standard for future use

Reserved for future use by
this standard

0..127 These method identifiers are reserved for future use by this
standard

Implementation-specific use 128..255 These method identifiers are available for implementation-
specific use

 15656
12.19.7.6.4 Alerts 15657

A binary output may report the alerts shown in Table 298. If an alert is supported, a 15658
corresponding alert descriptor attribute shall be added to the binary output object to describe 15659
the characteristics of the alert. 15660

Table 298 – Binary output alerts 15661

Standard object type name(s): Binary output object

Standard object type identifier: 96

Description of the alert: Binary output alerts

Alert class
(Enumerated:

alarm or event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type(s)

(Enumerated:
based on alert

category)

Alert
priority

Associated data:
type and size

Description
of

associated
data

included
with alert

Alarm Process 1 DiscreteAlarm Any Type: Boolean Process
value

Alarm Process 0 OutOfService Any Type: Boolean Process
value

 15662
 Factory automation industries profile 12.19.815663

12.19.8.1 General 15664

Additional standard objects to support the needs of factory automation may be added in future 15665
releases of this standard. More detailed thought specific to factory automation is deferred to a 15666
later release of this standard’s standardization activity. Examples of objects that may be 15667
defined to meet the needs of factory automation may include: 15668

a) binary input user object (e.g., a contact); 15669
b) binary output user object (e.g., a coil); 15670
c) analog input user object; 15671
d) analog output user object; 15672
e) register input user object (e.g., to map 16 bits of two-state information often found in PLC 15673

input registers); 15674
f) register output user object (e.g., to map 16 bits of two-state information often found in PLC 15675

output registers); 15676

62734/2CDV © IEC(E) – 613 –

g) multi-state input user object (e.g., to map 8 bits of state information for a valve with 15677
enumerated states such as opening, open, closing, closed, or to map a unidirectional 15678
motor with states such as off, starting, running, stopping); and 15679

h) multi-state output user object (e.g., to map 8 bits of state output information for an output 15680
device with enumerated states). 15681

Standard alerts for these objects may also be defined. 15682

12.19.8.2 Manufacturer specific objects 15683

Vendors may also define vendor- or device-specific custom objects. An example of a vendor- 15684
specific object for process systems is an equipment-mounted display object, in which a string 15685
can be stored for display to a human near the device. 15686

 Process control industry standard data structures 12.2015687

 General 12.20.115688

The process control industry standard data structures used shall be the data structures 15689
conveyed by the protocol defined by this standard. Industry-independent standard data 15690
structures and process control industry data structures are both summarized in Annex L. 15691

NOTE Vendor-specific data structure definitions are not supported. 15692

 Status for analog information 12.20.215693

The status for analog information is a packed fixed format octet containing the items shown in 15694
Table 299. 15695

 – 614 – 62734/2CDV © IEC(E)

Table 299 – Status octet 15696

Bit 7
(MSB)

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(LSB)

Quality <reserved> Quality dependent
substatus

Limit condition

0 = bad

(value should not be used)

This bit shall always
be set to zero

Named values when
quality=bad:
0: non-specific;
1: configuration error;
2: not connected;
3: device failure;
4: sensor failure;
5: no communication with a
lastUsableValue;
6: no communication
without a lastUsableValue;
7: out of service (value is
not being computed)

Named values:
0 = not limited;
1 = low limit
2 = high limit;
3 = constant (both high
and low limited)

1 = uncertain

(value of less than normal
quality)

Named values when
quality=uncertain:
0: non-specific;
1: last usable value;
2: substituted or manual
entry;
3: initial value;
4: sensor conversion
inaccurate;
5: range limits exceeded;
6: sub normal;
7: reserved

2 = good

(quality of value is good, but an
alarm condition may exist)

Named values when
quality=good:
0: no special conditions
exist;
1..7: reserved

3 = reserved All values are reserved.

Within this standard, this
shall always be set to zero

 15697
NOTE The definitions for the status octet are a subset of those defined by the HART Communication Foundation, 15698
the Fieldbus Foundation, and the OPC Foundation. 15699

 Value and status for analog information 12.20.315700

As status does not indicate substitution, network-initiated writes using the analog data type 15701
structures are not permitted by this standard. 15702

The structure of analog information is shown in Table 300. 15703

Table 300 – Data type: Process value and status for analog value 15704

Standard data type name: Process control value and status for analog value

Standard data type code: 65

Element name Element identifier Element scalar type

Status 1 Type: BitString8

Classification: Dynamic

Valid value set: See Table 299

Value 2 Type: Float32

Classification: Dynamic

 15705

62734/2CDV © IEC(E) – 615 –

 Value and status for binary information 12.20.415706

As status does not indicate substitution, network-initiated writes to digital data type structures 15707
are not permitted. 15708

The structure of digital information is shown in Table 301. 15709

Table 301 – Data type: Process value and status for binary value 15710

Standard data type name: Process control value and status for binary value

Standard data type code: 66

Element name Element identifier Element scalar type

Status 1 Type: BitString8

Accessibility: May vary by use

Valid value set: See Table 299

Value 2 Type: Boolean

 15711
 Process control mode 12.20.515712

Elements in process control mode are shown in Table 302. 15713

Table 302 – Data type: Process control mode 15714

Standard data type name: Process control mode

Standard data type code: 69

Element name Element identifier Element scalar type

Target 1 Type: BitString8

Classification: Static

Accessibility: Read/write

Default value: OOS

Valid value set : See Table 303

Actual 2 Type: BitString8

Classification: Dynamic

Accessibility: Read only

Default value: OOS

 Valid value set : See Table 303

Permitted 3 Type: BitString8

Classification: Static

Accessibility: Read/write

Default value: OOS

Valid value set : See Table 303

Normal 4 Type: BitString8

Classification: Static

Accessibility: Read/write

Default value: OOS

Valid value set : See Table 303

 15715
The value of each element of the mode structure is represented by a bitstring containing the 15716
bits in Table 303, where the <reserved> bits shall be set to zero (0). 15717

 – 616 – 62734/2CDV © IEC(E)

Table 303 – Data type: Process control mode bitstring 15718

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

<reserved> <reserved> <reserved> AUTO MAN <reserved> <reserved> OOS

 15719
That is: 15720

• OOS-only is equal to 0x01, with the equivalent decimal value of 1. 15721

• MAN-only is equal to 0x08, with the equivalent decimal value of 8. 15722

• AUTO-only is equal to 0x10, with the equivalent decimal value of 16. 15723

 Scaling 12.20.615724

Elements in process control scaling are shown in Table 304. 15725

Table 304 – Data type: Process control scaling 15726

Standard data type name: Process control scaling

Standard data type code: 68

Element name Element
identifier

Element scalar type

Engineering units at 100% (the upper range of the
associated object parameter)

1 Type: Float32

Classification: Static

Accessibility: Read/write

Default value : 0

Engineering units at 0% (the lower range of the associated
object parameter)

2 Type: Float32

Classification: Static

Accessibility: Read/write

Default value : 0

Units index for both SI units and traditional (non-SI) units a)

– range 1000..1999

– other codes reserved

3 Type: Unsigned16

Classification: Static

Accessibility: Read/write

Location of the decimal point / decimal sign

(represents the number of digits to the right of the decimal
point / decimal sign, i.e., the significance of the fractional
part of the associated value)

4 Type: Unsigned8

Classification: Static

Accessibility: Read/write

Default value : 0

a) As specified in Standard Units Codes Table, published in ISA Handbook of Measurement Equations and
Tables, 2nd Edition, ISBN 978 1 55617 946 4. This index is also published by the Fieldbus Foundation as
TN-016:2007, Table 3.1

 15727
 Additional tables 12.2115728

 Process control profile standard objects 12.21.115729

Table 305 lists process control profile standard objects. 15730

62734/2CDV © IEC(E) – 617 –

Table 305 – Process control standard objects 15731

Object type Defined by Standard object type identifier

Analog input 12.19.7.3 99

Analog output 12.19.7.4 98

Binary input 12.19.7.5 97

Binary output 12.19.7.6 96

 15732
 Services 12.21.215733

Table 306 provides a list of services. 15734

Table 306 – Services 15735

Service Use

Read Read the value of one or more attributes from one or more objects of a UAP

Write Write the value to one or more attributes of one or more objects of a UAP

Execute Execute a set of functions on object instances of a UAP

Publish Periodically publish data to subscribers

AlertReport Report one or more alert conditions

AlertAcknowledge Acknowledge an AlertReport

Tunnel Pass payload through

 15736
 Coding 12.2215737

 General 12.22.115738

The conditions for encoding wireless APDUs in this standard include the following 15739
considerations: 15740

• Some messages occur often, such as periodic publications. 15741

• Messages should be short, to preserve battery power. 15742

• There should be minimal selection of ASL service types. 15743

The maximum size of an APDU (which is a TSDU) is determined by subtracting (the size of 15744
the information TL adds to the TSDU to form the TPDU) from (the 15745
Assigned_Max_NSDU_Size), where Assigned_Max_NSDU_Size is an output parameter of the 15746
method used to establish a communication contract. That is: 15747

maxAPDUSize = Assigned_Max_NSDU_Size - sizeOF(TLInfoAddedtoAPDU) 15748

See 6.3.11.2.5 for further details of communication contract establishment. 15749

ASL coding shall ensure that the maximum APDU size is not exceeded. 15750

NOTE IETF RFC 2348 provides recommendations on the maximum size of NPDUs. 15751

 Coding rules for application protocol data units 12.22.215752

12.22.2.1 General 15753

The coding rules defined in 12.22.2 represent bit 0 as the least significant bit (LSB) in the 15754
value represented. 15755

 – 618 – 62734/2CDV © IEC(E)

All APDUs contain an AL header, and a service type-specific APDU content. Table 307 15756
indicates the general coding construct of an APDU. 15757

Table 307 – Application messaging format 15758

May be 1, 2, 3, or 5 octets (see 12.22.2.3) N octets

ASDU header (ensures routing to correct objects; provides service type
identification)

Service-specific content

 15759
12.22.2.2 Concatenation 15760

APDUs can be concatenated together, and the concatenation of individual APDUs may be 15761
given to the TL as a single TSDU. The size of this TSDU shall not exceed the maximum 15762
APDU size for communications relative to the corresponding communication contract between 15763
the sending and receiving applications. 15764

Table 308 describes the format of concatenated APDUs in a single TSDU. 15765

Table 308 – Concatenated APDUs in a single TSDU 15766

APDU_1 … APDU_n

 15767
Concatenation can be used to ensure that when one of the concatenated APDUs is received, 15768
all have been received, thus providing a basis for multi-component actions that are atomic 15769
with respect to inter-device communications. 15770

NOTE How the ASL determines when and what to concatenate is a local matter. 15771

12.22.2.3 AL header 15772

The AL header supports four object identifier addressing modes which determine header 15773
construction beyond the first octet. The object identifier addressing modes are: 15774

• four-bit object identifier addressing mode; 15775

• eight-bit (1 octet) object identifier addressing mode; 15776

• sixteen-bit (2 octets) object identifier addressing mode; and 15777

• inferred addressing mode, which may be used only in the second and subsequent APDUs 15778
of a TSDU that contains multiple concatenated APDUs. 15779

Identification of the UAP containing the object is a function of the TL. 15780

The object identifier addressing mode in use for APDU interpretation is indicated in bits 5 and 15781
6 of the first octet of the APDU header. Table 309 represents the coding of this first APDU 15782
header octet. 15783

Table 309 – Object addressing 15784

Octets Bits

7 6 5 4 3 2 1 0

1 Service primitive type
(.req = 0 .resp = 1)

Object identifier addressing mode

Named values:
00: 4-bit mode
01: 8-bit mode
10: 16-bit mode
11: inferred mode

ASL service type

 15785

62734/2CDV © IEC(E) – 619 –

12.22.2.4 Object identifier coding 15786

12.22.2.4.1 General 15787

In all header constructions, the source object identifier represents the object identifier in the 15788
application that is initiating the ASL service primitive (that is, the initiator of a .request or 15789
a .response primitive), and the destination object identifier represents the object identifier in 15790
the application that is receiving the ASL service primitive (that is, the recipient of 15791
an .indication or a .confirmation primitive). 15792

12.22.2.4.2 Four-bit object identifier addressing mode 15793

A four-bit object identifier addressing mode indicates that the source object identifier and the 15794
destination object identifier each can be expressed in a 4-bit unsigned integer. This 15795
addressing mode provides for optimal header compaction for application processes with a 15796
small number of objects. This mode is described in Table 310. 15797

Table 310 – Four-bit addressing mode APDU header construction 15798

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Service primitive type 0 0 ASL service type

1 Source object identifier Destination object identifier

 15799
12.22.2.4.3 Eight-bit object identifier addressing mode 15800

An eight-bit object identifier addressing mode indicates that the source object identifier and 15801
the destination object identifier each can be expressed in an 8-bit unsigned integer, and 15802
further that at least one of the object identifiers cannot be expressed in a 4-bit unsigned 15803
integer. This mode is described in Table 311. 15804

Table 311 – Eight-bit addressing mode APDU header construction 15805

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Service primitive type 0 1 ASL service type

1 Source object identifier

1 Destination object identifier

 15806
12.22.2.4.4 Sixteen-bit object identifier addressing mode 15807

A sixteen-bit object identifier addressing mode indicates that the source object identifier and 15808
the destination object identifier each can be expressed in a 16-bit unsigned integer, and 15809
further that at least one of the object identifiers cannot be expressed in an 8-bit unsigned 15810
integer. This mode is described in Table 312. 15811

Table 312 – Sixteen-bit addressing mode APDU header construction 15812

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 Service primitive type 1 0 ASL service type

2 Source object identifier

2 Destination object identifier

 15813

 – 620 – 62734/2CDV © IEC(E)

12.22.2.4.5 Inferred object identifier addressing mode for optimized concatenations 15814

An inferred object identifier addressing mode is an optimization technique used only within a 15815
concatenated APDU. The intent of this technique is to save octets transmitted by eliminating 15816
redundant source and object identifiers, which can be determined from the most recently 15817
parsed APDU contained within the same APDU concatenation. 15818

Inferred object addressing shall not be indicated in the first APDU of a concatenation. 15819

NOTE Any APDU indicating an inferred object addressing mode in the first APDU met in ASL parsing is 15820
considered a malformed APDU. 15821

An example is included in Table 313. 15822

Table 313 – Inferred addressing use case example 15823

APDU_1 APDU_2 APDU_3 APDU_4 APDU_5

00 object identifier
addressing mode

11 object identifier
addressing mode
(indicates use
source and
destination OIDs
from APDU_1)

11 object identifier
addressing mode
(indicates use
source and
destination OIDs
from APDU_2,
which is used the
source and
destination OIDs
from APDU_1)

01 object identifier
addressing mode

11 object identifier
addressing mode
(indicates use
source and
destination OIDs
from APDU_4)

APDU_1 includes:
– 00 addressing
mode;
– service type;
– 4-bit source
object identifier;
– 4-bit destination
object identifier;
service-specific
payload

APDU_2 includes:
– 11 addressing
mode;
– service type;
– service-specific
payload

APDU_3 includes:
– 11 addressing
mode;
– service type;
– service-specific
payload

APDU_4 includes:
– 01 addressing
mode
– service type
– 8-bit source
object identifier;
– 8-bit destination
object identifier;
service-specific
payload

APDU_5 includes:
– 11 addressing
mode;
– service type;
– service-specific
payload

 15824
Table 314 describes the construction of the inferred addressing mode APDU header. 15825

Table 314 – Inferred addressing mode APDU header construction 15826

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Service primitive type 1 1 ASL service type

 15827
12.22.2.5 Object attribute coding 15828

12.22.2.5.1 General 15829

Object attribute coding is determined by an attribute identifier format. The format may 15830
indicate: 15831

• Six-bit, not indexed: The attribute fits into an Unsigned6 integer, and is not indexed. 15832

• Six-bit, singly indexed: The attribute fits into an Unsigned6 integer, and requires one 15833
index. The attribute index is extensible, as indicated by the first bit of the index. If the first 15834
bit of the index is 0, the index is 7 bits in size. If the first bit of the index is 1, the index is 15835
15 bits in size. 15836

• Six-bit, doubly indexed: The attribute fits into an Unsigned6 integer, and requires two 15837
indices. The attribute indices are individually extensible; that is, the first index may be 7 15838

62734/2CDV © IEC(E) – 621 –

bits or 15 bits in size, and the second index also may be either 7 bits or 15 bits in size. 15839
The size of the index is determined by the first bit of the index. If the first bit of the index is 15840
0, the index is 7 bits in size. If the first bit of the index is 1, the index is 15 bits in size. 15841

• Twelve-bit, not indexed: The attribute fits does not fit into an Unsigned12 integer. The 15842
attribute is not indexed. 15843

• Twelve-bit, singly indexed: The attribute fits into an Unsigned12 integer, and requires one 15844
index. The attribute index is extensible, as indicated by the first bit of the index. If the first 15845
bit of the index is 0, the index is 7 bits in size. If the first bit of the index is 1, the index is 15846
15 bits in size. 15847

• Twelve-bit, doubly indexed: The attribute fits into an Unsigned12 integer, and requires two 15848
indices. The attribute indices are individually extensible; that is, the first index may be 7 15849
bits or 15 bits in size, and the second index also may be either 7 bits or 15 bits in size. 15850
The size of the index is determined by the first bit of the index. If the first bit of the index is 15851
0, the index is 7 bits in size. If the first bit of the index is 1, the index is 15 bits in size. 15852

NOTE Refer to 12.23.1.3 for the definitions of Unsigned6 and Unsigned12. 15853

12.22.2.5.2 Six-bit attribute identifier, not indexed 15854

Table 315 indicates the coding for a six-bit attribute identifier that is not an indexed or 15855
structured attribute. 15856

Table 315 – Six-bit attribute identifier, not indexed 15857

Number
of octets

Number of octets

7 6 5 4 3 2 1 0

1 Attribute short form
(value = binary 00) Attribute identifier

 15858
12.22.2.5.3 Six-bit attribute identifier, singly indexed forms 15859

Table 316 and Table 317 indicate the coding for a six-bit attribute identifier that may be 15860
accessed using a single index. 15861

Table 316 – Six-bit attribute identifier, singly indexed, with 7-bit index 15862

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Attribute short form
(value = binary 01) Attribute identifier

1 0 Index

 15863
Table 317 – Six-bit attribute identifier, singly indexed, with 15-bit index 15864

Number
of octets

bits

7 6 5 4 3 2 1 0

1 Attribute short form
(value = binary 01)

Attribute identifier

2
1 Index (high-order 7 bits)

Index (low-order 8 bits)

 15865

 – 622 – 62734/2CDV © IEC(E)

12.22.2.5.4 Six-bit attribute identifier, doubly indexed forms 15866

Table 318, Table 319, Table 320, and Table 321 indicate the coding for a six-bit attribute 15867
identifier that may be accessed using two indices. 15868

Table 318 – Six-bit attribute identifier, doubly indexed, with two 7-bit indices 15869

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Attribute short form
(value = binary 10) Attribute identifier

1 0 Index 1

1 0 Index 2

 15870
Table 319 – Six-bit attribute identifier, doubly indexed, with two 15-bit indices 15871

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Attribute short form
(value = binary 10) Attribute identifier

2
1 Index 1 (high-order 7 bits)

Index 1 (low-order 8 bits)

2
1 Index 2 (high-order 7 bits)

Index 2 (low-order 8 bits)

 15872
Table 320 – Six-bit attribute identifier, doubly indexed, with 15873

first index seven bits long and second index fifteen bits long 15874

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Attribute short form
(value = binary 10) Attribute identifier

1 0 Index 1

2
1 Index 2 (high-order 7 bits)

Index 2 (low-order 8 bits)

 15875
Table 321 – Six-bit attribute bit attribute identifier, doubly indexed, with 15876

 first index fifteen bits long and second index seven bits long 15877

Number
of octets

bits

7 6 5 4 3 2 1 0

1 Attribute short form
(value = binary 10)

Attribute identifier

2
1 Index 1 (high-order 7 bits)

Index 1 (low-order 8 bits)

1 0 Index 2

 15878
12.22.2.5.5 Twelve-bit attribute identifier, not indexed 15879

Table 322 indicates the coding for a twelve-bit attribute identifier that is not indexed. 15880

62734/2CDV © IEC(E) – 623 –

Table 322 – Twelve-bit attribute identifier, not indexed 15881

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
Attribute short form
(value = binary 11)

Attribute long form,
index form = binary 00

Attribute identifier (high-order 4 bits)

Attribute identifier (low-order 8 bits)

 15882
12.22.2.5.6 Twelve-bit attribute identifier, singly indexed coding forms 15883

Table 323 and Table 324 indicate the coding for a twelve-bit attribute identifier that is 15884
accessed using a single index. 15885

Table 323 – Twelve-bit attribute identifier, singly indexed with 7-bit index 15886

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
Attribute short form
(value = binary 11)

Attribute long form,
index form = binary 01 Attribute identifier (high-order 4 bits)

Attribute identifier (low-order 8 bits)

1 0 Index

 15887
Table 324 – Twelve-bit attribute identifier, singly indexed with 15-bit index 15888

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
Attribute short form
(value = binary 11)

Attribute long form,
index form = binary 01 Attribute identifier (high-order 4 bits)

Attribute identifier (low-order 8 bits)

2 1 Index 1 (high-order 7 bits)

Index 1 (low-order 8 bits)

 15889
12.22.2.5.7 Twelve-bit attribute identifier, doubly indexed coding forms 15890

Table 325, Table 326, Table 327, and Table 328 indicate the coding for a twelve-bit attribute 15891
identifier that is accessed using two indices. 15892

Table 325 – Twelve-bit attribute identifier, doubly indexed with two 7-bit indices 15893

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
Attribute long form
(value = binary 11)

Attribute long form,
index form = binary 10 Attribute identifier (high-order 4 bits)

Attribute identifier (low-order 8 bits)

1 0 Index 1

1 0 Index 2

 15894

 – 624 – 62734/2CDV © IEC(E)

Table 326 – Twelve-bit attribute identifier, doubly indexed with two 15-bit indices 15895

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
Attribute short form
(value = binary 11)

Attribute long form,
index form = binary 10 Attribute identifier (high-order 4 bits)

Attribute identifier (low-order 8 bits)

2
1 Index 1 (high-order 7 bits)

Index 1 (low-order 8 bits)

2
1 Index 2 (high-order 7 bits)

Index 2 (low-order 8 bits)

 15896
Table 327 – Twelve-bit attribute identifier, doubly indexed 15897

with first index seven bits long and second index fifteen bits long 15898

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
Attribute short form
(value = binary 11)

Attribute long form,
index form = binary 10 Attribute identifier (high-order 4 bits)

Attribute identifier (low-order 8 bits)

1 0 Index 1

2
1 Index 2 (high-order 7 bits)

Index 2 (low-order 8 bits)

 15899
Table 328 – Twelve-bit attribute identifier, doubly indexed 15900

with the first index fifteen bits long and the second index seven bits long 15901

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
Attribute short form
(value = binary 11)

Attribute long form,
index form = binary 10 Attribute identifier (high-order 4 bits)

1 Index 1 (high-order 7 bits)

2
Index 2(low-order 8 bits)

0 Index 2

 15902
12.22.2.5.8 Reserved for future use 15903

Table 329 identifies an attribute identifier form that is reserved for future use. 15904

Table 329 – Twelve-bit attribute identifier, reserved form 15905

Number
of octets

Bits

7 6 5 4 3 2 1 0

1
Attribute short form
(value = binary 11)

Attribute long form,
index form (reserved):

binary 11
Reserved for future use

 15906
12.22.2.6 Read 15907

Table 330 provides coding rules for the service specific portion of a read service request 15908
APDU. 15909

62734/2CDV © IEC(E) – 625 –

Application Request ID is an identifier that enables the client to match a service response with 15910
the original service request. A service response shall include a copy of the Request ID from 15911
the corresponding service request. 15912

Table 330 – Coding rules for read service request 15913

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Request ID

… Attribute identifier (see coding rules for attribute identifier)

 15914
Table 331 provides coding rules for a read service response with 7-bit size field. 15915

Table 331 – Coding rules for read service response with seven bit size field 15916

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Request ID

1 Reserved for future use by this standard. For compliance with this version of this
standard, these bits shall be set to 0

Forward
explicit
congestion
control
echo

1 ServiceFeedbackCode

1 0 S=Size – conditionally included only when ServiceFeedbackCode indicates success

S Value – conditionally present only when ServiceFeedbackCode only if indicates success

 15917
NOTE Refer to 12.23.3 for the definitions of ServiceFeedbackCode for AL services. 15918

Table 332 provides coding rules for a read service response with 15-bit size field. 15919

Table 332 – Coding rules for read service response with fifteen-bit size field 15920

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Request ID

1

Reserved for future use by this standard. For compliance with this version of this
standard, these bits shall be set to 0

Forward
explicit
congestion
control
echo

1 ServiceFeedbackCode

2

1 S[14..8]=Size – high-order 7 bits, conditionally present only when
ServiceFeedbackCode indicates success

S[7..0]=Size – low-order 8 bits, conditionally present only when
ServiceFeedbackCode indicates success

S Value – conditionally present only when ServiceFeedbackCode indicates success

 15921
12.22.2.7 Write 15922

Table 333 and Table 334 provide coding rules for a write service request. 15923

 – 626 – 62734/2CDV © IEC(E)

Application Request ID is an identifier that enables the client to match a service response with 15924
the original service request. A service response shall include a copy of the Request ID from 15925
the corresponding service request. 15926

Table 333 – Coding rules for write service request with 7- bit size field 15927

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 Request ID

… Attribute identifier (see attribute encoding rules)

… 0 S=Size

S Value

 15928
Table 334 – Coding rules for write service request with 15-bit size field 15929

Number of
octets

Bits

7 6 5 4 3 2 1 0

1 Request ID

… Attribute identifier (see attribute encoding rules)

2
1 S[14..8]==Size (high-order 7 bits)

S[7..0]=Size (low-order 8 bits)

S Value

 15930
Table 335 provides coding rules for a write service response. 15931

Table 335 – Coding rules for write service response 15932

Number
of octets

bits

7 6 5 4 3 2 1 0

1 Request ID

1

Reserved for future use by this standard. For compliance with this version of this
standard, these bits shall be set to 0

Forward
explicit
congestion
control
echo

1 ServiceFeedbackCode

 15933
12.22.2.8 Execute 15934

Table 336 and Table 337 provide coding rules for an execute service request. 15935

Application Request ID is an identifier that enables the client to match a service response with 15936
the original service request. A service response shall include a copy of the Request ID from 15937
the corresponding service request. 15938

62734/2CDV © IEC(E) – 627 –

Table 336 – Coding rules for execute service request with 7-bit size field 15939

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Request identifier

1 Method identifier

1 0 S=Size in octets of request parameters

S Request parameters

 15940
Table 337 – Coding rules for execute service request with 15-bit size field 15941

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Request identifier

1 Method identifier

2
1 S[14..8]=Size in octets of response parameters (high-order 7 bits)

S[7..0]=Size (low-order 8 bits)

S Response parameters

 15942
Table 338 and Table 339 provide coding rules for an execute service response. 15943

Table 338 – Coding rules for execute service response with 7-bit size field 15944

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Request identifier

1

Reserved for future use by this standard. For compliance with this version of this
standard, these bits shall be set to 0

Forward
explicit
congestion
control
echo

1 ServiceFeedbackCode

1 0 S=Size in octets of response parameters

S Response parameters

 15945
Table 339 – Coding rules for execute service response with 15-bit size field 15946

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Request identifier

2

Reserved for future use by this standard. For compliance with this version of this
standard, these bits shall be set to 0

Forward
explicit
congestion
control
echo

1 ServiceFeedbackCode

2
1 S[14..8]=Size in octets of response parameters (high-order 7 bits)

S[7..0]=Size (low-order 8 bits)

S Response parameters

 15947

 – 628 – 62734/2CDV © IEC(E)

12.22.2.9 Tunnel 15948

Table 340 and Table 341 provide coding rules for a tunnel service request. 15949

Table 340 – Coding rules for tunnel service request with 7-bit size field 15950

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 0 S=7-bit size

S Payload

 15951
Table 341 – Coding rules for tunnel service request with 15-bit size field 15952

Number
of octets

Bits

7 6 5 4 3 2 1 0

2
1 S[14..8]=Size in octets of response parameters (high-order 7 bits)

S[7..0]=Size (low-order 8 bits)

S Payload

 15953
Table 342 and Table 343 provide coding rules for a tunnel service response. 15954

Table 342 – Coding rules for tunnel service response with 7-bit size field 15955

Number
of octets

Bits

7 6 5 4 3 2 1 0

1

Reserved for future use by this standard. For compliance with this version of this
standard, these bits shall be set to 0

Forward
explicit
congestion
control
echo

1 0 S=Size

S Payload

 15956
Table 343 – Coding rules for tunnel service response with 15-bit size field 15957

Number
of octets

Bits

7 6 5 4 3 2 1 0

1

Reserved for future use by this standard. For compliance with this version of this
standard, these bits shall be set to 0

Forward
explicit
congestion
control
echo

2
1 S[14..8]=Size in octets of response parameters (high-order 7 bits)

S[7..0]=Size (low-order 8 bits)

S Payload

 15958
12.22.2.10 AlertReport 15959

Table 344 and Table 345 provide coding rules for an AlertReport service request. 15960

62734/2CDV © IEC(E) – 629 –

Table 344 – Coding rules for AlertReport service with 7-bit associated-data size field 15961

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Alert report ID

2 Detecting object application process identifier (T-port)

2 Detecting object identifier

6 TAINetworkTime

1 Class Direction Category Alert Priority

1 Type

1 0 S=Size of associated data

S Associated data

 15962
Table 345 – Coding rules for AlertReport service with 15-bit associated-data size field 15963

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Alert report ID

2 Detecting object application process identifier (T-port)

2 Detecting object identifier

6 TAINetworkTime

1 Class Direction Category Alert Priority

1 Type

2
1 S[14..8]=Size in octets of response parameters (high-order 7 bits)

S[7..0]=Size (low-order 8 bits)

S Associated data

 15964
12.22.2.11 AlertAcknowledge 15965

Table 346 provides coding rules for an AlertAcknowledge service request. 15966

Table 346 – Coding rules for AlertAcknowledge service 15967

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Alert report ID

 15968
12.22.2.12 Publish 15969

Table 347 provides coding rules for a native publish service. 15970

When used in conjunction with a concentrator object, “Data” in the payload comprises the 15971
entire data communicated, which is a configured sequence of process control variables. The 15972
process control variables include both status information and process values. The structure of 15973
the data is indicated by the publishing content version. The freshness sequence number is 15974
within the scope of a particular concentrator object. 15975

 – 630 – 62734/2CDV © IEC(E)

Table 347 – Coding rules for publish service for a native sequence of values 15976

Number
of octets

Bits

7 6 5 4 3 2 1 0

1 Publishing content version

1 Freshness sequence number

S Data

 15977
Table 348 provides coding rules for a publish service used to convey either an internally 15978
encoded octet string, or non-native data. Use of this service for non-native data enables 15979
support for tunneling. 15980

Table 348 – Coding rules for publish service – non-native (for tunnel support) 15981

Number
of octets

Bits

7 6 5 4 3 2 1 0

S Data

 15982
The coding rules for uninterpreted varying-size data, given in Table 351, apply to a published 15983
healthReport (see 12.23.1.6). 15984

12.22.2.13 Concatenation 15985

Table 349 provides coding rules for a constructing a single TSDU which contains multiple 15986
logical APDUs. 15987

Table 349 – Coding rules for concatenate service 15988

Number
of octets

Bits

7 6 5 4 3 2 1 0

S SEQUENCE OF APDUs

 15989
 Coding of application data 12.22.315990

12.22.3.1 General 15991

Coding of single application data elements is always primitive. In the tables of 12.22.3, octet 1 15992
represents the most significant octet, bit 7 represents the most significant bit within an octet, 15993
and bit 0 represents the least significant bit within an octet. 15994

The semantics of user data is known by: 15995

• prior agreement (e.g., tunnel payload content); 15996

• position in the APDU with fixed field size for content; or 15997

• existing fields in the APDU. 15998

In these situations, no additional decoding information is added to the APDU. 15999

Coding rules for application data are provided in Table 350 and Table 351. If the size is fixed, 16000
such as for data type OctetStringN for a given fixed value of N, then size information is 16001
implicit in the declaration, so is not explicitly conveyed in the APDU, as shown in Table 350. 16002

62734/2CDV © IEC(E) – 631 –

Table 350 – General coding rule for size-invariant application data 16003

Data
(fixed size)

 16004
In contrast, if the size may vary, such as for data type OctetString (and not OctetStringN for 16005
any N), then the size of the actual field is explicitly conveyed in the APDU. Often that is done 16006
by prefixing the data with the size, as shown in Table 351. In other cases, the size field either 16007
is found directly in, or is computable from, some earlier-parsed field in the APDU. 16008

Table 351 – General coding rule for size-varying application data of 0..255 octets 16009

Unsigned8
N, size of data (in octets)

Data
(size N octets)

 16010
12.22.3.2 through 12.22.3.8 define the data coding for standard data types. 16011

12.22.3.2 Boolean values 16012

NOTE The type name honors the logician George Boole, hence its capitalization. 16013

12.22.3.2.1 Coding of Boolean values 16014

Booleans are coded as zero / non-zero values in either a 1-bit, for packed data structures, or 16015
an 8-bit field, for relatively unpacked data structures. 16016

12.22.3.2.2 Boolean8 16017

The coding of a Boolean8, which is used in relatively unpacked data structures, is: 16018

• Data type: Boolean 16019

• Size: 1 octet 16020

An all-zero value of the underlying Unsigned8 representation codes the value FALSE; any non-16021
zero value codes the value TRUE. 16022

12.22.3.2.3 Boolean1 16023

The coding of a Boolean1, which is used in packed data structures is: 16024

• Data type: Boolean 16025

• Size: 1 bit 16026

A zero value of the underlying Unsigned1 representation codes the value FALSE, whereas the 16027
non-zero value one (1) codes the value TRUE. 16028

12.22.3.3 Integer values 16029

12.22.3.3.1 Coding of signed integer values 16030

12.22.3.3.1.1 General 16031

Signed integers are coded as 2’s-complement numbers. In 2’s-complement arithmetic, 16032
negative numbers are represented by the 2’s-complement of the absolute value. In this 16033
system, zero has a single representation. 16034

In the 2’s-complement representation, positive numbers are represented as simple binary, 16035
and negative 2’s-complement numbers are represented as the binary number that when 16036
added to a positive number of the same magnitude equals zero. 16037

 – 632 – 62734/2CDV © IEC(E)

The most significant bit (i.e., bit 7 for an Integer8 value, bit 15 for an Integer16) indicates the 16038
sign of the integer, and is therefore called the sign bit. If the sign bit is zero, then the number 16039
represented is greater than or equal to zero (i.e., zero, or a positive number). If the sign bit is 16040
one, then the number represented is less than zero (i.e., a negative number). 16041

NOTE To calculate the 2’s-complement of an integer, invert the binary equivalent of the number by changing all of 16042
the ones to zeroes and all of the zeroes to ones (also called 1’s-complement), and then add one. 16043

Example: Form the 2’s-complement of the value 17. 16044

0x 0001 000 1 (binary 17) 16045

To form the 2’s-complement: 16046

First: NOT (0x 0001 000 1) = 0x 1110 111 0, where the NOT operation results in inverting the bits 16047

Then add 1: (0x 1110 111 0) + (0x 0000 0001) = 0x 1110 1111 (2’s-complement = -17). 16048

12.22.3.3.1.2 Integer8 16049

The coding of an Integer8 is: 16050

• Data type: Integer8 16051

• Range: -27 ≤ k ≤ 27 -1 (i.e., -128 ≤ k ≤ 127) 16052

• Size: 1 octet 16053

12.22.3.3.1.3 Integer16 16054

The coding of an Integer16 is: 16055

• Data type: Integer16 16056

• Range: -215 ≤ k ≤ 215 -1 (i.e., -32 768 ≤ k ≤ 32 767) 16057

• Size: 2 octets 16058

12.22.3.3.1.4 Integer32 16059

The coding of an Integer32 is: 16060

• Data type: Integer32 16061

• Range: -231 ≤ k ≤ 231 -1 (i.e., -2 147 483 648< k < 2 147 483 647) 16062

• Size: 4 octets 16063

12.22.3.3.1.5 IntegerN 16064

The coding of an IntegerN, which is used in packed data structures is: 16065

• Data type: IntegerN 16066

• Range: -2-(N-1) ≤ k ≤ 2(N-1)-1 16067

• Size: N bits 16068

12.22.3.3.2 Coding of unsigned integer values 16069

12.22.3.3.2.1 Unsigned8 16070

The coding of an Unsigned8 is: 16071

• Data type: Unsigned8 16072

• Range: 0 ≤ k ≤ 28 -1 (i.e., 0 ≤ k ≤ 255) 16073

• Size: 1 octet 16074

62734/2CDV © IEC(E) – 633 –

Table 352 provides coding rules for Unsigned8 data. 16075

Table 352 – Coding rules for Unsigned8 16076

Octet

Bits

7 6 5 4 3 2 1 0

1 27 26 25 24 23 22 21 20

 16077
12.22.3.3.2.2 Unsigned16 16078

The coding of an Unsigned16 is: 16079

• Data type: Unsigned16 16080

• Range: 0 ≤ k ≤ 216 -1 (i.e., 0 ≤ k ≤ 65 535) 16081

• Size: 2 octets 16082

Table 353 provides coding rules for Unsigned16 data. 16083

Table 353 – Coding rules for Unsigned16 16084

Octet

Bits

7 6 5 4 3 2 1 0

1 215 214 213 212 211 210 29 28

2 27 26 25 24 23 22 21 20

 16085
12.22.3.3.2.3 Unsigned32 16086

The coding of an Unsigned32 is: 16087

• Data type: Unsigned32 16088

• Range: 0 ≤ k ≤ 232 -1 (i.e., 0 ≤ k ≤ 4 294 967 295) 16089

• Size: 4 octets 16090

Table 354 provides coding rules for Unsigned32 data. 16091

Table 354 – Coding rules for Unsigned32 16092

Octet

Bits

7 6 5 4 3 2 1 0

1 231 230 229 228 227 226 225 224

2 223 222 221 220 219 218 217 216

3 215 214 213 212 211 210 29 28

4 27 26 25 24 23 22 21 20

 16093
12.22.3.3.2.4 Unsigned64 16094

The coding of an Unsigned64 is: 16095

• Data type: Unsigned64 16096

• Size: 8 octets 16097

• Range: 0 ≤ k ≤ 264 -1 (i.e., 0 ≤ k ≤ 18 446 744 073 709 551 615) 16098

 – 634 – 62734/2CDV © IEC(E)

Table 355 provides coding rules for Unsigned64 data. 16099

Table 355 – Coding rules for Unsigned64 16100

Octet

Bits

7 6 5 4 3 2 1 0

1 263 262 261 260 259 258 257 256

2 255 254 253 252 251 250 249 248

3 247 246 245 244 243 242 241 240

4 239 238 237 236 235 234 233 232

5 231 230 229 228 227 226 225 224

6 223 222 221 220 219 218 217 216

7 215 214 213 212 211 210 29 28

8 27 26 25 24 23 22 21 20

 16101
12.22.3.3.2.5 Unsigned128 16102

The coding of an Unsigned128 is: 16103

• Data type: Unsigned128 16104

• Size: 16 octets 16105

• Range: 0 ≤ k ≤ 2128 -1 (i.e., 0 ≤ k ≤ 340 282 366 920 938 463 463 374 607 431 768 211 455) 16106

Table 356 provides coding rules for Unsigned128 data. 16107

Table 356 – Coding rules for Unsigned128 16108

Octet

Bits

7 6 5 4 3 2 1 0

1 2 127 2 126 2 125 2 124 2 123 2 122 2 121 2 120

2 2 119 2 118 2 117 2 116 2 115 2 114 2 113 2 112

3 2 111 2 110 2 109 2 108 2 107 2 106 2 105 2 104

4 2 103 2 102 2 101 2 100 299 298 297 296

5 295 294 293 292 291 290 289 288

6 287 286 285 284 283 282 281 280

7 279 278 277 276 275 274 273 272

8 271 270 269 268 267 266 265 264

9 263 262 261 260 259 258 257 256

10 255 254 253 252 251 250 249 248

11 247 246 245 244 243 242 241 240

12 239 238 237 236 235 234 233 232

13 231 230 229 228 227 226 225 224

14 223 222 221 220 219 218 217 216

15 215 214 213 212 211 210 29 28

16 27 26 25 24 23 22 21 20

 16109
12.22.3.3.2.6 UnsignedN 16110

The coding of an UnsignedN, which is used in packed data structures is: 16111

62734/2CDV © IEC(E) – 635 –

• Data type: UnsignedN 16112

• Range: 0 ≤ k ≤ 2N)-1 16113

• Size: N bits 16114

12.22.3.4 Floating point values 16115

12.22.3.4.1 Coding of floating-point values 16116

This standard uses the encoding defined by ISO/IEC/IEEE 60559 (based on IEEE 754) for 16117
normalized floating-point values and NaNs. Each value is represented by three contiguous 16118
fields: 16119

• S, the sign of the floating-point value, where 0 and 1 represent positive and negative, 16120
respectively, conveyed in a 1-bit field; 16121

• E, the exponent of the value, in base 2, plus a bias B, conveyed in a field occupying NE = 16122
about 1/4 of the total number of bits of the representation of the floating-point value, 16123
where the value of B is 2(NE-1)-1; 16124

• F, the fractional part of the value’s mantissa, also in base 2, conveyed in the remaining NF 16125
bits of the value’s representation. 16126

When E is not all zero bits or all one bits, the resulting numeric value is (-1)S × 2(E-B) × (1.F) . 16127
When E and F are both all zero bits the value represented is a signed zero. 16128

When E is all one bits and F is all zero bits the value represented is a signed infinity. See 16129
ISO/IEC/IEEE 60559 for further information regarding real number representation, range and 16130
precision, including encoding of signed zero, signed infinity (overflow), de-normalized 16131
numbers (underflow), and NaNs. 16132

12.22.3.4.2 Single-precision float 16133

Single-precision floating-point values are represented contiguously as shown in Table 357, 16134
where NE = 8, B = 127 and NF = 23. This permits a single-precision floating point value to be 16135
calculated by the following equation, which applies when E is not all zero bits or all one bits: 16136

(-1)S × 2(E – 127) × (1,F) 16137

Table 357 – Coding rules for single-pecision float 16138

Octet

Bits

7 6 5 4 3 2 1 0

 Sign (S) Exponent (E)

1 +/- 27 26 25 24 23 22 21

 (E) Fraction (F)

2 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7

3 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

4 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23

 16139
12.22.3.5 Double-precision float 16140

Double-precision floating-point values are represented contiguously as shown in Table 358, 16141
where NE = 11, B = 1023 and NF = 52. This permits a double-precision floating point value to 16142
be calculated by the following equation, which applies when E is not all zero bits or all one 16143
bits: 16144

(-1)S × 2(E – 1023) × (1,F) 16145

 – 636 – 62734/2CDV © IEC(E)

Table 358 – Coding rules for double-precision float 16146

Octet

Bits

7 6 5 4 3 2 1 0

1
Sign (S) Exponent (E)

+/- 210 29 28 27 26 25 24

2
Exponent (E) (continued) Fraction (F)

23 22 21 20 2-1 2-2 2-3 2-4

3
Fraction (F) (continued)

2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12

4 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20

5 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28

6 2-29 2-30 2-31 2-32 2-33 2-34 2-35 2-36

7 2-37 2-38 2-39 2-40 2-41 2-42 2-43 2-44

8 2-45 2-46 2-47 2-48 2-49 2-50 2-51 2-52

 16147
12.22.3.6 VisibleString 16148

The coding of a visible string is: 16149

• Type: VisibleString 16150

• Range: See ISO/IEC 646 and ISO/IEC 2375: Defining registration number 2 + SPACE 16151

• Coding: See ISO/IEC 646 16152

NOTE See ISO/IEC 2375 for further details. 16153

Table 359 provides coding rules for VisibleString data. If the size of the string is not 16154
determinable from other factors, then the size in octets is coded in one octet that immedately 16155
precedes the OctetString, as specified in Table 351. 16156

Table 359 – Coding rules for VisibleString 16157

Octet

Bits

7 6 5 4 3 2 1 0

1 First character in string

2 Second character in string

… ….

N Last character in string

 16158
12.22.3.7 OctetString 16159

The coding of an octet string is: 16160

• Type: OctetString 16161

• Coding: Binary 16162

Table 360 provides coding rules for OctetString data. If the size of the string is not 16163
determinable from other factors, then the size in octets is coded in one octet that immedately 16164
precedes the OctetString, as specified in Table 351. 16165

62734/2CDV © IEC(E) – 637 –

Table 360 – Coding rules for OctetString 16166

Octet

Bits

7 6 5 4 3 2 1 0

1 First octet in string

… …

N Last octet in string

 16167
12.22.3.8 BitString 16168

The coding of a bit string that is not part of a superior packed structure is: 16169

• Type: BitString 16170

• Coding: Binary 16171

• Size: Only multiples of 8 bits (i.e., multiples of octets) are supported for BitStrings that are 16172
not part of superior packed structures 16173

Table 361 provides the general coding rule for BitString data. If the size of the string is not 16174
determinable from other factors, then the size in octets is coded in one octet that immedately 16175
precedes the BitString, as specified in Table 351. 16176

Table 361 – Coding rules for BitString 16177

Octet

Bits

7 6 5 4 3 2 1 0

1
(8xN-1) th (8xN-2) th (8xN-3) th (8xN-4) th (8xN-5) th (8xN-6) th (8xN-7) th (8xN-8) th

(bit position in string)

2 (8xN-9) th (8xN-10)
th

(8xN-11)
th

(8xN-12)
th

(8xN-13)
th

(8xN-14)
th

(8xN-15)
th

(8xN-16)
th

…

N etc.

 16178
12.22.3.9 SymmetricKey 16179

A SymmetricKey is opaque. In this edition of this standard it is 128 bits. As such it is mapped, 16180
without interpretation, to an Octet16, which is sixteen octets in size. 16181

 Time-related data types 12.22.416182

12.22.4.1 General 16183

Time is continuous, potentially represented to nearly infinite precision in a nearly infinite 16184
range. Thus any reasonable representation of time has a specified finite resolution (e.g., 1 h, 16185
1 s, 1 ns, 10-20 s, etc) and a specified range, such as [0..1 d) or (0..10 000 yr], modulo which 16186
any value of time must be represented. 16187

Within this standard, TAINetworkTime is represented with a resolution of 2-16 s and a range of 16188
[0..232) s, modulo 232 s. TAITimeRounded has the same range but rounds to the nearest 1 s 16189
and has a resolution of 20 s (i.e., 1 s). 16190

TAITimeDifference is intended for use to represent the difference between two diffferent 16191
values of TAINetworkTime. That difference is also represented modulo 232 s, so that very 16192
large numeric values likely represent negative differences. The determination of what part of 16193
the 232 s range of a TAITimeDifference value is interpeted as a positive difference, versus the 16194
part that is interpreted as a negative difference, is determined by the use of that difference. 16195

 – 638 – 62734/2CDV © IEC(E)

EXAMPLE When differencing two TAINetworkTime values during processing of a TPDU nonce, the specified logic 16196
specifically addresses differences in a small signed range and then classifies all other differences as “out of range” 16197
without attempting to assign them to either the relatively distant past or the relatively distant future relative to the 16198
referenced TAI time instant. 16199

12.22.4.2 TAINetworkTime 16200

TAINetworkTime represents the network time in TAI time as a six-octet fixed-point binary 16201
value with a resolution of 2-16 s modulo 232 s. Thus the high-order four octets represent the 16202
current TAI time in units of 1 s while the low-order two octets represent the fractional TAI time 16203
in units of 2-16 s. 16204

• Data type: TAINetworkTime 16205

NOTE 1 This representation also applies to TAITimeDifference, which is a modulo difference. 16206

• Valid range, expressed as an unsigned binary fixed-point value 16207
– whose integral component has the range 0..232-1 s (modulo 232 s); 16208
– and whose fractional component has a resolution of 2-16 s. 16209

NOTE 2 Because all possible values occur repeatedly (cyclically) in a modulo representation such as 16210
TAINetworkTime, it is not possible to code special-meaning values within this range, as can be done with the 16211
endpoints of a linear range. 16212

Table 362 shows the representation for TAINetworkTime, and for TAITimeDifference when 16213
interpreted as a modulo difference. 16214

Table 362 – Coding rules for TAINetworkTime, 16215
and for TAITimeDifference when interpreted as a modulo difference 16216

Octet

Bits

7 6 5 4 3 2 1 0 Interpretation

1 231 230 229 228 227 226 225 224 Integral part of
TAI time with
granularity of
1 s

2 223 222 221 220 219 218 217 216

3 215 214 213 212 211 210 29 28

4 27 26 25 24 23 22 21 20

5 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 Fractional part
of TAI time
with granu-
larity of 2-16 s

6 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16

 16217
12.22.4.3 TAITimeDifference 16218

The coding of a TAITimeDifference is identical to that of TAINetworkTime. However, since it is 16219
a modulo value, it has potential interpretations as signed values. Those interpretations are: 16220

• Data type: TAITimeDifference 16221

• Valid range, expressed as a two’s-complement binary fixed-point value 16222
– whose integral component has the range -232..232-1 s; 16223
– whose fractional component has a resolution of 2-16 s; and 16224
– which is considered to “wrap” from positive to negative values at some Unsigned32 16225

value for the integral component that is dependent on the specific usage scenario. 16226

12.22.4.4 TAITimeRounded 16227

TAITimeRounded represents the TAI time in integral seconds modulo the period of the 16228
representation, rounded to the nearest second. Its coding is: 16229

• Data type: TAITimeRounded 16230

62734/2CDV © IEC(E) – 639 –

• Valid Range: 0..232-1 s (modulo 232 s) 16231

Table 363 shows the representation for TAITimeRounded. 16232

Table 363 – Coding rules for TAITimeRounded 16233

Octet

Bits

7 6 5 4 3 2 1 0 Interpretation

1 231 230 229 228 227 226 225 224 TAI time with
granularity of
1 s 2 223 222 221 220 219 218 217 216

3 215 214 213 212 211 210 29 28

4 27 26 25 24 23 22 21 20

 16234
12.22.4.5 Standard data structures 16235

Standard data structures are coded by concatenating the coded values for the structure 16236
elements in order from the lowest numbered element to the highest numbered element, 16237
beginning at octet 1 of the coded result. 16238

12.22.4.6 Null 16239

The data type null has a size of zero (0) octets. The value null is often used for semantic 16240
consistency, where it represents the potential for content when no content has been 16241
identified. 16242

12.22.4.7 Packed 16243

The data type packed indicates that one or more elements of the standard data types have 16244
been concatenated together without gap to maintain octet alignment. Additionally, packed 16245
elements of BitString and BooleanArray type need not occupy an integral number of octets. 16246
The structure and composition of packed data is implicitly known by the correspondents. 16247

NOTE BooleanArrays are usually represented as packed BitStrings. 16248

12.22.4.8 Structured data 16249

12.22.4.8.1 SEQUENCE 16250

SEQUENCE is used to indicate structured data of the same or different standard data type(s). 16251
This is akin to a record construct. 16252

This standard does not support sequences that contain optionally-present members. If such a 16253
need is identified, a separate sequence (structure) shall be defined for each such required 16254
sequence of members. Correspondents are required to have prior knowledge of the structure 16255
of the sequence; thus no mechanism is provided to convey its structure explicitly. 16256

12.22.4.8.2 SEQUENCE OF 16257

For data, SEQUENCE OF is used to indicate an array construct. Array content may either be 16258
conveyed in its entirety, or a specified individual element of an array may be conveyed. 16259

For conveyance of an individual element, the data type of the element is implicitly known by 16260
the correspondents. Since some data types are variable in size, the size of the element is 16261
conveyed with the element data. 16262

When arrays are conveyed in their entirety, they are encoded in row-major-order. The size of 16263
the array in octets shall also be included. The data type of the elements is also known 16264

 – 640 – 62734/2CDV © IEC(E)

implicitly by the corresponding endpoints, and is not explicitly indicated in the APDU. The 16265
dimension(s) of the array is(are) also implicitly known by the corresponding endpoints, and 16266
hence is(are) not explicitly included in the APDU. 16267

NOTE Following standard matrix notation, rows are identified by the first index of a two-dimensional array and 16268
columns by the second index. For example, for the “C” programming language, a two-dimensional array consisting 16269
of two rows and three columns, which visually would be 16270

 1 2 3
4 5 6 , 16271

might be defined as 16272

int A[2][3] = { {1, 2, 3}, {4, 5, 6} } 16273

The encoding of this standard would convey the elements of this array in the following order: 1, 2, 3, 4, 5, 6. 16274

12.22.4.8.3 CHOICE 16275

CHOICE represents a selection chosen from a predefined enumeration of acceptable 16276
possibilities. Content of the data varies based on the choice selected. 16277

12.22.4.8.4 OPTIONAL 16278

OPTIONAL specifies that the designated component need not be included in the containing 16279
structure. 16280

12.22.4.8.5 IMPLICIT 16281

IMPLICIT specifies that those coding aspects that identify type, size, choice selection, and 16282
presence or absence as an optional element are to be suppressed when that information is 16283
otherwise determinable from context, such as from other elements of the data structure. 16284

NOTE When a data type declaration ends with an explicit integer specifying the size of the atomic type (e.g., 16285
Unsigned12) or number of elements of an array type (e.g., OctetString2), that integer is implicit in the declaration 16286
and is not carried in the PDU as a size explicitly-conveyed within the item itself. Thus an OctetStringN does not 16287
contain a field specifying N, but an OctetString does contain such a field (because the size is not implicit in the 16288
declaration). 16289

 Syntax 12.2316290

 Application protocol data unit 12.23.116291

12.23.1.1 Start of containing module 16292

NOTE 1 The object identifier root for the following definitions was changed to an IEC-based root to support 16293
correction and evolution of the TSDU structure relative to that of the original ISA100.11a:2011 TSDU structure. 16294

NOTE 2 The ASN.1 extensibility declaration “...” is used in each production that may be extended in future 16295
editions of this standard, or in industry-specific or vendor-specific ways for this edition. 16296
IEC62734 (1 0 62734) edition (1) TSDU (1)) DEFINITIONS 16297
 IMPLICIT TAGS 16298
 EXPORTS IEC62734_TSDU; 16299
 ::= BEGIN 16300
NOTE 3 For this edition of IEC 62734, the bit-level structure of IEC62734_TSDU is identical to that of 16301
ISA100_TSDU in ISA100.11a:2011, 11.23, so either prefix designates a data structure with identical concrete 16302
representation and similar associated semantics. The equivalent prefix declaration for ISA100.11a:2011 was 16303
-- (ISA () ISA100.11a:2011 (71)) DEFINITIONS 16304
-- IMPLICIT TAGS 16305
-- EXPORTS ISA100_TSDU; 16306
-- ::= BEGIN 16307
 16308

62734/2CDV © IEC(E) – 641 –

12.23.1.2 Top level definitions 16309
IEC62734_TSDU :: = IMPLICIT CHOICE (16310
 individualAPDU ASLIndividualAPDU, 16311
 concatenatedAPDU ASLConcatenatedAPDU 16312
) 16313
ASLIndividualAPDU ::= IMPLICIT CHOICE(16314
 confirmedRequestAPDU ASLConfirmedServiceRequest, 16315
 confirmedResponseAPDU ASLConfirmedServicerResponse, 16316
 unconfirmedRequestAPDU ASLUnconfirmedServiceRequest, 16317
 publicationAPDU ASLPublicationRequest 16318
) 16319
ASLConcatenatedAPDU ::= IMPLICIT SEQUENCE (16320
 IMPLICIT CHOICE (16321
 -- implicit based on the content of the APDU header, which is common across the choices 16322
 confirmedRequest ASLConfirmedServiceRequest, 16323
 confirmedResponse ASLConfirmedServiceResponse, 16324
 unconfirmedRequest ASLUnconfirmedServiceRequest 16325
) 16326
) 16327
NOTE This concatenation works because the size of each aperiodic APDU is either determined by explicit 16328
information or is implicit by service primitive definition. 16329

12.23.1.3 Common substitutions 16330
Float32 ::= REAL (WITH COMPONENTS(, base(2)) SIZE 32) -- single-precision binary float 16331
Float64 ::= REAL (WITH COMPONENTS(, base(2)) SIZE 64) -- double-precision binary float 16332
 16333
Integer8 ::= INTEGER (-128..127) -- 8-bit integer 16334
Integer16 ::= INTEGER(-32 768..32 767) -- 16-bit integer 16335
Integer32 ::= INTEGER(-4 294 967 296..4 294 967 295) -- 32-bit integer 16336
 16337
Unsigned8 ::= INTEGER(0..255) -- 8-bit unsigned 16338
Unsigned16 ::= INTEGER(0..65 535) -- 16-bit unsigned 16339
Unsigned32 ::= INTEGER(0..4 294 967 295) -- 32-bit unsigned 16340
Unsigned64 ::= INTEGER(0..18 446 744 073 709 551 615) -- 64-bit unsigned 16341
Unsigned128 ::= INTEGER(0..340 282 366 920 938 463 374 607 431 768 212 455) -- 128-bit unsigned 16342
 16343
Octet1 ::= Unsigned8 16344
DL16Address ::= Unsigned16 16345
EUI64Address ::= Unsigned64 16346
IPv6Address ::= Unsigned128 16347
SymmetricKey ::= PACKED ARRAY [128] OF BIT -- opaque, uninterpretable bit string 16348
 16349
TAINetworkTime::= SEQUENCE (-- referenced to TAI start time instant 16350
 Seconds Unsigned32, 16351
 FractionalSecond Unsigned16 16352
) 16353
 16354
TAITimeRounded ::= SEQUENCE (-- referenced to TAI start time instant 16355
 Seconds Unsigned32, 16356
) 16357
 16358
TAITimeDifference ::= SEQUENCE (-- not referenced to TAI start time instant 16359
 Seconds Unsigned32, 16360
 FractionalSecond Unsigned16 16361
) -- See NOTE 1 16362
NOTE 1 Since the representation of TAI time in this standard is modulo 232 s, a value of type TAITimeDifference 16363
can be interpreted as either a positive or negative difference, with the two differing by 232 s. Different uses of this 16364
type impose differing local limits on the expected range of numeric difference, which in turn determine how the 16365
modulo difference is interpreted. (E.g., -231 s .. +(231-1) s, or -2k s .. +(232-2k-1) s for 0≤k<32, etc.) 16366

NOTE 2 The following are only used within packed data structures. 16367
Unsigned1 ::= INTEGER(0..1) -- 1-bit unsigned 16368
Unsigned2 ::= INTEGER(0..3) -- 2-bit unsigned 16369
Unsigned3 ::= INTEGER(0..7) -- 3-bit unsigned 16370
Unsigned4 ::= INTEGER(0..15) -- 4-bit unsigned 16371
Unsigned5 ::= INTEGER(0..31) -- 5-bit unsigned 16372
Unsigned6::= INTEGER(0..63) -- 6-bit unsigned 16373
Unsigned7 ::= INTEGER(0..127) -- 7-bit unsigned 16374
 16375

 – 642 – 62734/2CDV © IEC(E)

Unsigned9 ::= INTEGER(0..511) -- 9-bit unsigned 16376
Unsigned10 := INTEGER(0..1 023) -- 10-bit unsigned 16377
Unsigned11 ::= INTEGER(0..2 047) -- 11-bit unsigned 16378
Unsigned12 ::= INTEGER(0..4 095) -- 12-bit unsigned 16379
Unsigned13 ::= INTEGER(0..8 191) -- 13-bit unsigned 16380
Unsigned14 ::= INTEGER(0..16 383) -- 14-bit unsigned 16381
Unsigned15 ::= INTEGER(0..32 767) -- 15-bit unsigned 16382
 16383
Unsigned63 ::= INTEGER(0..9 223 372 036 854 775 807) -- 63-bit unsigned 16384
 16385

12.23.1.4 Application sublayer header 16386
RequestResponse ::= Unsigned1 (16387
 request (0), 16388
 response (1) 16389
) 16390
 16391
ObjectAddressingMode ::= Unsigned2 (16392
 compact (0) -- indicates 4-bit object identifiers 16393
 midSize (1) -- indicates 8-bit object identifiers 16394
 fullSize (2) -- indicates 16-bit object identifiers 16395
 inferred (3) -- shall only be used as specified in 12.22.2.4.5. 16396
) 16397
 16398
ASLService ::= Unsigned5 (16399
 Publish 0, 16400
 AlertReport 1, 16401
 AlertAcknowledge 2, 16402
 Read 3, 16403
 Write 4, 16404
 Execute 5, 16405
 Tunnel 6, 16406
 -- values 7..31 are reserved for future use by this standard 16407
) 16408
 16409
ASLConfirmedServiceRequest ::= CHOICE(16410
 -- the first octet of the ConfirmedServiceRequest is constructed with 16411
 -- bit 7 containing RequestResponse 16412
 -- bits 6 and 5 containing ObjectAddressingMode 16413
 -- bits 4..0 containing ASLService 16414
 readCompact [3] IMPLICIT ReadRequestPDU, -- bit pattern: 0000 0011 16415
 readMidSize [35] IMPLICIT ReadRequestPDU, -- bit pattern: 0010 0011 16416
 readFull [67] IMPLICIT ReadRequestPDU, -- bit pattern: 0100 0011 16417
 readInferred [99] IMPLICIT ReadRequestPDU, -- bit pattern: 0110 0011 16418
 writeCompact [4] IMPLICIT WriteRequestPDU, -- bit pattern: 0000 0100 16419
 writeMidSize [36] IMPLICIT WriteRequestPDU, -- bit pattern: 0010 0100 16420
 writeFull [68] IMPLICIT WriteRequestPDU, -- bit pattern: 0100 0100 16421
 writeInferred [100] IMPLICIT WriteRequestPDU, -- bit pattern: 0110 0100 16422
 executeCompact [5] IMPLICIT ExecuteRequestPDU, -- bit pattern: 0000 0101 16423
 executeMidSize [37] IMPLICIT ExecuteRequestPDU, -- bit pattern: 0010 0101 16424
 executeFull [69] IMPLICIT ExecuteRequestPDU, -- bit pattern: 0100 0101 16425
 executeInferred [101] IMPLICIT ExecuteRequestPDU, -- bit pattern: 0110 0101 16426
 tunnelCompact [6] IMPLICIT TunnelRequestPDU, -- bit pattern: 0000 0110 16427
 tunnelMidSize [38] IMPLICIT TunnelRequestPDU, -- bit pattern: 0010 0110 16428
 funnelFull [70] IMPLICIT TunnelRequestPDU, -- bit pattern: 0100 0110 16429
 tunnelInferred [102] IMPLICIT TunnelRequestPDU -- bit pattern: 0110 0110 16430
) 16431
 16432

62734/2CDV © IEC(E) – 643 –

ASLConfirmedServiceResponse ::= CHOICE(16433
 -- the first octet of the ConfirmedServiceResponse is constructed with 16434
 -- bit 7 (MSBO containing RequestResponse) = 1 -- only response form is valid 16435
 -- bits 6 and 5 containing ObjectAddressingMode 16436
 -- bits 4..0 containing ASLService 16437
 readCompact [131] IMPLICIT ReadResponsePDU, --bit pattern: 1000 0101 16438
 readMidSize [163] IMPLICIT ReadResponsePDU, --bit pattern: 1010 0011 16439
 readFull [195] IMPLICIT ReadResponsePDU, --bit pattern: 1100 0011 16440
 readInferred [227] IMPLICIT ReadResponsePDU, --bit pattern: 1110 0011 16441
 writeCompact [132] IMPLICIT WriteResponsePDU, --bit pattern: 1000 0100 16442
 writeMidSize [164] IMPLICIT WriteResponsePDU, --bit pattern: 1010 0100 16443
 writeFull [196] IMPLICIT WriteResponsePDU, --bit pattern: 1100 0100 16444
 writeInferred [228] IMPLICIT WriteResponsePDU, --bit pattern: 1110 0100 16445
 executeCompact [133] IMPLICIT ExecuteResponsePDU, --bit pattern: 1000 0101 16446
 executeMidSize [165] IMPLICIT ExecuteResponsePDU, --bit pattern: 1010 0101 16447
 executeFull [197] IMPLICIT ExecuteResponsePDU, --bit pattern: 1100 0101 16448
 executeInferred [229] IMPLICIT ExecuteResponsePDU, --bit pattern: 1110 0101 16449
 tunnelCompact [134] IMPLICIT TunnelResponsePDU, --bit pattern: 1000 0110 16450
 tunnelMidSize [166] IMPLICIT TunnelResponsePDU, --bit pattern: 1010 0110 16451
 funnelFull [198] IMPLICIT TunnelResponsePDU, --bit pattern: 1100 0110 16452
 tunnelInferred [230] IMPLICIT TunnelResponsePDU --bit pattern: 1110 0110 16453
) 16454
 16455
ASLUnconfirmedServiceRequest ::= CHOICE (16456
 -- the first octet of the UnconfirmedServiceRequest is constructed with 16457
 -- bit 7 (MSBO containing RequestResponse) = 0 -- only request form is valid 16458
 -- bits 6 and 5 containing ObjectAddressingMode 16459
 -- bits 4..0 containing ASLService 16460
 alertReportCompact [1] IMPLICIT AlertReportRequestPDU, --bit pattern: 0000 0001 16461
 alertReportMidSize [33] IMPLICIT AlertReportRequestPDU, --bit pattern; 0010 0001 16462
 alertReportFull [65] IMPLICIT AlertReportRequestPDU, --bit pattern: 0100 0001 16463
 alertReportInferred [97] IMPLICIT AlertReportRequestPDU, --bit pattern: 0110 0001 16464
 alertAcknowledgeCompact [2] IMPLICIT AlertAcknowledgeRequestPDU, --0x 0000 0010 16465
 alertcknowledgeMidSize [34] IMPLICIT AlertAcknowledgeRequestPDU, --0x 0010 0010 16466
 alertReportFull [66] IMPLICIT AlertAcknowledgeRequestPDU, --0x 0100 0010 16467
 alertReportInferred [98] IMPLICIT AlertAcknowledgeRequestPDU, --0x 0110 0010 16468
 tunnelCompact [6] IMPLICIT TunnelRequestPDU, --bit pattern: 0000 0110 16469
 tunnelMidSize [38] IMPLICIT TunnelRequestPDU, --bit pattern: 0010 0110 16470
 funnelFull [70] IMPLICIT TunnelRequestPDU, --bit pattern: 0100 0110 16471
 tunnelInferred [102] IMPLICIT TunnelRequestPDU --bit pattern: 0110 0110 16472
) 16473
 16474
ASLPublicationServiceRequest ::= CHOICE (16475
 -- the first octet of the PublicationServiceRequest is constructed with 16476
 -- bit 7 (MSBO containing RequestResponse) = 0 -- only request form is valid for publication) 16477
 -- bits 6 and 5 containing ObjectAddressingMode 16478
 publishCompact [0] IMPLICIT PublishRequestPDU, bit pattern: 0000 0000 16479
 publishMidSize [32] IMPLICIT PublishRequestPDU, bit pattern: 0010 0000 16480
 publishFull [64] IMPLICIT PublishRequestPDU bit pattern: 0100 0000 16481
 -- inferred addressing is not used as there is no concatenation of publications 16482
 -- (see concentrator / dispersion objects) 16483
) 16484
 16485
12.23.1.5 Individual APDUs 16486
SourceAndDestinationOIDs:: = IMPLICIT SEQUENCE (OCTET ALIGNED)(16487
 IMPLICIT CHOICE (-- as determined by objectAddressingMode in bits 5 and 6 of first octet of APDU 16488
 -- source object represents the initiator of the service primitive (.req or .rsp) 16489
 -- destination object represents the recipient of the service primitive (.ind or .cnf) 16490
 compact IMPLICIT PACKED SEQUENCE (16491
 compactSourceObject Unsigned4, 16492
 compactDestinationObject Unsigned4 16493
) 16494
 midSize IMPLICIT SEQUENCE (16495
 midSizeSourceOID Unsigned8, 16496
 midSizeDestinationOID Unsigned8 16497
) 16498
 fullSize IMPLICIT SEQUENCE (16499
 fullSizeSourceOID Unsigned16, 16500
 fullSizeDestinationOID Unsigned16 16501
) 16502
 inferred NULL 16503
) 16504
 16505

 – 644 – 62734/2CDV © IEC(E)

ReadRequestPDU ::= IMPLICIT SEQUENCE 16506
 soidDoid SourceAndDestinationOIDs, 16507
 readRequest ReadRequest 16508
) 16509
 16510
ReadResponsePDU ::= IMPLICIT SEQUENCE 16511
 soidDoid SourceAndDestinationOIDs, 16512
 readResponse ReadResponse 16513
) 16514
 16515
WriteRequestPDU ::= IMPLICIT SEQUENCE 16516
 soidDoid SourceAndDestinationOIDs, 16517
 writeRequest WriteRequest 16518
) 16519
 16520
WriteResponsetPDU ::= IMPLICIT SEQUENCE 16521
 soidDoid SourceAndDestinationOIDs, 16522
 writeResponse WriteResponse 16523
) 16524
 16525
ExecuteRequestPDU ::= IMPLICIT SEQUENCE 16526
 soidDoid SourceAndDestinationOIDs, 16527
 executeRequest ExecuteRequest 16528
) 16529
 16530
ExecuteResponsePDU ::= IMPLICIT SEQUENCE 16531
 soidDoid SourceAndDestinationOIDs, 16532
 executeResponse ExecuteResponse 16533
) 16534
 16535
TunnelRequestPDU ::= IMPLICIT SEQUENCE 16536
 soidDoid SourceAndDestinationOIDs, 16537
 tunnelRequest TunnelRequest 16538
) 16539
 16540
TunnelResponsePDU ::= IMPLICIT SEQUENCE 16541
 soidDoid SourceAndDestinationOIDs, 16542
 tunnelResponse TunnelResponse 16543
) 16544
 16545
AlertReportRequestPDU ::= IMPLICIT SEQUENCE 16546
 soidDoid SourceAndDestinationOIDs, 16547
 alertReportRequest AlertReportRequest 16548
) 16549
 16550
AlertAcknowledgeRequestPDU ::= IMPLICIT SEQUENCE 16551
 soidDoid SourceAndDestinationOIDs, 16552
 alertAcknowledgeRequest AlertAcknowledgeRequest 16553
) 16554
 16555
PublishRequestPDU ::= IMPLICIT SEQUENCE 16556
 soidDoid SourceAndDestinationOIDs, 16557
 publishRequest PublishRequest 16558
) 16559
 16560
12.23.1.6 Periodic APDUs 16561
PublishRequest ::= IMPLICIT SEQUENCE (16562
 IMPLICIT CHOICE (-- implicitly determined by the corresponding application processes 16563
 NativeValue IMPLICIT PublishedValue, -- single published value 16564
 NativeSequence IMPLICIT PublishedValueSequence, -- sequence of published values 16565
 HealthReportSequence IMPLICIT HealthReportSequence, -- publication HRCO 16566
 nonNativeSequence IMPLICIT NonNativeSequence -- publication tunnel 16567
) 16568
) 16569
 16570
PublishedValue ::= IMPLICIT SEQUENCE (16571
 contentVersion Unsigned8, -- version of configuration of content published 16572
 freshValueSequenceNumber Unsigned8, -- freshness of this set of data 16573
 value ProcessValueAndStatus 16574
) 16575
 16576

62734/2CDV © IEC(E) – 645 –

PublishedValueSequence ::= IMPLICIT SEQUENCE (16577
 contentVersion Unsigned8, -- version of configuration of content published 16578
 freshValueSequenceNumber Unsigned8, -- freshness of this set of data 16579
 publishedValues SEQUENCE OF ProcessValueAndStatus 16580
) 16581
 16582
HealthReportSequence ::= IMPLICIT SEQUENCE (16583
 contentVersion Unsigned8, -- version of configuration of content published 16584
 freshValueSequenceNumber Unsigned8, -- freshness of this set of data 16585
 healthReportSize Unsigned8, 16586
 healthReport OCTET STRING 16587
) 16588
 16589
NonNativeSequence ::= IMPLICIT OCTET STRING 16590
 16591
ProcessValueAndStatus ::= IMPLICIT CHOICE (-- based on publisher and subscriber application configuration 16592
 analog AnalogProcessValueAndStatus, 16593
 boolean BooleanProcessValueAndStatus 16594
 -- NOTE This choice element can be extended by industry consortia and vendors 16595
) 16596
 16597
AnalogProcessValueAndStatus ::= IMPLICIT SEQUENCE (16598
 valueStatus PV_Status, 16599
 analogProcessValue Float32 16600
) 16601
 16602
BooleanProcessValueAndStatus ::= IMPLICIT SEQUENCE (16603
 valueStatus PV_Status, 16604
 booleanProcessValue Boolean8 -- single Boolean value represented by a full octet 16605
) 16606
 16607
PV_Status ::= PACKED SEQUENCE (OCTET ALIGNED) (-- 1 octet (bit field sizes are: 2 + 1 + 3 + 2) 16608
 quality PV_Quality, -- 2 bits 16609
 reservedSpareBit Unsigned1, -- 1 bit 16610
 IMPLICIT CHOICE (-- selected by quality; all are -- 3 bits 16611
 [0] BadValueSubstatus BadValueSubstatus, 16612
 [1] UncertainValueSubstatus UncertainValueSubstatus, 16613
 [2] GoodValueSubstatus GoodValueSubstatus, 16614
 [3] otherSubstatus Unsigned3 -- reserved for future use 16615
), -- 1 spare code point 16616
 limitStatus LimitStatus -- 2 bits control anti-windup information 16617
) 16618
 16619
PV_Quality ::= Unsigned2 (-- 2 bits 16620
 badValue, (0), -- value is bad 16621
 uncertainValue (1), -- value is uncertain 16622
 goodValue (2), -- value is good 16623
 otherValue (3) -- reserved for future use 16624
) -- 1 spare code point 16625
 16626
BadValueSubstatus ::= Unsigned3 (-- 3 bits 16627
 badValue_NonSpecific, (0), 16628
 badValue_ConfigurationError, (1), 16629
 badValue_NotConnected (2), 16630
 badValue_DeviceFailure, (3), 16631
 badValue_SensorFailure, (4), 16632
 badValue_NoCommunicationWithLUV (5), 16633
 badValue_NoCommunicationNoLUV (6), 16634
 badValue_OutOfService (7) 16635
) -- no spare code points 16636
 16637
UncertainValueSubstatus ::= Unsigned3 (-- 3 bits 16638
 uncertainValue_NonSpecific, (0), 16639
 uncertainValue_LastUsableValue (1), 16640
 uncertainValue_SubstitutedOrManualEntry (2), 16641
 uncertainValue_InitialValue (3), 16642
 uncertainValue_SensorConversionInaccurate, (4), 16643
 uncertainValue_RangeLimitsExceeded (5) 16644
 uncertainValue_SubNormal, (6), 16645
 uncertainValue_Spare (7) -- reserved for future use 16646
) -- 1 spare code point 16647
 16648

 – 646 – 62734/2CDV © IEC(E)

GoodValueSubstatus ::= Unsigned3 (-- 3 bits 16649
 goodValue_NoSpecialConditionsExist (0), 16650
 goodValue_SpecialCondition1 (1), -- reserved for future use 16651
 goodValue_SpecialCondition2 (2), -- reserved for future use 16652
 goodValue_SpecialCondition3 (3), -- reserved for future use 16653
 goodValue_SpecialCondition4 (4), -- reserved for future use 16654
 goodValue_SpecialCondition5 (5), -- reserved for future use 16655
 goodValue_SpecialCondition6 (6), -- reserved for future use 16656
 goodValue_SpecialCondition7 (7) -- reserved for future use 16657
) -- 7 spare code points 16658
 16659
LimitStatus ::= Unsigned2 (-- 2 bits 16660
 notLimited (0), 16661
 lowLimited (1), 16662
 highLimited (2), 16663
 constant (3) -- both high limited and low limited 16664
) -- no spare code points 16665
 16666
highLowLimited LimitStatus ::= LimitStatus constant -- alternative symbolic name 16667
lowHighLimited LimitStatus ::= LimitStatus constant -- alternative symbolic name 16668
 16669
12.23.1.7 Aperiodic APDUs 16670
CompactObjectIdentifier ::= Unsigned4 16671
MidSizeObjectIdentifier ::= Unsigned8 16672
FullSizeObjectIdentifier ::= Uinsigned16 16673
 16674
ExtensibleInteger ::= IMPLICIT SEQUENCE (OCTET ALIGNED) (16675
 format Boolean1, -- 1 bit, FALSE for short form, TRUE for long form 16676
 IMPLICIT CHOICE (-- choice is established by the format field 16677
 shortForm Unsigned7, -- 7 bits -- value shall be < 0x8016678
 longForm Unsigned15, -- 15 bits -- value shall be ≥ 0x80 and 16679
) -- <0x800; value < 0x80 are invalid 16680
) 16681
An ExtensibleInteger shall use a minimal-size encoding. Use of a longForm to encode a value 16682
that could be encoded as a shortForm is invalid and shall be rejected as a protocol error. 16683

AttributeClass ::= Unsigned2 (-- code points for attribute alternatives 16684
 sixBitNoIndexing (0), -- 6-bit attribute identifier, no index 16685
 sixBitOneDimension (1), -- 6-bit attribute identifier, one index (8 or 16 bits) 16686
 sixBitTwoDimensions (2), -- 6-bit attribute identifier, two indices (each 8 or 16 bits) 16687
 twelveBitExtended (3) -- 12-bit attribute identifier 16688
) 16689
 16690
TwelveBitIndexClass ::= Unsigned2 (- code points for 12-bit AID indexing alternatives 16691
 twelveBitNoIndexing (0), 16692
 twelveBitOneDimension (1), 16693
 twelveBitTwoDimensions (2), 16694
 twelveBitReserved (3) 16695
) 16696
 16697

62734/2CDV © IEC(E) – 647 –

ExtensibleAttributeIdentifier ::= IMPLICIT PACKED SEQUENCE (OCTET ALIGNED) (16698
 attributeFormat AttributeClass --2 bits 16699
 IMPLICIT CHOICE (-- choice is established by element attributeFormat 16700
 sixBitNoIndexing Unsigned6, 16701
 sixBitOneDimension IMPLICIT SEQUENCE (OCTET ALIGNED) (16702
 sixBitOneIndexAID Unsigned6, 16703
 sixBitOneIndex ExtensibleInteger, 16704
), 16705
 sixBitTwoDimensions IMPLICIT SEQUENCE (OCTET ALIGNED) (16706
 sizBitTwoIndexAID Unsigned6, 16707
 sixBitTwoIndexNo1 ExtensibleInteger, 16708
 sixBitTwoIndexNo2 ExtensibleInteger 16709
), 16710
 twelveBitExtended IMPLICIT SEQUENCE (OCTET ALIGNED) (16711
 twelveBitIndex TwelveBitIndexClass, 16712
 twelveBitAID Unsigned12 16713
 CHOICE (-- choice is established by the twelveBitIndexClass 16714
 twelveBitNoIndexing NULL, 16715
 twelveBitOneDimension : ExtensibleInteger, 16716
 twelveBitTwoDimensions IMPLICIT SEQUENCE (OCTET ALIGNED) (16717
 TwelveBitTwoIndexNo1 ExtensibleInteger, 16718
 TwelveBitTwoIndexNo2 ExtensibleInteger 16719
) 16720
) 16721
) 16722
) 16723
) 16724
NOTE The four bits in the first octet and eight bits of the second octet of the attributeID are concatenated to form 16725
a longer Unsigned12 value when the 12-bit attributeID alternative is indicated. The four bits in the first octet are the 16726
most significant, and the eight bits in the second octet are the least significant. 16727

 16728
ScalarType :::= Unsigned12 (16729
 Null (0) 16730
 Boolean8 (1), -- single Boolean value represented by a full octet 16731
 Integer8 (2), 16732
 Integer16 (3), 16733
 Integer32 (4), 16734
 Unsigned8 (5). 16735
 Unsigned16 (6). 16736
 Unsigned32 (7), 16737
 Float32 (8), 16738
 VisibleString (9), -- GenericSizeAndValue format 16739
 OctetString (10), -- GenericSizeAndValue format 16740
 16741
 16742
 BitString (14), 16743
 16744
 Float64 (30), 16745
 TAITimeDifference (31), 16746
 TAINetworkTime (32) 16747
) -- all other code points are reserved for this standard 16748
 16749
Primitive encoding shall be used for ScalarData, ArrayData, and StructureData value 16750
elements. No type information is included in the encoding. 16751

GenericSizeAndValue ::= IMPLICIT SEQUENCE OF (16752
 SizeInOctets ExtensibleInteger, -- necessary for parsing (e.g., concatenations) 16753
 DataValue IMPLICIT SEQUENCE OF Octet1 16754
) 16755
 16756
ServiceFeedbackCodeGenericSizeAndValue ::= GenericSizeAndValue 16757
 16758

 Alert reports and acknowledgments 12.23.216759
AlertClass ::= Unsigned1 (-- 1 bit 16760
 event (0), 16761
 alarm (1) 16762
) 16763
 16764

 – 648 – 62734/2CDV © IEC(E)

AlertCategory ::= Unsigned2 (-- 2 bits 16765
 deviceDiagnostic (0), 16766
 communicationsDiagnostic (1), 16767
 security (2), 16768
 process (3) 16769
) 16770
 16771
AlarmDirection ::= Unsigned1 (-- 1 bit 16772
 returnToNormalOrNoAlarm (0), -- for alerts, set this value to 0; for alarm returns set this to zero 16773
 inAlarm (1) -- to report an alarm condition, set this value to 1. 16774
) 16775
 16776
This standard presently does not define standard alerts for the following industry-independent 16777
AL-defined objects: 16778

– UAPMO; 16779
– ARO; 16780
– UDO; 16781
– Concentrator; 16782
– Dispersion; 16783
– Tunnel; 16784
– Interface. 16785
 16786
ASLMO_Communication_Alerts ::= ENUMERATED (16787
 malformed_APDU (0), 16788
 -- values 1..50 are reserved for future use by this standard 16789
 -- values 51..100 are reserved for future use by standard profiles 16790
 -- vendor-specific codes range 101..255 16791
) 16792
 16793
AI_ProcessAlerts ::= ENUMERATED (-- 1 octet; 16794
 outOfServiceAlarm (0), 16795
 highAlarm (1), 16796
 highHighAlarm (2), 16797
 lowAlarm (3), 16798
 lowLowAlarm (4), 16799
 deviationLowAlarm (5), 16800
 deviationHighAlarm (6) 16801
 -- values 7..50 are reserved for future use by this standard 16802
 -- values 51..100 are reserved for future use by standard profiles 16803
 -- vendor-specific codes range 101..255 16804
) 16805
 16806
AO_ProcessAlerts ::= ENUMERATED (-- 1 octet; 16807
 outOfServiceAlarm (0), 16808
 highAlarm (1), 16809
 highHighAlarm (2), 16810
 lowAlarm (3), 16811
 lowLowAlarm (4), 16812
 deviationLowAlarm (5), 16813
 deviationHighAlarm (6) 16814
 -- values 7..50 are reserved for future use by this standard 16815
 -- values 51..100 are reserved for future use by standard profiles 16816
 -- vendor-specific codes range 101..255 16817
) 16818
 16819
BI_ProcessAlerts ::= ENUMERATED (-- 1 octet; 16820
 outOfServiceAlarm (0), 16821
 discreteAlarm (1) 16822
 -- values 2..50 are reserved for future use by this standard 16823
 -- values 51..100 are reserved for future use by standard profiles 16824
 -- vendor-specific codes range 101..255 16825
) 16826
 16827

62734/2CDV © IEC(E) – 649 –

BO_ProcessAlerts ::= ENUMERATED (16828
 outOfServiceAlarm (0), 16829
 discreteAlarm (1) 16830
 -- values 2..50 are reserved for future use by this standard 16831
 -- values 51..100 are reserved for future use by standard profiles 16832
 -- vendor-specific codes range 101..255 16833
) 16834
 16835
ARMO_Alerts ::= ENUMERATED (16836
 AlarmRecoveryStart (0), 16837
 AlarmRecoveryEnd (1) 16838
 -- values 2..50 are reserved for future use by this standard 16839
 -- values 51..100 are reserved for future use by standard profiles 16840
 -- vendor-specific codes range 101..255 16841
) 16842
 16843
IndividualAlertID :: = Unsigned8 -- unique ID associated with an individual alert. 16844
 -- Assigned by the application process in the UAL. 16845
 16846
statusSignalNamur107 ::= Unsigned8 (16847
 failure (0), -- 16848
 checkFunction (1), -- 16849
 offSpec (2), -- 16850
 maintenanceRequired (3), -- 16851
) 16852
 16853
IndividualAlert ::= IMPLICIT PACKED SEQUENCE (OCTET ALIGNED)(16854
 individualAlertID IndividualAlertID, 16855
 DetectingObjectTransportLayerPort Unsigned16, 16856
 DetectingObject Unsigned16, 16857
 DetectingObjectType Unsigned16, 16858
 detectionTimeTAINetworkTime, -- 48 bits 16859
 alertClass AlertClass, -- 1 bit 16860
 alarmDirection AlarmDirection, -- 0: event or alarm return; 1: alarm report 16861
 alertCategory AlertCategory, -- 2 bits: device, comm, security, process 16862
 alertPriority AlertPriority, -- 4 bits 16863
 alertType Unsigned8, -- object category and type dependent 16864
 associatedDataSize ExtensibleInteger, 16865
 associatedData -- present when associatedDataSize > 0 16866
 CHOICE (-- choice is based on AlertCategory 16867
 communicationsDiagnostic IMPLICIT SEQUENCE OF Octet1 OPTIONAL, 16868
 security IMPLICIT SEQUENCE OF Octet1 OPTIONAL, 16869
 process IMPLICIT SEQUENCE OF Octet1 OPTIONAL, 16870
 deviceDiagnostic IMPLICIT SEQUENCE 16871
 (namur107Status statusSignalNamur107, 16872
 detailedInformation IMPLICIT SEQUENCE OF Octet1 OPTIONAL 16873
) -- may include additional information per NAMUR-107 16874
) OPTIONAL 16875
) 16876
 16877
AlertReportRequest ::= (-- note: client OID not present; ARMO is implied 16878
 alert IndividualAlert 16879
) 16880
 16881
AlertAcknowledgeRequest ::= (16882
 alertID IndividualAlertID -- server is always ARMO 16883
) 16884
 16885
AlertPriority ::= Unsigned4 16886
 16887
Alert priority is a value that indicates the importance of the alert. A larger value implies a 16888
more important alert. Host systems map device priorities into host alert priorities that usually 16889
include the categories: 16890

– urgent, 16891
– high, 16892
– medium, 16893
– low, and 16894
– journal. 16895

 – 650 – 62734/2CDV © IEC(E)

The recommended mapping of alert priority values into these categories is specified in 16896
12.17.5.2.2.22. 16897

 16898
MalformedAPDUClass ::= AlertClassevent; 16899
 16900
MalformedAPDUAlertCategory ::= AlertCategorycommunicationsDiagnostic 16901
 16902
MalformedAPDUAlertType ::= AlertTypemalformedAPDUCommunicationAlert 16903
 16904
MalformedAPDUAlertPriority = 7 -- Mid-range of medium priority alerts 16905
 16906
MalformedPDUAlertValue ::= IMPLICIT SEQUENCE (-- alert value sent by ASL to DMAP 16907
 sourceAddress IPv6Address, -- 128 bits to ensure address uniqueness. 16908
 thresholdExceeded Unsigned16, 16909
 TimeWindow TAITimeDifference 16910
) 16911
 16912
MalformedPDUAlertValueSize ::= 24 -- sizeof(MalformedPDUAlertValue) 16913
 16914

 Service feedback code 12.23.316915

NOTE Service feedback code is used to indicate status (e.g., success), warning (e.g., value limited), or error 16916
(e.g., incompatible mode). 16917
ServiceFeedbackCode ::= Unsigned8 (-- 1octet 16918
 -- standard error codes, range 0..127 16919
 success (0) -- success 16920
 failure (1) -- generic failure 16921
 other (2), -- reason other than that listed in this enumeration 16922
 invalidArgument (3), -- invalid attribute to a service call 16923
 invalidObjectID (4), -- invalid object ID 16924
 invalidService (5), -- unsupported or illegal service 16925
 invalidAttribute (6), -- invalid attribute index 16926
 invalidElementIndex (7), -- invalid array or structure element index (or indices) 16927
 readOnlyAtrribute (8), -- read-only attribute 16928
 valueOutOfRange (9), -- value is out of permitted range 16929
 inappropriateProcessMode (10), -- process is in an inappropriate mode for the request 16930
 incompatibleMode (11), -- value is not acceptable in current context 16931
 16932
 invalidValue (12), -- value (data) not acceptable for other reason 16933
 -- (e.g., too large, too small, invalid engineering units code) 16934
 internalError (13), -- device internal problem 16935
 invalidSize (14), -- size is not valid (may be too big or too small) 16936
 incompatibleAttribute (15), -- attribute not supported in this version 16937
 invalidMethod (16), -- invalid method identifier 16938
 objectStateConflict (17), -- state of object in conflict with action requested 16939
 inconsistentContent (18), -- the content of the service requested is inconsistent 16940
 invalidParameter (19), -- value conveyed is not legal for method invocation 16941
 objectAccessDenied (20), -- object is not permitting access 16942
 typeMismatch (21), -- data not as expected (e.g., too many or too few octets) 16943
 deviceHardwareCondition (22), -- device specific hardware condition prevented request from 16944
 -- succeeding (e.g., memory defect problem) 16945
 deviceSensorCondition (23), -- problem with sensor detected 16946
 deviceSoftwareCondition (24), -- device specific software condition prevented request from 16947
 -- succeeding (e.g., local lockout, local write protection, 16948
 -- simulating in progress) 16949
 fieldOperationCondition (25), -- field specific condition prevented request from succeeding 16950
 -- (e.g., lockout, or environmental condition not in range) 16951
 configurationMismatch (26), -- a configuration conflict was detected 16952
 insufficientDeviceResources (27), -- e.g., queue full, buffers / memory unavailable 16953
 valueLimited (28), -- e.g., value limited by device 16954
 dataWarning (29), -- e.g., value has been modified due to a device specific reason 16955
 invalidFunction Reference (30), -- function referenced for execution is invalid 16956
 functionProcessError (31), -- function referenced could not be performed due to a device 16957
 -- specific reason 16958
 16959

62734/2CDV © IEC(E) – 651 –

 warning (32), -- successful, but there is additional information that may be of 16960
 -- interest to the user which may, for example be conveyed via 16961
 -- accessing an attribute or by sending an alert. 16962
 writeOnlyAttribute (33), -- write-only attribute (e.g., a command attribute) 16963
 operationAccepted (34), -- method operation accepted 16964
 invalidBlockSize (35), -- upload or download block size not valid 16965
 invalidDownloadSize (36), -- total size for upload not valid 16966
 unexpectedMethodSequence (37), -- required method sequencing has not been followed 16967
 timingViolation (38), -- object timing requirements have not been satisfied 16968
 operationIncomplete (39), -- method operation, or method operation sequence not 16969
 -- successful 16970
 invalidData (40), -- data received is not valid 16971
 -- (e.g., checksum error, data content not as expected, etc.) 16972
 16973
 dataSequenceError (41), -- data is ordered; data received is not in the order required 16974
 -- example: duplicate data was received 16975
 operationAborted (42), -- operation aborted by server 16976
 invalidBlockNumber (43), -- invalid block number 16977
 blockDataError (44), --error in block of data, example, wrong size, invalid content 16978
 blockNotDownloaded (45), -- the specified block of data has not been successfully 16979
 -- downloaded 16980
 writeProtected (46), -- data is write protected, so write operation is invalid 16981
 invalidMode (47), -- operation did not succeed due to invalid mode 16982
 -- … -- range 48..127 is reserved for future use of this standard 16983
 -- vendor-specific device-specific feedback codes, range 128..255 16984
 vendorDefinedError_128 (128), -- redefinable by each device vendor for each device type 16985
 -- … 16986
 vendorDefinedError_254 (254), -- redefinable by each device vendor for each device type 16987
 extensionCode (255) -- indicates a two octet field size follows for an extended service 16988
 feedback code value 16989
) -- 123 values redefinable by each device vendor for each device type 16990
 16991

 Read, write, and execute 12.23.416992
RequestID ::= Unsigned8 16993
ReadRequest ::= IMPLICIT SEQUENCE (16994
 requestID RequestID, 16995
 targetAttribute ExtensibleAttributeIdentifier 16996
) 16997
 16998
ApduResponseControlData ::= PACKED IMPLICIT SEQUENCE (16999
 , 17000
 Spare Unsigned7, -- redefinable in future editions of this standard 17001
 ForwardCongestionNotificationEcho Boolean1 -- TRUE when congestion in forward (request) path detected 17002
) 17003
 17004
ReadResponse ::= IMPLICIT SEQUENCE (17005
 requestID RequestID, -- matches corresponding ReadRequest 17006
 apduControl ApduResponseControlData, 17007
 readValue ServiceFeedbackCodeGenericSizeAndValue 17008
) 17009
 17010
WriteRequest ::= IMPLICIT SEQUENCE (17011
 requestID RequestID, 17012
 targetAttribute ExtensibleAttributeIdentifier 17013
 value GenericSizeAndValue 17014
) 17015
 17016
WriteResponse ::= IMPLICIT SEQUENCE (17017
 requestID RequestID, -- matches corresponding WriteRequest 17018
 apduControl ApduResponseControlData, 17019
 serviceFeedbackCode ServiceFeedbackCode 17020
) 17021
 17022
MethodInvocationRequest ::= IMPLICIT SEQUENCE (17023
 methodID Unsigned8, 17024
 requestParametersSize ExtensibleInteger, 17025
 requestParameters IMPLICIT SEQUENCE of Octet1 OPTIONAL 17026
 -- primitive encoding; data type known by correspondents 17027
 -- requestParameters only present if requestParametersSize >0 17028
) 17029
 17030

 – 652 – 62734/2CDV © IEC(E)

MethodInvocationResponse ::= IMPLICIT SEQUENCE (17031
 responseParametersSize ExtensibleInteger, 17032
 responseParameters IMPLICIT SEQUENCE of Octet1 OPTIONAL 17033
 -- primitive encoding; data type known by correspondents 17034
 -- responseParameters only present if responseParametersSize >0 17035
) 17036
 17037
ExecuteRequest :: = IMPLICIT SEQUENCE (17038
 requestID RequestID, 17039
 methodinvocationRequest MethodInvocationRequest -- data type(s) specified by standard 17040
) 17041
 17042
ExecuteResponse ::= IMPLICIT SEQUENCE (17043
 requestID RequestID, 17044
 apduControl ApduResponseControlData, 17045
 serviceFeedbackCode ServiceFeedbackCode, 17046
 methodInvocationResponse MethodInvocationResponse -- data type(s) specified by standard 17047
) 17048
 17049

 Tunnel 12.23.517050
TunnelRequest ::= IMPLICIT SEQUENCE (17051
 length ExtensibleInteger, 17052
 tunnelPayload SEQUENCE OF Octet1 17053
) 17054
 17055
TunnelResponse ::= IMPLICIT SEQUENCE (17056
 apduControl ApduResponseControlData, 17057
 length ExtensibleInteger, 17058
 tunnelPayload SEQUENCE OF Octet1 17059
) 17060
 17061

 End of contained module 12.23.617062
END 17063
 17064

 Detailed coding examples (INFORMATIVE) 12.2417065

 Read 12.24.117066

Scenario: Client object 11 wishes to read data from server object 12, attribute 3. The 17067
response indicates the read is successful and returns a value of size two octets. 17068

Table 364 illustrates an example of a request to read multiple values. 17069

Table 364 – Coding example: Read request for a non-indexed attribute 17070

Encoding of octets in hexadecimal Semantic

03 Read request

BC Client (source)object ID = 1110

Server (destination) object ID = 1210

XX Request identifier

03 Attribute ID = 3 (attribute is scalar)

 17071
Table 365 illustrates an example of a response to a request to read multiple values. 17072

62734/2CDV © IEC(E) – 653 –

Table 365 – Coding example: Read response for a non-indexed attribute 17073

Encoding of octets in hexadecimal Semantic

83 Read response

CB

Server (source) object iD = 1210

Client (destination) object ID = 1110

XX Request identifier (same value as for
Request identifier that was included in
the corresponding service request)

00 Success

02 Value is two octets long

YY YY Value

 17074
 Tunnel 12.24.217075

Scenario: Object 16 in the client is sending a message to object 20 in the server. The content 17076
of the message is to be passed through to the server object. 17077

Table 366 illustrates an example of a tunnel service request that has payload size of 9 octets. 17078

Table 366 – Coding example: Tunnel service request 17079

Encoding of octets in hexadecimal Semantic

06 Tunnel request

09 Size

(9 octets of tunneled data) Data being tunneled

 17080

13 Provisioning 17081

 General 13.117082

A device conforming to this standard is considered provisioned when the device has the 17083
information required to communicate with a target network and initiate a join request to the 17084
system/security manager of the target network. In this document, a target network is defined 17085
as a network the device is being provisioned to join. The information required to initiate the 17086
join request includes both security (trust-related) information and network-related information. 17087
Clause 13 specifies the over-the-air provisioning procedure and message format where the 17088
Type A field medium is used and out-of-band message formats where the Type A field 17089
medium is not used to provision the trust-related and network-related information. 17090

Over-the-air provisioning uses join processes to set up a connection between the provisioning 17091
device and the device being provisioned. The join process is described in 6.3.9.2 and follows 17092
two optional paths, one defined for a device joining with trust-related information based on a 17093
symmetric key, and another defined for a device joining with trust-related information based 17094
on an asymmetric key. Out-of-band provisioning may not use join processes and provision the 17095
information via another wired or wireless means. 17096

The goal of the provisioning process is to provide enough information so that one of these 17097
paths can be taken by the device. 17098

The provisioning process involves a device that implements the provisioning role by providing 17099
the network-related and trust-related information to the new device. During provisioning, the 17100
operator can use the provisioning device, acting as a proxy for the system manager, to decide 17101
if a new device should be connected to the network or not, with information from the security 17102

 – 654 – 62734/2CDV © IEC(E)

manager. In another example, a copy of the list of allowed devices can be obtained from the 17103
security manager, allowing the provisioning device to make a local decision. When the target 17104
network is a secure network both trust-related and network-related information needs to be 17105
provisioned; for unsecured networks the default key (K_global) is used as the trust-related 17106
information. Once a device is provisioned, it is ready to join the target network. Thereafter, 17107
usually without human intervention, the security manager of the target network may either 17108
accept or reject the join request to the target network from the device based on the 17109
provisioned information. 17110

NOTE In this standard, various aspects related to installation of the trust-related and network-related information 17111
in a device, conveyance of this information to the security manager, and establishment of trust are described in 17112
different clauses. Installation of the trust-related and network-related information is described in Clause 13. 17113
Conveyance of the information to the security manager is described in Clause 9 and Clause 10. Establishment of 17114
trust is described in 7.4.4.3.2. 17115

 Terms and definitions for devices with various roles or states 13.217116

The following terms are defined for devices with various roles or states: 17117

• Device being provisioned (DBP): A device that needs to be provisioned, or is in the 17118
process of being provisioned. The device may be missing all or part of the information 17119
required to join a network. 17120

NOTE 1 A device that contains old information relating to a network often is updated by provisioning it with 17121
new information. 17122

• Target network: The network that the DBP is being provisioned to join. 17123

• Provisioning device (PD): A device that implements the role of provisioning another 17124
device to allow that device to join the target network. A PD need not be a device 17125
implementing only the provisioning role; rather, it could be: 17126
– the system/security manager of the target network; 17127

NOTE 2 The system/security manager role is distributable, e.g., to a designated set of devices in the 17128
target network. 17129

– a device, such as a handheld device containing a system/security manager, that uses 17130
the protocol suite specified by this standard to provision the DBP through a separate, 17131
temporary mini-network; or 17132

– a device that uses out-of-band (OOB) communication, such as infrared, near field 17133
communications (NFC), or plugs, to provision the DBP, where the OOB communication 17134
is outside the scope of this standard. 17135

• Default network: The network whose network identifier is 1. 17136

• Provisioning network: A network formed between the PD and the DBP. If the PD is a 17137
handheld, then the provisioning mini-network is the network formed between the handheld 17138
and the DBP. If the provisioning device is the security manager of the target network, then 17139
the provisioning network may be a separate logical network on the target network itself. 17140

• Join key (K_join): A symmetric join key used to join a secure target network. The value of 17141
key K_join is intended to be secret, and thus is intended to offer data confidentiality. The 17142
value of key K_join is updated during provisioning to a new value that is known only to the 17143
target network security manager and the device.10 17144

• Default join key value (K_global): A symmetric join key with a published value. The 17145
value of K_global is not intended to be a secret; its value is well known. It therefore does 17146
not offer data confidentiality, but does help improve data integrity. Its purpose is to 17147
establish connectivity between devices compliant to this standard that do not share a 17148
secret join key. Such connectivity is needed for: 17149
– over-the-air (OTA) provisioning of target network related information; 17150

10 Appropriate mechanisms are provided so that the protocol suite defined by this standard cannot be used to

read the current value of the join key from a device. Note that the secrecy of join keys cannot be enforced by
this standard.

62734/2CDV © IEC(E) – 655 –

– OTA reading of device identity and configuration settings; 17151
– OTA authentication of device credentials; and 17152
– OTA updating of join key K_join (the latter two steps using asymmetric cryptography). 17153
The value of the default join key shall be K_global, as defined in 7.2.2.2. 17154

• Open join key (K_join = K_open): A published non-secret value for the join key (K_join). 17155
This special value for the join key is used to join a provisioning network so that certain 17156
OTA symmetric-key only provisioning methods can be facilitated. The actual value for this 17157
key is defined in 7.2.2.2. 17158

• Physical and logical networks: A physical network is a set of physical devices that 17159
communicate with each other, possibly through multiple hops. A logical network is a 17160
network instance that runs on the physical network. One physical network may support 17161
multiple logical networks. Logical networks have different individual priority and security 17162
properties. For example, the target network and the provisioning network are two logical 17163
networks that exist on a physical network. 17164

• Idle state: Device state that is not actively participating in the wireless network, 17165

• Provisioning state: The device is in the provisioning phase. 17166

• Provisioned state: The device received enough information to join target network, and 17167
got the DMO.Join_Command=1. 17168

• Factory defaults: The default configuration of a field device as it comes out of a 17169
manufacturing facility. The default configuration has K_global and K_join equal to their 17170
default values, and OTA provisioning allowed. An operational device may be reset to 17171
factory default, either by the system manager when it is part of a secured network or by 17172
OOB means using a provisioning device. Factory defaults for the provisioning process are 17173
summarized in Table 367. Only the system manager shall have the authority to reset a 17174
device to factory defaults via the network. 17175

This specification does not preclude devices that do not allow reset to factory defaults. 17176

 – 656 – 62734/2CDV © IEC(E)

 Provisioning procedures 13.317177

All field devices compliant with this standard shall implement a standard object called the 17178
device provisioning object (DPO). Attributes of the DPO in the DBP shall specify the 17179
information required to initiate a join request to the target network. The device shall retain all 17180
attributes of the DPO through a power cycle or battery replacement. The device provisioning 17181
object is described in detail in 13.9.1. 17182

This specification does not preclude that the system manager can have the DPO, for example, 17183
store the security manager’s EUI64Address. 17184

PDs shall implement a device provisioning service object (DPSO) that contains information 17185
intended for the DBPs that are serviced by the PD. 17186

Provisioning involves setting the attributes of the DPO. The attributes in the DPO contain both 17187
network-related and trust-related information. These attributes can be set via three different 17188
means: 17189

• they may be pre-installed during device manufacture; or 17190

• they may be set using OOB means; or 17191

• they may be set by a PD using a provisioning network, where the PD acts as a proxy for a 17192
security manager/system manager of a target network to provide the trust-related and 17193
network-related information for that target network. 17194

All devices complying with this standard shall support the formation of the provisioning 17195
network using only the full protocol suite defined by this standard (PhL, DL, NL, and TL), i.e., 17196
not requiring any other mechanism. However, this standard does not disallow provisioning by 17197
OOB communication means. 17198

When using the Type A field medium (5.2.6.4) in the provisioning network, standard PDUs 17199
shall be used to set the attributes of the DPO, which defines a set of default read-only 17200
attributes for the formation of either the provisioning network or another unsecured network. 17201
The default attributes include published default symmetric keys (K_join = K_global and K_join 17202
= K_open), a default D-subnet identifier, and a default set of channels. Since this set of 17203
default attributes is known and contained in the DPO of all devices conforming to this 17204
standard, those attributes provide a means for all devices to join a provisioning network. 17205

The DPO includes an attribute, DPO.Allow_Provisioning, that specifies whether access to the 17206
attributes of the object via the default open instance is either allowed or blocked. 17207

Some devices may implement an external mechanism (i.e., a switch) that will lock the 17208
provisioning state (either blank or provisioned) of the device, to minimize battery consumption 17209
and also to minimize the likelihood that a rogue PD will re-provision a device. 17210

 Pre-installed symmetric keys 13.417211

The formation of a provisioning network is not a necessary step for provisioning; the trust-17212
related information can be pre-installed in a device. For example, it is possible for a user to 17213
delegate (partly) the provisioning of devices to a device manufacturer or to a third party. A 17214
device manufacturer may pre-program secret symmetric join keys into devices, and may 17215
supply this same secret symmetric join key data to the user so that the data can be loaded to 17216
the system/security manager of the target network. Alternatively, the user may stipulate to the 17217
device manufacturer what symmetric key shall be loaded. In this case, the DPO of a device 17218
shall be pre-installed with the target network information and the target symmetric join key 17219
K_join. Depending on the application, two or more devices may share the same secret 17220
information. Devices with pre-installed trust information and target network information can 17221
proceed directly to the join process. 17222

62734/2CDV © IEC(E) – 657 –

When a devices has pre-installed trust-related information but no target network-related 17223
information, it shall be possible to provision the device with necessary network information. 17224
This facilitates having the device receive advertisements from the target network on the 17225
intended channels, expediting the join process and present join requests only to the target 17226
network. If the network-related information is not provisioned, a device may use the default 17227
network settings to scan for advertisements from all networks in its vicinity (including those of 17228
competitors of the device’s owning organization). 17229

 Provisioning using out-of-band mechanisms 13.517230

Devices without pre-installed symmetric keys need to be authenticated and then provisioned 17231
with trust information. As noted earlier, this can be accomplished either through the 17232
provisioning network Type A field medium over-the-air or through OOB mechanisms. 17233

OOB communication means include, but are not limited to, infrared, wired connectors, 17234
memory cards, keyboards on devices, NFC, and plugs. The mechanism of OOB 17235
communications is outside the scope of this standard. The attributes of the DPO that specify 17236
the joining to the target network should be set to the same values regardless of the means 17237
used (over-the-air or OOB). 17238

 Provisioning networks 13.617239

 General 13.6.117240

In addition to OOB-provisioning and factory pre-provisioning, this standard defines the 17241
formation of a standard network for provisioning devices over-the-air (OTA) using the Type A 17242
field medium. The default symmetric join key (K_global) or open symmetric join key (K_join = 17243
K_open) may be used as the trust-related information for the formation of the OTA 17244
provisioning network. The default join key (K_global) is used for the formation of the 17245
provisioning network to obtain target network-related information and target network join key 17246
and for devices with asymmetric cryptographic capability. The join key (K_join = K_open) is 17247
used for the formation of a provisioning network where both trust-related and network-related 17248
information is provisioned over-the-air. This form of provisioning is insecure and by default 17249
system managers and provisioning devices shall not allow joining with this join key. 17250

A PD that has asymmetric cryptographic capabilities distinguishes the method with the key 17251
used to generate the MIC in the Security_Sym_Join().request. In the PD, the MIC generated 17252
by the device joining the default network needs to be validated a maximum of twice – one for 17253
K_open and the other for K_global. If the security manager detects that K_global is used for 17254
the MIC, the DBP shall be provisioned using asymmetric cryptography. Otherwise, the DBP 17255
shall be provisioned using the K_open symmetric key. 17256

The provisioning network can either be an isolated mini-network formed with a handheld 17257
device, or it can be a separate logical network on the target network itself. In the latter case, 17258
connectivity from the DBP to the advertising router is open but connectivity further on, from 17259
that advertising router to the system manager, is protected by the existing session and thus 17260
secured. If the logical provisioning network is on the target network, the application objects of 17261
the system/security managers on the target network and the logical provisioning network 17262
(e.g., DPSO) can communicate with each other within the same device. 17263

Figure 135 illustrates the provisioning (mini-)network. 17264

 – 658 – 62734/2CDV © IEC(E)

Provisioning
device SM

Device being
provisioned

Mini-network

Device being
provisioned

Provisioning
device SM

P
ro

vi
si

on
in

g
m

es
sa

ge
 fo

rm
at

D
ev

. O
bj

1
V

al
ue

D
ev

. O
bj

2
V

al
ueIR

Backbone

IEEE 802.15.4

Physical connection

SIM card

etc.

Scope:
Message formats & provisioning over IEEE 802.15.4

 17265

 Figure 135 – The provisioning network 17266

OTA provisioning uses a PD that can be either: 17267

• a handheld configurator that forms an isolated mini-network with the DBP. This handheld 17268
has its own system/security manager and an advertising router functionality; or 17269

• the system/security manager of the logical provisioning network on the target network. 17270

NOTE When a PD is used for OTA provisioning, it forms a mini-network and functions temporarily as both the 17271
system manager and security manager for the DBP. 17272

 Provisioning over the air using asymmetric cryptography 13.6.217273

DBPs that are capable of performing asymmetric cryptographic calculations shall use the 17274
default join key (K_global) to join a provisioning network. The DBP receives advertisements 17275
whose D-subnet ID = 1 from nearby advertising routers and initiates a join request using the 17276
default symmetric key. A successful join process results in the PD and the DBP having 17277
established a contract for further communication. The PD then uses standard AL primitives 17278
(such as read and write) to transfer the network-related information contained in its DPSO to 17279
the DPO of the DBP. 17280

For provisioning the trust-related information the PD interrogates the DBP; i.e., it reads its 17281
credentials (e.g., DPO.PKI_Certificate or multiple DPO.PKI_Certificates; see Annex G), and 17282
sends those credentials to the security manager. The security manager of the provisioning 17283
network checks the credentials of the DBP and validates the authenticity of the DBP through a 17284
challenge-response mechanism. The security manager/system manager may ask for further 17285
confirmation from the user through a GUI to provision the DBP. Once accepted, the system 17286
manager provides the DBP with the secret join key, K_join, so that the DBP can join the target 17287
network either immediately or at a later time, using that join key. When this new key is 17288

62734/2CDV © IEC(E) – 659 –

transmitted over-the-air, it shall be encrypted by the asymmetric key of the DBP, which is part 17289
of its certificate, so that it cannot be recovered by an eavesdropper while in transit. 17290

Security managers conforming to this standard are not required to have asymmetric 17291
cryptographic capabilities; hence, some security managers may not be able to accept or 17292
provision devices using asymmetric cryptographic capabilities. When the DBP joins the 17293
provisioning network using K_global, security managers and PDs not capable of asymmetric 17294
cryptographic calculations shall not transmit the trust-related information to the DBP. 17295

In addition to a high level of security, asymmetric cryptographic modules and certificates 17296
provide a convenient and easy means for devices to establish communication with the 17297
security manager of the target network and to be provisioned without the use of additional 17298
tools. It is recommended that manufacturers of security manager devices that lack support for 17299
asymmetric cryptography provide adequate means (e.g., memory, processing power, or 17300
optional peripherals, etc.) to upgrade such security managers, upon user request, to support 17301
asymmetric cryptography. 17302

 Provisioning over the air using an open symmetric join key 13.6.317303

This standard allows PDs to provision devices that do not have asymmetric cryptographic 17304
capabilities to be provisioned over-the-air. For this purpose, a well-known open symmetric join 17305
key (K_join = K_open) is used. By default, the security manager in the PD shall not permit 17306
OTA provisioning with the open symmetric key, K_open. The provisioning network is not 17307
secure in itself, since it uses a published open key and join key for the target network, and 17308
thus requires compensating measures, such as a secure physical connection or use of 17309
asymmetric cryptography, for security. 17310

NOTE 1 In OTA provisioning with K_global, the security information (i.e., join key) is encrypted with an 17311
asymmetric key while transmitting. 17312

NOTE 2 The use of an open symmetric join key for provisioning is not a secure procedure. An eavesdropping 17313
device may be able to obtain the join keys to the target network and pose a security risk when this provisioning 17314
procedure is used. This provisioning procedure can only be used in applications where the security risk is minimal 17315
and the user is either not concerned or has taken sufficient measures to avoid eavesdropping. Such exposure can 17316
be avoided by using asymmetric crypto-based provisioning or OOB provisioning. 17317

Use of the symmetric join key K_open for provisioning is a configuration option. DBPs may be 17318
pre-configured not to use OTA provisioning with this key. By default, security managers and 17319
PDs shall reject join requests from all devices that send join requests using the K_open 17320
symmetric join key. Security managers and PDs need to be configured to accept join requests 17321
using the K_open join key. It is permissible for security managers and PDs not to permit such 17322
configuration. 17323

A device that joins a provisioning network using the K_open join key may be provisioned by 17324
the PD with the join key for a target network. However, once provisioned with a new join key 17325
for the target network, the device shall not be allowed to use the K_open symmetric join key 17326
unless the device is reset to factory defaults. Thus the only permissible means for the device 17327
to reuse this key for provisioning is to reset the device to factory defaults. 17328

The provisioning procedure using the K_open symmetric join key can be used either in the 17329
provisioning (mini-)network or through a separate logical network on the target network. The 17330
DBP receives an advertisement from a provisioning network and a standard join request is 17331
sent using a symmetric key (K_join = K_open). If the request is accepted, the DBP joins the 17332
provisioning network and a contract is established between the DBP and PD. Application-level 17333
read/write primitives and methods are available to the PD to provision the trust-related and 17334
network-related information; this includes, for example, provisioning the target join key using 17335
the DPO.Write_Join_Key method. 17336

The provisioning (mini-)network can also be used for device configuration. Since a contract 17337
has already been established, the PD may also use the network (either OTA or OOB) to 17338
configure the DBP. 17339

 – 660 – 62734/2CDV © IEC(E)

 State transition diagrams 13.717340

The options discussed thus far for provisioning are shown below in state transition diagrams. 17341

Figure 136 depicts the state transitions relevant for provisioning through the lifecycle of a field 17342
device. The diagram depicts states at a manufacturing site and a user site. 17343

Just built & flashed
-has no key pair, no certificates
- has default key K_global, join

key & config bits preset to
default

Factory pre-provisioned
-has key pair and certificates
-has either modified join key

K_join and/or config bits
changed

Un-provisioned
-has been given its credentials; may

have asymmetric key pair and
certificates

-has default key K_global, join key &
config bits preset to default

Supplier actions/site ▲
User actions/site ▼

Assembled Edit
Config bits

Shipping a fully
compliant default device

Shipping a device for
a specific user group

Insert secret join key S,
OTA or OOB

OOB or OTA mechanism to
install credentials,

certificates, EUI-64...

FACTORY
DEFAULT

Idle, offline, MAY
possess an

altered K_Join

TRUSTED and
joined the

(secured) target
network

Joined unsecured
provisioning network; DO
NOT have secret K_Join

TRUSTED and joined
unsecured provisioning
network; DO possess

secret K_Join

State change can be
disallowed through config bit
A# in device

Application messaging to
change K_Join, change non-factory

certificates, sign with private key,
re-authenticate, edit config bits

Join target

Join-open
(do not have K_join)

Join-target
sym-key

(have K_Join)
Keys revoked

Use OOB to edit or
add keys, Config,
and other target
network specifics

Join-target
asym-key

(have certificate)

Share certificates,
share signatures,
request to sign a

challenge, all OTA in
clear

Receive non-
secret target

network specifics

Receive from SM secret
K_Join, OTA, encrypted

by my public key

Join-open (have K_Join,
but use K_global)

Read signature, send
certificates OTARequest to sign a

challenge with
private key

Leave or
power off
or timeout

Reset to factory
default

A1

A4

A3

A3

A2

A
#

 17344

Figure 136 – State transition diagrams outlining 17345
provisioning steps during a device lifecycle 17346

A field device that is newly manufactured transitions to the un-provisioned state when its 17347
identity (e.g., it EUI64Address) and credentials are provided to it. In this state, the device has 17348
the default settings as defined in Table 367. 17349

62734/2CDV © IEC(E) – 661 –

Table 367 – Factory default settings 17350

Attribute Description Default
value

Default symmetric join key
K_global

The symmetric join key used to join a default network Specified in
7.2.2.2.

Open symmetric join key
(K_join = K_open)

The symmetric join key used to join a provisioning network, then
to receive new target join keys

Specified in
7.2.2.2

Allow OOB provisioning (A1) This configuration bit allows the use of OOB mechanisms for
provisioning the device. This bit is irrelevant if the device does not
have any OOB means for provisioning

1 = allowed

Allow asymmetric-key-based
provisioning (A2)

This configuration bit allows the use of asymmetric crypto for OTA
provisioning of K_join. This bit is irrelevant if the device does not
support asymmetric cryptography

1 = allowed

Allow default join (A3) This configuration bit allows the device to join a default network.
Some devices may choose not to allow a default join at all

1 = allowed

Allow reset to factory
defaults (A4)

This configuration bit allows execution of OTA commands that
reset the device to the factory default configuration

1 = allowed

 17351
The manufacturer may ship devices with these default settings. 17352

Alternatively, the device may be pre-provisioned for a particular user at the manufacturing 17353
site. When a device is pre-provisioned, the default settings of the device are changed. The 17354
device may be given a new target symmetric join key specific to a target network at the user 17355
site. In addition, any of the configuration bits (A1, A2, A3 and A4) may be changed. For 17356
example, the default network join and reset to factory defaults may be disabled (A3, A4 = 0). 17357
Such a device shall not be able to be provisioned through the open symmetric join key (K_join 17358
= K_open). 17359

The device arrives at the user site either pre-provisioned or with factory defaults and is in the 17360
idle state. 17361

At a user site, a device may be provisioned, using OOB mechanisms (A1 enabled), with a 17362
symmetric join key and network-related information for joining the target network. 17363
Alternatively, the device may already have preinstalled secret join keys and/or network-17364
related information established by the device manufacturer. If the network-related information 17365
is not provisioned into the device at manufacturing, the device may join a provisioning 17366
network using the default symmetric join key K_global, specified in 7.2.2.2 (if A3 is enabled), 17367
and may be provisioned with network-related information using over-the-air mechanisms. 17368

Devices that fail to join the target network using their provisioned information may seek to join 17369
a provisioning network (if A3 is enabled) using K_global. After joining using the default join 17370
key (K_global), the PD may use the Write_Symmetric_Join_Key method to update the K_join 17371
only if it is sent encrypted with the asymmetric key of the DBP. 17372

If the device in an idle state does not have a valid installed symmetric join key and is allowed 17373
to join a default network, and A4 is enabled, the device shall start scanning for 17374
advertisements in order to reach a security manager/system manager of a default network in 17375
its vicinity. 17376

If an advertisement is found and the device has asymmetric cryptographic capabilities and 17377
PKI certificates, it shall forward its credentials to the security manager associated with the 17378
advertising router. The advertising routers shall forward join requests to their security 17379
managers using an established contract that the advertising router has with the security 17380
manager/system manager. 17381

When the security manager receives new device credentials, it first checks whether devices 17382
with those credentials are expected and authorized for the target network. This may be 17383

 – 662 – 62734/2CDV © IEC(E)

accomplished via lookup in pre-populated white lists with the EUI64Address of the individual 17384
device. The device credentials are used by the system manager to decide on the CA (and its 17385
asymmetric key) to use in subsequent authentication steps. 17386

If the device is authorized, then the authenticity of the credentials is checked by the system 17387
manager. The device credentials include the device certificate or multiple certificates. When 17388
using multiple certificates, the check on the device data may11 consist of two asymmetric 17389
crypto steps, one using the CA’s public key that is already present inside the security 17390
manager (the PD) to read the first certificate (termed the issuer certificate) and hence the 17391
issuer’s public key, followed by the second certificate (termed the device certificate) and 17392
hence the device’s public key, using the issuer’s public key. Once the device’s public key is 17393
obtained, a challenge/response mechanism (see 7.4.6) is used by the PD to establish the 17394
authenticity of the DBP. 17395

A copy of data exchanged in the preceding steps may be logged in public files in the PD for 17396
future audit purposes. 17397

User input to accept the device may be solicited before the device is accepted. A dialog on a 17398
human-machine interface (HMI) connected to the system manager may seek confirmation that 17399
the trustworthy device should be allowed to join the target network. This can be a yes/no 17400
dialog that asks if a specific device, with a specific authenticated identity, that is a member of 17401
a family of expected and deemed welcome devices, should indeed now be prepared for a 17402
secure join to the secured target network. When this user-input step is implemented, and the 17403
user response is not received and no response is sent within the join response timeout period, 17404
the join request shall be considered to have failed. 17405

If the device is authorized (present in the white list) and authentic, the PD generates a new 17406
key for the DBP, encrypts it using the DBP asymmetric key and transmits it to the DBP. A 17407
copy of that may be logged in public files in the PD for future audit purposes. 17408

Failure in any of the steps above can be due to loss of connectivity, timeouts, or denial of join 17409
request from the DBP. Examples of the latter include a negative status on the white lists, a 17410
mismatch while authenticating, or a reject from a dialog on an HMI. When it is clear that a 17411
DBP should be rejected for any of those reasons, an alert is generated by the security 17412
manager. No join response shall be sent back to the device indicating a join failure to the 17413
device. 17414

If the DBP does not have asymmetric cryptographic modules but has the open symmetric join 17415
key, it can join a provisioning network with the open symmetric join key (K_join = K_open). 17416
The right to accept or reject provisioning of DBPs that use the open symmetric join keys 17417
(K_join = K_open) rests with the PD. By default, the PD shall not provision devices that join 17418
with the open join key; however, the PD may be configured to provision such devices. If the 17419
PD is configured to allow open OTA provisioning, then the DBP will be provisioned with a new 17420
join key K_join for joining the target network. Once provisioned, the device shall not use the 17421
open key again unless it is reset to factory defaults (A4 is enabled). 17422

Once provisioned, the device can proceed to join the target network with its provisioned 17423
information. As part of the join process, the device receives a master key, T-keys, and 17424
D-keys, in addition to establishing a contract with the system/security manager of the target 17425
network, and normal operation of the standard secured network follows. 17426

As part of the normal operation of a network, the system manager of the network may 17427
provision the device with sufficient information to join another network when the device leaves 17428
the current network. This process enables a device to join and leave multiple networks. 17429
Provisioning for another network using a current target network is accomplished as follows. 17430

11 The two-certificate chain described here is only one of the many certificate topologies possible with multiple

certificates. The DPO provides attributes to include multiple certificates.

62734/2CDV © IEC(E) – 663 –

a) The DPSO in the current system manager retrieves network information and security keys 17431
from the system/security manager of the other network. 17432

NOTE The interface for such inter-manager communication is beyond this scope of this standard. 17433
b) The DPSO in the current system manager installs information into the DPO of the device. 17434
c) The DBP leaves the current network. 17435
d) When the device leaves the current network, it joins the next network with network and 17436

security information installed in its DPO. 17437

As described herein, there are multiple paths (and state transitions) available for an 17438
un-provisioned device to be provisioned and ultimately to join a secured network. These paths 17439
are illustrated via the state transition diagram in Figure 137. Figure 137 is related (and 17440
equivalent to) to Figure 136; however, Figure 137 is depicted from the perspective of a device 17441
internal state. 17442

S0
Un-provisioned device

-no join key , no certificate
-default key present

K_global and K_open

OOB mechanism
for network
information

Symmetric key join
using K_global

Symmetric key join
using K_global

Share certificates
and pass challenge;

get new K_Join

Provisioning secret
K_Join OTA, encrypted

by public key

Share
certificates
and pass
challenge

OOB mechanism
to install join key,
or pre-provisioned

Leave (with network
information1 and

certificate; no join key)

Provision network
information OTA

Leave with
certificate and

network information1

Leave with join key and
network information2

Provision (or update) join key and
network information for next join

(update certificate)

Keys revoked; device set to
default (certificate present)

Leave without
any provisioning

Keys revoked; device set
to default (no certificate)

Asymmetric key
join process

Leave (with network
information2 and join key)

OOB
mechanism for

network info

OOB mechanism to install
certificate, or pre-provisioned

Provision
network

information OTA

Symmetric key join
using default join

key

Symmetric key
join process

S2.1
Symmetric key

provisioned
-have K_Join

S4
Join secured

network

S3.2
Join unsecured

network
-have secret

K_Join

S3.1
Join unsecured

network
-no K_Join

S1.2
Asymmetric key

provisioned
-certificate and

network information

S1.1
Asymmetric key

provisioned
-certificate

S2.2
Symmetric key

provisioned
-K_Join and network

information

1 Will transition to S1.1 if no network information1

2 Will transition to S2.1 if no network information2

Provisioning secret
K_Join OTA, no

encryption

 17443

Figure 137 – State transition diagram showing various paths 17444
to joining a secured network 17445

The transitions and paths addressed in Figure 137 include: 17446

 – 664 – 62734/2CDV © IEC(E)

a) OOB provisioning of symmetric key and network information: 17447
1) State transitions : S0 → S2.1 → S2.2 → S4 17448
2) Synopsis: OOB mechanisms are used to provision a device with the target network join 17449

key (S0 –> S2.1) and network information (S2.1 → S2.2). Then, the device uses the 17450
symmetric join procedure (S2.2 → S4) to join the secured network. 17451

b) Factory pre-provisioned (OOB or otherwise): Asymmetric keys and certificates and OOB 17452
provisioning of network information: 17453
1) State transitions : S0 → S1.1 → S1.2 → S4 17454
2) Synopsis: A device is factory pre-provisioned with asymmetric keys and certificates 17455

(S0 → S1.1). The device has the necessary information to initiate an asymmetric-key 17456
join procedure. However, it does not have enough network-related information. This 17457
information is provisioned using OOB mechanism (S1.1 → S1.2). Then, the device 17458
uses the asymmetric join procedure to join the secured network (S1.2 → S4). 17459

c) OOB provisioning of symmetric-key information and OTA provisioning of network 17460
information: 17461
1) State transitions : S0 → S2.1 → S3.2 → S2.2 → S4 17462
2) Synopsis: A device is provisioned using OOB mechanism (or pre-provisioned) with the 17463

symmetric join key for the target network (S0 → S2.1). The device then joins a default 17464
provisioning network using the default join key, K_global (S2.1 → S3.2). The PD in the 17465
provisioning network provides the network information for the target network. The 17466
device leaves the provisioning network (S3.2 → S2.2) and joins the secured network 17467
(S2.2 → S4) using the symmetric join procedure. 17468

d) Factory pre-provisioned (OOB or otherwise) asymmetric keys and certificates and OTA 17469
provisioning of symmetric keys: 17470
1) State transitions: S0 → S1.1 → S3.1 → S3.2 → S2.2 → S4 17471
2) Synopsis: A device is factory pre-provisioned with asymmetric keys and certificates 17472

(S0 → S1.1). The device has the necessary information to initiate an asymmetric-key 17473
join procedure. However, it cannot join a target network that does not support an 17474
asymmetric join process. The device then joins a default provisioning network that is 17475
different from the target network using the default join key, K_global (S1.1 → S3.1). As 17476
part of this provisioning network, the device exchanges its credentials, passes a 17477
challenge-response mechanism, and receives the target network join key, encrypted 17478
with the device’s public key, from the PD (S3.1 → S3.2). The device is then 17479
provisioned with the network information OTA. Then, the device leaves the 17480
provisioning network (S3.2 → S2.2) and joins the secured network (S2.2 → S4) using 17481
the symmetric join procedure. 17482

e) Open join key-based provisioning in the clear: 17483
1) State Transitions : S0 → S2.1 → S2.2 → S4(1) → S2.2 → S4(2) 17484
2) Synopsis: A device that has the default open symmetric join key. It uses the symmetric 17485

join key procedure for joining a provisioning network (S2.2. → S4(1)). As part of this 17486
provisioning network, the device is provisioned with the target network join key and 17487
network information. The device then leaves the provisioning network (S4(1) → S2.2). 17488
The device is now provisioned to join the target network; it joins the secured target 17489
network using the symmetric-key join process (S2.2 → S4(2)). In this transition, the 17490
first time the device has joined a provisioning network is indicated by state S4(1), and 17491
the second time it is joined to the target network is indicated by state S4(2). After the 17492
device has reached S4(2), the device cannot use the open symmetric join key unless it 17493
is reset to factory defaults. 17494

 Device management application protocol objects used during provisioning 13.817495

This standard uses one DMAP object and one SMAP object during provisioning. The device 17496
provisioning object (DPO) holds the configuration settings. Figure 138 illustrates provisioning 17497
objects and the interactions between them. 17498

62734/2C

D
V

 ©
 IE

C
(E

)
– 665 –

Upper data link layer

MAC extension

Application sub-layer

User
application
process a

User
application
process n

U
AP

M
E-

2
SA

P

U
AP

M
E-

n
SA

P

ASLDE-n
SAP

ASLDE-2
SAP

ASMSAP

ASLDE-0
SAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-2

PMSAPPDSAP

NMSAP

NDSAP

TMSAP

TDSAP-0TDSAP-n

Device manager
(DMAP)

MDSAP

DMSAP

DDSAP

MMSAP

Upper data link layer

MAC extension

Application sub-layer

User
application
process a

User
application
process n

U
AP

M
E-

2
SA

P

U
AP

M
E-

n
SA

P

ASLDE-n
SAP

ASLDE-2
SAP

ASMSAP

ASLDE-0
SAP

Physical layer

Network layer

Transport layer

MAC sub-layer

TDSAP-2

PMSAPPDSAP

NMSAP

NDSAP

TMSAP

TDSAP-0TDSAP-n

Device manager
(DMAP)

MDSAP

DMSAP

DDSAP

MMSAP

Device to be provisionedProvisioning device
Device

provisioning
object (DPO)

Device
provisioning

service object
(DPSO)

 17499

Figure 138 – Provisioning objects and interactions 17500

 17501
 17502

 – 666 – 62734/2CDV © IEC(E)

Whether it is the system manager/security manager in a handheld device or the system 17503
manager of the target network, the PD shall implement a device provisioning service object 17504
(DPSO) with attributes and methods to provision the DBP. The DPSO may have a list of 17505
symmetric keys, used to provision devices that do not have pre-installed keys. 17506

The white list, symmetric-key information, and target network information in the DPSO can be 17507
maintained with information specific to a device in the White_List_Array attribute in Table 372. 17508
Alternatively, a pool of valid symmetric keys can be maintained. 17509

When the DBP joins the provisioning network using K_global, a contract is established 17510
between the PD and DBP. The DPSO in the PD can use the established contract to 17511
communicate with the DPO in the DBP. Read and write primitives are used for accessing and 17512
setting the attributes of the DPO. A subset of network and trust information can now be 17513
provisioned in the DPO using the DPSO. To write the new symmetric join key to the device 17514
the DPSO invokes the Write_Join_key method of the DPO. This method is allowed if the new 17515
key value was received under protection of asymmetric crypto. The attributes in the DPO 17516
include both network-related and trust-related information. 17517

Users that want additional security while provisioning should use the asymmetric crypto-17518
based authentication and secured key loading technique for the trust-related steps. 17519
Alternatively, out-of-band mechanisms may be used for provisioning join keys 17520

Once the appropriate trust and network information has been provisioned in the DPO, the 17521
device is ready to join the target network. The provisioning network can also be used for 17522
device configuration. Since a contract has already been established, the PD may also use the 17523
network (or OOB means) to configure the appropriate UAP and DMAP objects of the DBP. 17524

The device provisioning object (DPO) provides an attribute called the Target_DL_Config in 17525
the DL_Config_Info format. DL_Config_Info is described in Clause 9 (see Table 102) to 17526
configure various attributes of the DL. Once provisioned with this attribute, the DPO provides 17527
the DL with an OctetString encapsulating DL_Config_Info that includes at least one 17528
superframe, and at least one link, that can be used by the DL in searching for advertisements. 17529
Target network-specific (e.g., non-default) timeslot templates, channel-hopping patterns, 17530
superframes and links can also be provided to the DBP through the Target_DL_Config 17531
attribute. Such configuration helps reduce the amount of information (e.g., join superframes) 17532
that is otherwise required to be advertised by target network advertisement routers. 17533

The DL of the device plays a major role during the provisioning and joining of the device. The 17534
state machine of the DL when it is going through the provisioning process is described in 17535
9.1.14.2. 17536

If the provisioning process is successful, the DPO provides the DL with the set of attributes, 17537
including D-subnet information, superframes, and links, that the DL can use to search for the 17538
target network and corresponding D-subnet(s). In the provisioned state the DL operates its 17539
state machine as configured in the superframes and links that were provided by the DPO. 17540
Superframe operation may be delayed or disabled by setting the IdleTimer field within the 17541
superframe. 17542

Since the device retains the information that was used to provision the DL (all attributes of the 17543
DPO), this ensures a means to reset the DL back to its provisioned state by putting the DL 17544
into its default state and then adding the provisioned attributes. 17545

The DPO shall be accessible to the system manager of the target network after joining with 17546
Key_Join. Once the device joins a target network, the system manager of the target network 17547
has the ability to change the attributes of the DPO. The system manager of the target network 17548
has the ability to instruct the device to join another target network by providing network and 17549
trust information of the other network. Depending on the value of configuration bit A4, the 17550

62734/2CDV © IEC(E) – 667 –

system manager of the target network has the ability to invoke a DPO.Reset_To_Defaults 17551
method to remove trust information from the device. 17552

NOTE 2 In the provisioning phase, the DPO in the DBP is accessed by the system/security manager functionality 17553
in the PD. 17554

 Management objects 13.917555

 Device provisioning object 13.9.117556

Table 368 describes the attributes of the DPO. The data type, default value, and a brief 17557
description are provided for each attribute. Each attribute also has accessibility of read only 17558
or read/write. The attributes of the DPO are accessible only to the system/security manager. 17559
The value of a read-only attribute can be set only at the device manufacturing time (i.e., at a 17560
time before the device is certified) or internally by the device; no entity external to the device 17561
can change this attribute. Read/write accessibility implies that entities external to the device 17562
can change the value of the attribute. The attributes of the DPSO are accessible (read/write) 17563
only to the system manager. 17564

The attributes classified as “constant” have a value that is not changed during the device 17565
lifecycle, neither internally nor externally. The definition of the classification is found in 12.6.3. 17566

Table 368 – Device provisioning object 17567

Standard object type name: Device provisioning object (DPO)

Standard object type identifier: 120

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Default_NWK_ID 1 A published
network
identification
for the default
network

Type: Unsigned16 This is the network
identification for
the default
network. The
default network
may be used to
form the
provisioning mini-
network

Classification: Constant

Accessibility: Read only

Default value: 0x0001

Default_SYM_Join_Key 2 A published
join key for
the default
network

Type: SymmetricKey This key is used by
devices to join the
default network.
The default keys
may be used to
form the
provisioning mini-
network

Classification: Constant

Accessibility: Read only

Default value: K_global,
7.2.2.2

Open_SYM_Join_Key 3 A published
join key for
the default
network

Type: SymmetricKey This key is used by
devices to join the
unsecured
provisioning
network

Classification: Constant

Accessibility: Read only

Default value: K_open,
7.2.2.2

 17568

 – 668 – 62734/2CDV © IEC(E)

Table 368 (continued)

Standard object type name: Device provisioning object (DPO)

Standard object type identifier: 120

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Default_Channel_List 4 The list of
2,4 GHz
channels
used by the
default
network. The
attribute is
coded as a bit
map of 16 bits
representing
the 16
frequencies

Type: Unsigned16 The list of channels
used by the
advertising routers
of the default
network. To join
the default network
the device may
receive
advertisements on
any of these
frequencies

Classification: Constant

Accessibility: Read only

Default value: 0x7FFF

Join_Method_Capability 5 The join
capabilities of
the device.

Type: Unsigned2 This attribute
defines the
capability of a
device to join. The
device can either
use symmetric
keys or
asymmetric-key
infrastructure to
join a target
network. This
attribute merely
defines the
capabilities of the
device. The actual
method used to
join the target
network shall be
set by the PD

Classification: Constant

Accessibility: Read/write

Default value: 00

Named values:
00: default join only;
01: symmetric-key join
only;
10: asymmetric-key join
only;
11: any key join

Allow_Provisioning 6 A Boolean
value set to
indicate if a
device is
allowed to be
provisioned or
not

Type: Boolean1 This flag is used to
lock the state of an
already provisioned
device. If this value
is set the device
will not accept any
reads or writes to
the target network
attributes

Classification: Static

Accessibility: Read/write

Default value: TRUE

Allow_Over_The_Air_
Provisioning

7 A Boolean
value set to
indicate if a
device is
allowed to be
provisioned or
not

Type: Boolean1 This Boolean
indicates whether
over-the-air
provisioning is
enabled or
disabled. If over-
the-air provisioning
is disabled the
device needs to be
provisioned using
out of band
methods.
Backbone devices
shall have this
value set to FALSE.
In all cases,
provisioning is
allowed only if the
Allow_Provisioning
attribute is enabled

Classification: Static

Accessibility: Read/write

Default value: TRUE

62734/2CDV © IEC(E) – 669 –

Table 368 (continued)

Standard object type name: Device provisioning object (DPO)

Standard object type identifier: 120

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Allow_OOB_Provisioning 8 A Boolean
value set to
indicate if a
device is
allowed to be
provisioned
using OOB
means

Type: Boolean1 The Boolean is
used to block the
devices from
accepting
provisioning
information from
OOB means

Classification: Static

Accessibility: Read/write

Default value: TRUE

Allow_Reset_to_Factory_
Defaults

9 A Boolean
value set to
indicate if a
device is
allowed to be
reset to
factory
defaults

Type: Boolean1 This Boolean is
used to block
devices from being
reset to factory
defaults by a
system manager

Classification: Static

Accessibility: Read/write

Default value: TRUE

Allow_Default_Join 10 A Boolean
value set to
indicate if a
device is
allowed to join
a network
using the
default keys

Type: Boolean1 The Boolean is
used to force the
devices to join a
particular target
network and not
join to any default
network. Devices
choosing not to join
a Default network
can set this
attribute to FALSE

Classification: Static

Accessibility: Read/write

Default value: TRUE

Target_NWK_ID 11 The network
ID of the
target network
that this
device is
provisioned to
join

Type: Unsigned16 This attribute
indicates the target
network that this
device has to join
a)

Classification: Static

Accessibility: Read/write

Default value: 0

Target_NWK_BitMask 12 A bit mask for
matching of
the bits of the
Target
network ID

Type: Unsigned16 The bit mask is
useful for matching
multiple target
networks. If the
value of a bit in the
bit mask is 1 then
the bit has to be
exactly matched to
the corresponding
bit in the Target
Network. The
default value of all
1s indicates that all
bits of network ID
need to match

Classification: Static

Accessibility: Read/write

Default value: 0xFFFF

Target_Join_Method 13 Indicate
whether the
device should
use
symmetric-
key join or
asymmetric-
key join
mechanism to
join the target
network.

Type: Unsigned1 7.4.4 defines two
different methods
for join depending
on the use of either
symmetric keys or
asymmetric-key
certificates. This
attribute sets
method to be used
to join a target
network

Classification: Static

Accessibility: Read/write

Default value: 1

Named values:
0: Symmetric key
1: Asymmetric key

 – 670 – 62734/2CDV © IEC(E)

Table 368 (continued)

Standard object type name: Device provisioning object (DPO)

Standard object type identifier: 120

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

Target_Security_Manager_
EUI

14 The
EUI64Address
of the security
manager in
the target
network that
the device is
intended to
join

Type: EUI64Address Set to the
EUI64Address of
the security
manager that the
device is
provisioned to join

Classification: Static

Accessibility: Read/write

Default value: 0xFF...FF
(all 0xFF)

Target_System_Manager_
Address

15 The
IPv6Address
of the system/
security
manager in
the target
network that
the device is
intended to
join

Type: IPv6Address The IPv6Address is
required for
backbone devices
to join the network.
The backbone
devices do not
have an advertising
router - hence a
join request is sent
to the IPv6Address
of the
system/security
manager to begin
the join process.
I/O devices and
routing devices
need not be
provisioned with
this attribute

Classification: Static

Accessibility: Read/write

Target_Channel_List 16 The list of
channels
used by the
target
network. The
attribute is
coded as a bit
map of 16 bits
representing
the 16
frequencies

Type: BitArray16 The target network
may be using only
a subset of
channels for
advertisements by
the join routers. By
using only a subset
of frequencies
battery powered
devices can quickly
join the target
network by
listening in that
subset of
frequencies only

Classification: Static

Accessibility: Read/write

Target_DL_Config 17 The DL
configuration
information
for this device

Type: OctetString This attribute
indicates the
various
configuration
settings for the DL
of the device. The
structure of this
attribute is defined
in DL_Config_Info
defined in Clause 9

Classification: Static

Accessibility: Read / Write

PKI_Certificate_Type 18 (Asymmetric-
crypto option)

The type of
certificate
stores in
PKI_Root_Cer
tificate and
PKI_Certificat
es

Type: Unsigned8 This field indicates
a type of
Certificate in
PKI_Root_
Certificate and
PKI_Certificates.

Classification: Static

Accessibility: Read/Write

Default value: 0

Named values:
0: implicit cert;
1: manual cert

62734/2CDV © IEC(E) – 671 –

Table 368 (continued)

Standard object type name: Device provisioning object (DPO)

Standard object type identifier: 120

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

PKI_Root_Certificate 19 (Asymmetric-
crypto option)

The root
certificate of
the certificate
authority
issuing the
certificate to
the device.

Type: OctetString The root certificate
of the certificate
authority and its
corresponding
asymmetric key is
used to verify
certificates of the
peer nodes. The
root certificate may
updated by the
system manager

Classification: Static

Accessibility: Read/write

Number of PKI_Certificates 20 (Asymmetric-
crypto option)

The number
of certificates
stored in the
PKI_certificat
e attribute

Type: Unsigned8 This field indicates
the number of
certificates
available in
attribute
PKI_Certificate

Classification: Static

Accessibility: Read/write

Default value: 0

PKI_Certificate 21 (Asymmetric-
crypto option)

The certificate
issued to this
device for
joining using
the
asymmetric-
key
infrastructure

Type: Array of OctetString If Target_Join_
Method is set to
Asymmetric-key,
this attribute
contains the
certificate (which
includes the
asymmetric key,
device ID, and
other text) signed
by a certificate
authority which is
required for joining
the target network

Classification: Static

Accessibility: Read/write

Current_UTC_Adjustment 22 The current
value of the
UTC
accumulated
leap second
adjustment

Type: Integer16 See Table 25
attribute 1 and
footnote Classification: Static

Accessibility: Read/write

Default value: 35

a) If the Target_NWK_BitMask (attribute 12) is set to 0xFFFF, the device shall ignore advertisements from
routers belonging to any other network except the indicated target network. Otherwise a combination of
network ID and bit mask shall be used. (See description of attribute 12 on how the NetworkID and bitmask
are combined). This helps with fast joins and also prevents devices from trying to join all networks in their
vicinity. This value can be set to 0 to allow responses to any advertising router

 17569
 Device provisioning object methods and alerts 13.9.217570

Several methods and alerts are available in the DPO. Table 369 describes the 17571
Reset_To_Default method. 17572

 – 672 – 62734/2CDV © IEC(E)

Table 369 – Reset_To_Default method 17573

Standard object type name(s): Device provisioning object (DPO)

Standard object type identifier: 120

Method name Method ID Method description :

Reset_To_Default 1 This method is used to reset to default settings for the provisioning.
This method shall be executed only when Allow_Provisioning is
enabled.

Input arguments (None)

Output arguments

Argument
number

Argument
name

Argument type
(data type and

size)
Argument description

1 Status Unsigned8 Named values:
0: success;
other: failure

 17574
Table 370 describes the method to write a symmetric join key. The join key shall not be 17575
exposed to a remote device, and may be exposed to limited internal process; 17576
DPO.Write_Symmetric_Join_Key() method installs a join key to a memory area that is not 17577
used for attributes (e.g., secure storage). 17578

Table 370 – Write symmetric join key method 17579

Standard object type name(s): Device provisioning object

Standard object type identifier: 120

Method name Method
ID

Method description :

Write_SYM_join_key 2 This method is used to write a symmetric join key to a device. This method
is evoked by the DPSO to provision a DBP with the target join key.
Depending on the provisioning method used this method call APDU and
hence the join key may be encrypted by the T-key between the device and
PD alone or the device’s asymmetric key in the APDU in addition to the
APDU being encrypted by the T-key. This method shall be executed only
when Allow_Provisioning is enabled.

Input arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 New_Key_Value SymmetricKey New join key to be installed.

2 Encrypted By Unsigned8 Named values:
0: TL_Session_Key_Only,
1: Asymmetric_Key

Output arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Status Unsigned8 Named values:
0: success;
>0: failure

 17580

62734/2CDV © IEC(E) – 673 –

 Device provisioning service object 13.1017581

 Device provisioning service object attributes 13.10.117582

Table 371 describes the attributes of the DPSO. 17583

The system manager can either choose particular provisioning information for each 17584
EUI64Address or a set of join keys for a set of EUI64Addresses with no one-to-one mapping. 17585
The Boolean1 attribute, DPSO.Enable_White_List_Array, is used to specify which method is 17586
used. 17587

In the DPSO.Enable_White_List_Array set, DPSO.White_List_Array is used to install 17588
particular provisioning information for each EUI64Address of the DBP. 17589

If DPSO.Enable_White_List_Array is not set, the PD shall check if there are at least as many 17590
entries in DPSO.SYM_Key_List as entries in DPSO.White_List. This standard does not 17591
specify how each entry in DPSO.SYM_Key_List and DPSO.White_List is mapped. 17592

Table 371 – Device provisioning service object 17593

Standard object type name: Device provisioning service object (DPSO)

Standard object type identifier: 106

Attribute name Attribute
identifier

Attribute
description

Attribute
data information

Description of
behavior of attribute

White_List 1 A list of
devices
permitted to be
provisioned by
this object

Type: Array of
EUI64Address

This list contains
EUI64Addresses of
device being
provisioned. This list
can be used to restrict a
provisioning device to
the specific set of
devices whose
EUI64Addresses are in
this list. If this list is
empty, then the
provisioning device can
provision any device

Classification: Static

Accessibility:
Read/write

Default value: []
-- empty

Symmetric_Key_List 2 A list of valid
join keys with
which a device
can be
provisioned.

Type: Array of
SymmetricKey

This key is used by
devices to join the
target network, that
have suitable entropy Classification: Static

Accessibility:
Read/write

Default value:
{K_global] -- 7.2.2.2

Symmetric_Key_Expiry_Times 3 The expiration
time for each
key

Type: Array of
TAITimeRounded

This attribute sets the
expiry time for each of
the symmetric keys.
The key is only used for
provisioning if it has not
expired

Classification: Static

Accessibility:
Read/write

Default value:
[0xFFFF FFFF]
(Note 1)

 – 674 – 62734/2CDV © IEC(E)

Standard object type name: Device provisioning service object (DPSO)

Standard object type identifier: 106

Attribute name Attribute
identifier

Attribute
description

Attribute
data information

Description of
behavior of attribute

Target_NWK_ID 4 The network ID
of the target
network that
the devices
provisioned by
this object are
supposed to
join

Type: Unsigned16 This attribute indicates
the target network
(subnet ID) that a
provisioned device has
to join

Classification: Static

Accessibility:
Read/write

Default value: 0

 17594
Table 371 (continued)

Standard object type name: Device provisioning service object (DPSO)

Standard object type identifier: 106

Attribute name Attribute
identifier

Attribute
description

Attribute
data information

Description of
behavior of attribute

Target_Join_Method 5 A Boolean
value to
indicate if the
devices
provisioned by
this object
should use
symmetric-key
join or
asymmetric-
key join
mechanism to
join the target
network

Type: Unsigned8 Clause 7 defines two
different methods for
join depending on the
use of either symmetric
or asymmetric keys.
This attribute sets the
method to be used to
join a target network.

Named values:
0: symmetric key;
1: asymmetric key

Classification: Static

Accessibility:
Read/write

Default value: 0

Target_Security_Manager_EUI 6 The
EUI64Address
of the Security
Manager in the
target network
that the device
provisioned by
this object is
intended to
join

Type: EUI64Address Set to the
EUI64Address of the
security manager that
the device is
provisioned to join

Classification: Static

Accessibility:
Read/write

Target_System_Manager_
Address

7 The
IPv6Address of
the system/
security
manager in the
target network
that the device
provisioned by
this object is
intended to
join

Type: IPv6Address The IPv6Address is
required for backbone
devices to join the
network

Classification: Static

Accessibility:
Read/write

Valid range: all with
highest bit reset

Target_Channel_List 8 The list of
channels used
by the default
network. The
attribute is
coded as a bit
map of 16 bits
representing
the 16
frequencies

Type: BitArray16 The target network may
be using only a subset
of channels for
advertisements by the
join routers

Classification: Static

Accessibility:
Read/write

Target_DL_Config 9 The DL
configuration
information for

Type: OctetString This attribute indicates
the various
configuration settings Classification: Static

62734/2CDV © IEC(E) – 675 –

Table 371 (continued)

Standard object type name: Device provisioning service object (DPSO)

Standard object type identifier: 106

Attribute name Attribute
identifier

Attribute
description

Attribute
data information

Description of
behavior of attribute

the device to
be provisioned
by this object

Accessibility: Read /
Write

for the DL of the device.
The structure of this
attribute is defined in
the DL_Config_Info
defined in Clause 9,
Table 102

Allow_Provisioning 10 A Boolean
value set to
indicate if a
device is
allowed to be
provisioned
again or not

Type: Boolean1 This flag is used to lock
the future state of a
provisioned device Classification: Static

Accessibility:
Read/write

Default value: TRUE

Allow_Default_Join 11 A Boolean
value set to
indicate if a
device
provisioned by
this object is
allowed to join
a network
using the
default keys

Type: Boolean1 The flag is used to force
the provisioned devices
to join a particular
target network and not
join to a default
network. Once
provisioned the device
should join the target
network

Classification: Static

Accessibility:
Read/write

Default value:
Not_allowed (0)

Enable_White_List_Array 12 A Boolean
value set to
indicate if the
provisioning
object is
designed to
set device
specific
provisioning
information

Type: Boolean1 If this flag is set the
DPSO is capable of
provisioning different
devices (based on the
EUI64Address) with
different provisioning
information. This can be
used to provision a
particular device, with a
particular security
manager and a
particular
Target_Join_Time, for
example

Classification: Static

Accessibility:
Read/write

Default value: FALSE

White_List_Array 13 An array of the
EUI addresses
that the DPSO
intends to
provision along
with the
corresponding
provisioning
information for
that device

Type: Array of
DPSOWhiteListTbl

This attribute shall be
used only if
Device_specific_provisi
oning_flag is set. It
contains the device
specific provisioning
information like device
specific join keys,
device specific target
security manager etc.

Classification: Static

Accessibility:
Read/write

White_List_Array_Meta 14 Metadata for
White List
Array
(Attribute 13)
 or
set of
White_List
(Attribute 1),
SYM_Key_List
(Attribute 2)

Type:
Metadata_attribute

Metadata containing a
count of the number of
entries and capacity
(the total number of
rows allowed) of
White_List_Array table
or set of White_List.
(Note 2)

Classification: Static

Accessibility: Read
only

DPSO_Alerts_AlertDescriptor 15 Used to
change the
priority of
DPSO alerts
that belong to
the security

Type : Alert report
descriptor

See description of
alerts in Table 374 and
Table 375

Classification: Static

Accessibility:
Read/write

 – 676 – 62734/2CDV © IEC(E)

Table 371 (continued)

Standard object type name: Device provisioning service object (DPSO)

Standard object type identifier: 106

Attribute name Attribute
identifier

Attribute
description

Attribute
data information

Description of
behavior of attribute

category;
these events
can also be
turned on or
turned off

Default value:
[FALSE, 6]

Current_UTC_Adjustment 16 The current
value of the
UTC
accumulated
leap second
adjustment

Type: Integer16 See Table 25 attribute 1
and footnote

Classification: Static

Accessibility:
Read/write

Default value: 35

NOTE 1 When a computed key expiry time results in the value 0xFFFF FFFF, it is increased (circularly) to the
modulo value 0x0000 0000, so that the value 0xFFFF FFFF can be used to designate a key that never
expires.

NOTE 2 If Enable_White_List_Array is enabled, this attribute specifies a count of the number of entries and
capacity for White_List_Array. If Enable_White_List_Array is disabled, this attribute specifies a count of the
number of entries and capacity for the set of White_List and SYM_Key_List

 17595
 Device provisioning service object structured attributes 13.10.217596

Table 372 describes the structured attributes of the DPSO. The White_List_Array is used 17597
when the PD has device-specific information, i.e., if the PD has symmetric join keys and other 17598
DPO attributes that are specific to a device. In this case, a structured array is required that 17599
stores the provisioning information indexed by the EUI64Address identifier of the DBP. This 17600
indexed array is described in Table 372. 17601

After the PD receives the Device_SYM_Key from the security manager, the PD shall not 17602
expose the Device_SYM_Key attribute externally. 17603

NOTE The interface between the PD and the security manager is beyond the scope of this standard. 17604

Table 372 – DPSOWhiteListTbl data structure 17605

Standard data type name: DPSOWhiteListTbl

Standard data type code: 440

Element name Element identifier Element scalar type

Device_EUI 1 Type: Array of EUI64Address

Classification: Static

Accessibility: Read only

Default value: [] -- empty

Device_Tag 2 Type: Array of VisibleString

Classification: Static

Accessibility: Read/write

Default value: [“”]

Symmetric_Key_List 3 Type: Array of SymmetricKey

Classification: Static

Accessibility: Read only

Default value: {K_global] -- 7.2.2.2

62734/2CDV © IEC(E) – 677 –

Standard data type name: DPSOWhiteListTbl

Standard data type code: 440

Element name Element identifier Element scalar type

Symmetric_Key_Expiry_Times 4 Type: Array of TAIRounded

Classification: Static

Accessibility: Read only

Default value: [0xFFFF FFFF] (Note 1)

Target_NWK_ID 5 Type: Unsigned16

Classification: Static

Accessibility: Read only

Default value: 0

Target_Join_Method 6 Type: Unsigned8

Classification: Static

Accessibility: Read only

Default value: 1

Named values:
0: symmetric key;
1: asymmetric key

Target_Security_Manager_EUI 7 Type: EUI64Address

Classification: Static

Accessibility: Read only

Target_System_Manager_Address 8 Type: IPv6Address

Classification: Static

Accessibility: Read only

Valid range: all with highest-bit reset

Target_Channel_List 9 Type: Array of Unsigned8

Classification: Static

Accessibility: Read only

Target_DL_Config 10 Type: OctetString (See DL_Config_Info for
format)

Classification: Static

Accessibility: Read only

Allow_Provisioning 11 Type: Boolean1

Classification: Static

Accessibility: Read/write

Default value: TRUE

Allow_Default_Join 12 Type: Boolean1

Classification: Static

Accessibility: Read/write

Default value: TRUE

NOTE 1 When a computed key expiry time results in the value 0xFFFF FFFF, it is increased (circularly) to the
modulo value 0x0000 0000, so that the value 0xFFFF FFFF can be used to designate a key that never
expires.

 17606
When not null, the Device_Tag specifies a Tag_Name assigned to the device by a user. This 17607
value shall be written to the Tag_Name attribute of the DMO (see 6.2.8). 17608

 – 678 – 62734/2CDV © IEC(E)

 Device provisioning service object methods 13.10.317609

Several methods are available for manipulating the DPSO. Standard methods such as read 17610
and write can be used for scalar or structured MIBs (SMIBs) in their entirety. The methods 17611
described herein are used to manipulate tables. These methods allow access to a particular 17612
row of a SMIB based on a unique key field. 17613

It is assumed that the tables have a unique key field, which may either be a single element or 17614
the concatenation of multiple elements. The key field is assumed to be the (concatenation of) 17615
the first (few) element(s) of the table. 17616

Table 373 describes the methods for manipulation of structured MIBs. These methods are 17617
based on the Read_Row, Write_Row and Delete_Row templates defined in Annex J. 17618

Table 373 – Array manipulation table 17619

Standard object type name(s): Device provisioning service object (DPSO)

Standard object type identifier: 106

Method name Method
ID

Method description

Setrow_WhiteListTbl 1 Method to set (either write or edit) the value of a single row of the white list
array. The method uses the Write_Row method template defined in
Annex J with the following arguments:

Attribute_ID :14 (White_List_Array)

Index 1: 1 (Device_EUI)

Getrow_WhiteListTbl 2 Method to get the value of a single row of the white list array. The method
uses the Read_Row method template defined in Annex J with the following
arguments:

Attribute_ID :14 (White_List_Array)

Index 1: 1 (Device_EUI)

Deleterow_WhiteListTbl 3 Method to delete the value of a single row of the white list array. The
method uses the Delete_Row method template defined in Annex J with the
following arguments:

Attribute_ID :14 (White_List_Array)

Index 1: 1 (Device_EUI)

 17620
 Device provisioning service object alerts 13.10.417621

Table 374 describes an alert to indicate a join attempt by a device that is not on the white list. 17622

62734/2CDV © IEC(E) – 679 –

Table 374 – DPSO alert to indicate join by a device not on the WhiteList 17623

Standard object type name(s): Device provisioning service object (DPSO)

Standard object type identifier: 106

Description of the alert: Alert to indicate provisioning request by a device not on white list

Alert class
(Enumerated:

alarm or event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type
(Enumerated:
based on alert

category)

Alert priority
(Enumerated:

high, med, low,
journal only)

Value data type Description of
value included

with alert

0 = Event 2 = Security 0 = Not_On_
Whitelist_Alert

6 = Medium Type:
EUI64Address

EUI64Address
of a device not
on the white list

 17624
Table 375 describes an alert to indicate that inadequate capability is available for a device to 17625
join the network. 17626

Table 375 – DPSO alert to indicate inadequate device join capability 17627

Standard object type name(s): Device provisioning service object (DPSO)

Standard object type identifier: 106

Description of the alert: Alert to indicate inadequate device join capability

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated:

device
diagnostic,

comm.
diagnostic,
security, or

process)

Alert type
(Enumerated:
based on alert

category)

Alert priority
(Enumerated:

high, med,
low, journal

only)

Value data
type

Description of
value included

with alert

0 = Event 2 = Security 1 =
Inadequate_Join_

Capability_Alert

6 = Medium Type: struct {
reason:
Unsigned8;
rejectedDevice:
EUI64Address}

The reason field
provides a
diagnostic code.

Named values:
1: Bad join key;
2: Expired join
key;
3: Authentication
failed.

The
rejectedDevice
field specifies the
EUI64Address of
the device that
attempted to join

 17628
 Summary of attributes that can be provisioned 13.10.517629

The following is a summary of the attributes that are provisioned by the PD so that a new 17630
device can join a target network. These attributes can be provisioned either using over-the-air 17631
(OTA) methods or OOB methods. The list of provisioned attributes includes the follow items. 17632
The full list is defined by Table 368, Table 371, and Table 372. 17633

• Trust-related information : 17634
– symmetric join key (K_join); 17635
– EUI64Address of the security manager; 17636
– network join method. 17637

 – 680 – 62734/2CDV © IEC(E)

• Network-related information: 17638
– network ID and bitmask; 17639
– IPv6Address of the system manager; 17640
– DL configuration (contains the superframes, link TsTemplate, channel information, 17641

etc., needed to join the target network). 17642

In addition, the configuration bits (attributes 6..10 of the DPO), describing the behavior of the 17643
device, can be set by the provisioning device. 17644

 Provisioning functions [INFORMATIVE] 13.1117645

 General 13.11.117646

The provisioning interface and procedures described herein do not describe a human-17647
machine interface (HMI). This standard does not specify a specific HMI, but does describe 17648
how such tools can be designed for provisioning devices conforming to this standard. In plant 17649
operations, a user may enter provisioning data and accept or reject devices wishing to be 17650
provisioned, using a handheld device or an interface at some central location. 17651

Provisioning scenarios in Clause 13 are examples of provisioning using methods described by 17652
this standard. 17653

 Examples of provisioning methods 13.11.217654

13.11.2.1 General 17655

Examples are discussed herein of how the described management objects and procedures 17656
can be used to provision a device. These examples use the following provisioning methods: 17657

• provisioning over-the-air using pre-installed join keys; 17658

• provisioning using out of band mechanisms; 17659

• provisioning over-the-air using asymmetric-key (e.g., PKI) certificates; 17660

• provisioning over-the-air using dual role advertisement routers; and 17661

• provisioning backbone devices. 17662

13.11.2.2 Provisioning over-the-air using pre-installed join keys 17663

The steps for provisioning a device with pre-installed trust information may include: 17664

a) The device arrives at the deployment site with pre-installed keys. The keys are symmetric 17665
join keys. 17666

b) A WhiteList of device addresses and their corresponding symmetric keys is installed in the 17667
security manager of the target network. The mechanism by which these keys are installed 17668
in the security manager is beyond the scope of this standard. The WhiteList and 17669
corresponding symmetric keys may be securely emailed, sent on CDs, hand delivered and 17670
keyboard entered, or delivered using any other appropriate tool. 17671

c) The target network may be using a subset of frequencies allowed and may be operating in 17672
the vicinity (i.e., in the interference range) of multiple distinct networks conforming to this 17673
standard. In this case, network-related information may be provisioned in the device. This 17674
information allows the device to respond to advertisements from target networks only, and 17675
also to listen for advertisements at the correct frequencies and at the correct time, thereby 17676
decreasing interference and decreasing join times. The network-related information may 17677
be provisioned using a PD via an out-of-band communication mechanism or via over-the-17678
air mechanisms. When not provisioned with specific target network information, the device 17679
may try all channels and attempt to join all networks in its vicinity. 17680

62734/2CDV © IEC(E) – 681 –

d) The device listens for advertisements from an advertising router in the target network. 17681
Once an advertisement is heard, the device sends a join request to the system/security 17682
manager of the target network. (The join process is described in 7.4.) 17683

e) The system/security manager checks its WhiteList and then checks to see if the join key of 17684
the device matches the join key for the device provided to the security manager. If the join 17685
keys match, the security manager provides a master key to the device that is a shared 17686
secret key between the security manager and the device. In addition, T-keys and D-keys 17687
are provided, and a contract is established with the new device to complete the join 17688
process. 17689

13.11.2.3 Provisioning using out-of-band mechanisms 17690

The steps for provisioning a device using an OOB provisioning device might include: 17691

a) A fresh device arrives at the user site. The device has default settings and no-pre-17692
installed keys. 17693

b) A PD (e.g., a handheld) obtains a list of symmetric keys generated by the security 17694
manager/system manager of the target network. The symmetric keys are time-bounded. 17695
The keys may be an array of keys or device-specific key/EUI64Address pairs at the 17696
discretion of the security manager/system manager. This information is stored in the PD. 17697

c) The handheld device, loaded with the symmetric keys, is brought near the new device or 17698
connected to the new device and an OOB connection is made between the handheld 17699
device and the DBP. The handheld device then uses the OOB communication interface to 17700
populate the attributes of the DPO in the new device. OOB communication may occur over 17701
infrared, physical connection, near field communication, or other means. 17702

d) The device is now ready to join the target network and listens for advertisements from the 17703
target network. The device responds to the advertisements by sending a join request 17704
through the advertising router to the target system manager. The security manager checks 17705
its WhiteList, if applicable. The security manager also checks the validity of the join key 17706
and verifies that the key has not expired. If the key is valid, the security manager accepts 17707
the join request and provides the device with a master key that is a shared secret key 17708
between the security manager and the device. In addition, T-keys and D-keys are also 17709
provided and a contract is established with the new device to complete the join process. 17710

13.11.2.4 Provisioning over-the-air using asymmetric key infrastructure certificates 17711

The steps for provisioning a device that has pre-installed trust information might include: 17712

a) The device arrives at the deployment site with an installed security module. The module 17713
contains a factory-signed certificate and a public/private key pair. A certificate authority 17714
(CA) has signed the issuer key of the factory. 17715

b) A WhiteList of device addresses and a list of asymmetric keys of certificate authorities are 17716
installed in the security manager of the target network. The mechanism by which these 17717
keys are installed in the security manager is beyond the scope of this standard. The 17718
WhiteList may be securely emailed, sent on CDs, hand delivered and entered via 17719
keyboard, or delivered using any other appropriate tool. 17720

c) The target network may be using a subset of the allowed channels, because it may be 17721
operating in the vicinity (i.e., within the interference range) of multiple networks. In such a 17722
case, network-related information may be provisioned to the device, enabling the device to 17723
respond to advertisements only from target networks and to listen for advertisements on 17724
the intended channels at appropriate times, thereby decreasing interference and 17725
increasing join rates. If the device is not provisioned with specific target network 17726
information, the device may try all channels and try to join all networks in its vicinity. The 17727
network-related information is provisioned using a provisioning device via an OOB 17728
communication mechanism or via over-the-air mechanisms. 17729

d) The device now listens for the advertisements from the advertising router in the target 17730
network. Once an advertisement is heard, the device shares its certificates with the 17731
security manager. With the CA’s public certificate, the security manager decodes the 17732
device certificate and checks that it is valid. The procedure also involves a challenge-17733

 – 682 – 62734/2CDV © IEC(E)

response mechanism on part of the system/security manager to confirm the identity of the 17734
joining device. The security manager checks its WhiteList to confirm that the device is 17735
intended to join the network. The confirmation step may involve a pop-up on a GUI of the 17736
security manager for manual confirmation by a user. Once confirmed, the security 17737
manager may issue T-keys for the device if the device wishes to join the network 17738
immediately. Alternatively, the security manager may issue symmetric join keys for the 17739
device to join the network at a later time. In either case, the issued keys are sent back to 17740
the device, encrypted with the public key of the device. 17741

13.11.2.5 Provisioning over-the-air using dual role advertisement routers 17742

The steps for provisioning a device over-the-air using a dual role advertisement router might 17743
include: 17744

a) The device arrives with factory default settings at a user site. The user site requires very 17745
low levels of security. 17746

b) Some of the advertisement routers at the user site have a dual role and function as 17747
provisioning devices. Using the open symmetric join key (K_join = K_open), the dual role 17748
advertisement router (i.e., the logical PD side of the dual role advertisement router) forms 17749
a mini-network with the new device and provides the new device with the network settings 17750
and join key for the target network. These settings, including the keys, are sent in the 17751
clear over-the-air. The dual role device may also inform the security manager of the target 17752
network to update its white list by adding the device that has just been provisioned. The 17753
dual role provisioning device may be operational in a place where the user is fairly 17754
confident that transmission of join keys over-the-air poses little risk. (This step poses 17755
similar risk as that in binding garage door openers to remote controls.) 17756

c) The DPO of the new device now has the trust information and network information to join 17757
the target network. It can use the advertisement routers (either the same dual role 17758
advertisement router that provisioned it, or some other advertisement router of the target 17759
network if the device was moved) and sends a join request to the system manager of the 17760
target network. 17761

d) The system manager of the target network accepts the join request and provides a 17762
contract to the new device. 17763

13.11.2.6 Provisioning backbone devices 17764

The steps for provisioning backbone devices might include: 17765

a) A fresh device arrives at the user site. The device has default settings and no pre-installed 17766
keys. 17767

b) A PD (e.g., a handheld or a device connected via the backbone interface to the DBP) 17768
obtains a list of symmetric keys generated by the security manager/ system manager of 17769
the target network. The symmetric keys are time-bounded. The keys may be an array of 17770
keys or device-specific key/EUI64Address pairs at the discretion of the security 17771
manager/system manager. This information is stored in the DPSO of the PD. 17772

c) The PD loaded with the symmetric keys is brought near the new device or connected to 17773
the new device and an OOB connection (which can, in this case, be the backbone) is 17774
made between the handheld device and the DBP. The PD then uses the OOB 17775
communication interface (most probably the backbone interface) to populate the attributes 17776
of the DPO in the new device. 17777

d) The device is now ready to join the target network. However, unlike a field device, a 17778
backbone device may not have a DL interface. For example, the device may be a gateway 17779
residing on the backbone. Alternatively, the backbone device may be the first advertising 17780
router connected to the network. For example, the device may be a backbone router with 17781
advertisement router functionality on the IEEE 802.15.4 physical layer interface. However, 17782
the device needs to be provisioned over the backbone and not through the PhL, since in 17783
this case there are no advertising routers that can forward their join request to the system 17784
manager. 17785

62734/2CDV © IEC(E) – 683 –

To talk to the system manager on the backbone without the help of an advertising router, the 17786
backbone router sends a join request to the system manager directly over the backbone; the 17787
backbone device can form the network header necessary to send this message. It can do so 17788
because it has been provisioned with the IPv6Address of the system manager 17789
(DPO.Target_System_Manager_Address). The remaining procedure at the system manager is 17790
same as that in 13.11.2.3. 17791

 – 684 – 62734/2CDV © IEC(E)

Annex A 17792
(informative) 17793

 17794
User layer / application profiles 17795

A.1 Overview 17796

Annex A describes what is meant by the terms “user layer” and “application profile”, and also 17797
describes how these terms relate to each other and to this standard. 17798

A.2 User layer 17799

The user layer is the term often applied to a non-existent eighth layer located atop the OSI 17800
seven-layer computer networking model. The intent of the user layer is to perform purpose-17801
specific functions not related to network communications. With respect to industrial 17802
automation, the term user layer is sometimes applied to describe non-network 17803
communication-related hardware and/or software, such as a field sensor or a process control 17804
function block. It is possible that such a user layer has information that is to be communicated 17805
over another network that conforms to ISO/IEC 7498, the OSI Basic Reference Model. 17806

The network communication to support the user layer function is initiated by the user layer 17807
employing the methods and protocols defined by the 7th layer of the OSI model, which is 17808
called the AL. 17809

This standard is intended to support a variety of industrial automation industry functions that 17810
are not directly related to network communication. As such, it defines a general purpose 17811
communication stack compatible with the OSI computer networking model and includes the 17812
definition of AL standard services. 17813

This standard also defines generic extensible standard objects, which may be used by 17814
industrial automation applications. This standard permits specialization of those standard 17815
objects, as well as definition of both new industry-specific standard objects and vendor-17816
defined objects. The definition of industry-specific standard objects is outside the scope of 17817
this standard; that is left to each industry organization that promotes use of this standard for 17818
their industry. This standard does not limit the scope of user-layer functionality relative to any 17819
non-network-related communication need. 17820

NOTE The ISA100 Wireless Compliance Institute (WCI) is an example of such an organization for the process 17821
automation industries. 17822

A.3 Application profile 17823

An application profile defines application-specific properties to be implemented in a manner 17824
that fosters inter-operability among communicating entities. An application profile may also 17825
define implementation policies, and may suggest implementation guidelines. Any user layer 17826
within a device may implement one or more application profiles. 17827

Some application-profile-specific properties may be mandatory for all instances of 17828
applications compliant with the particular application profile. Other application-profile-specific 17829
properties may be common practice properties that are construction options. All of these 17830
properties are represented as object attributes, so that communication of their values can 17831
occur through use of the basic application-layer services of this standard. 17832

The scope of an application profile is often deliberately limited, in order to promote greater 17833
adoption and use of the particular application profile. An example of such a limited application 17834
profile is an application profile for temperature sensors. 17835

62734/2CDV © IEC(E) – 685 –

In a loosely coupled system, the binding of devices that support application profiles with host 17836
system applications that employ those profiles usually is accomplished via the use of a device 17837
characterization file provided by the device vendor, the content of which often is based on a 17838
standard descriptive technology. 17839

An example of a standard that may be used to describe profile content is IEC 61804-3,), 17840
which may be used by industrial automation industry device vendors to create a file that may 17841
be used with appropriate host system companion tools, enabling the host to represent device 17842
functions, parameters (attributes) and their dependencies, graphical representations 17843
appropriate to data representation, as well as supported interactions with other devices. 17844

A device may implement an application profile or set of profiles and may use the native AL 17845
methods and protocols of this standard to communicate over wireless networks conforming to 17846
this standard. 17847

Because this standard is intended to support a variety of non-network communication-related 17848
industrial automation industry functions, this standard does not define or limit the definition or 17849
use of application profiles, languages or files that represent such devices, or tools used to 17850
represent such devices. The definition of industry-specific standard application profiles is 17851
therefore outside the scope of this standard. Instead it is delegated to those organizations 17852
that promote use of this standard in a particular automation industry. 17853

NOTE ISO and IEC mechanisms exist for proposing such industry-specific application profiles. 17854

 – 686 – 62734/2CDV © IEC(E)

Annex B 17855
(normative) 17856

 17857
Role profiles 17858

B.1 Introduction 17859

B.1.1 General 17860

A role profile is defined as the baseline capabilities, including any settings and configurations, 17861
that are required of a device to perform that role adequately. The roles are defined in 5.2.6.2, 17862
but are listed for reference here as system manager, security manager, backbone router, 17863
router, I/O, gateway, system time source, and provisioning device. 17864

Annex B provides the role profile pro forma for compliance to this standard. 17865

B.1.2 Purpose 17866

The role profile will define those device capabilities, such as settings and configurations, 17867
necessary to fulfill each specific role defined in 5.2.6.2. The purpose for this is to ensure that 17868
devices complying with this standard, including Annex B, can be interworkable or 17869
interoperable, as appropriate, within the domain covered by the role profile. 17870

B.1.3 System size 17871

The capabilities required of a device to implement a role may be dependent upon the number 17872
of devices in the intended system. The minimum system size is defined in Clause 5, but there 17873
is no maximum system size. To allow the requirements of Annex B to serve a broad range of 17874
system sizes, those requirements dependent upon system size shall use a formula to specify 17875
the minimum capability. For the purposes of Annex B, the number of system devices is 17876
referred to as NSD. 17877

B.1.4 Abbreviations and special symbols 17878

Abbreviations and symbols used include: 17879

• Notations for requirement status: 17880
M: mandatory; 17881
O: optional; 17882
O.n: optional, but support of at least one of the group of options labeled O.n is 17883

required; 17884
N/A: not applicable; 17885
X: prohibited. 17886

• Item: Conditional, status dependent upon the support marked for the item. 17887

For example, a status of FD1:O.1 and FD2:O.1 indicates that the status is optional but at least 17888
one of the features described in FD1 and FD2 is required. 17889

B.1.5 Role profiles 17890

Table B.1 describes the protocol layers and media requirements for all role profiles. Should a 17891
device be declared to support more than one role, that device shall fulfill minimum capabilities 17892
for each role declared. 17893

62734/2CDV © IEC(E) – 687 –

Table B.1 – Protocol layer device roles 17894

Item
number

Device role Status Reference Support

Protocol layers Medium

AL TL NL Type A Backbone N/A Yes No

DR1 I/O M M M M N/A 5.2.6.6

DR2 Router M M M M N/A 5.2.6.7

DR3 Backbone router M M M M

DR4: O

DR7: O

M 5.2.6.9

5.2.6.9

5.2.6.9

DR4 Gateway M M M DR2:O.1 DR3:O.1 5.2.6.10

DR5 System time source N/A N/A N/A N/A N/A 5.2.6.13

DR6 Provisioning M M M M N/A 5.2.6.8

DR7 System manager M M M DR2:O.2 DR3:O.2 5.2.6.11

DR8 Security manager N/A N/A N/A N/A N/A 5.2.6.12

 17895

B.2 System 17896

The protocol of WISN supports the ability to upgrade devices over-the-air, as shown in Table 17897
B.2. 17898

Table B.2 – Over-the-air upgrades 17899

Item number Role types affected Reference Status Support

N/A Yes No

OTAR1 I/O M

OTAR2 Router M

OTAR3 Backbone router N/A

OTAR4 Gateway N/A

OTAR5 System manager N/A

OTAR6 Provisioning device O

 17900

B.3 System manager 17901

The system manager allocates the ability for devices to communicate by generating, 17902
distributing, and maintaining contracts that define the resources necessary for that 17903
communication need. Since each device is required to store its contracts, the capacity of a 17904
device for contract storage is critical. While the necessary capacities of the I/O, router, and 17905
backbone router devices are dependent upon the number of application objects within those 17906
devices, the gateway and system manager are dependent upon the number of devices in the 17907
system, defined in Annex B as NSD. NSD does not include the system manager in its device 17908
count. 17909

Contracts require communication sessions for communication, established by the security 17910
manager in conjunction with the system manager. Multiple contracts, communicating to the 17911
same endpoints, may share a single session. Minimum capacities described here assume that 17912
each session is matched with a single contract, recognizing that more contracts may be 17913
needed depending on the nature of the device’s applications. 17914

 – 688 – 62734/2CDV © IEC(E)

B.4 Security manager 17915

The security manager establishes sessions between application processes. For example, 17916
when a device joins the network it needs a DMAP-SMAP session. The number of sessions 17917
that a device implementing a role shall be able to maintain is defined in Table B.3. The 17918
number of sessions supported by a system manager is dependent on NSD. The number of 17919
keys supported by a gateway is dependent on the number of Gateway-UAP connections that 17920
the gateway is designed to support, referred to as GUC in Table B.3. 17921

An I/O device is presumed to require capacity to support the following sessions: 17922

• A session between the device’s DMAP and the SMAP, established when the device joins 17923
the network. 17924

• A session between the device’s UAP and a first device such as a gateway. 17925

• A session between the device’s DMAP and the first device, for reporting process alerts. 17926

• A session between the device’s UAP and a second device’s UAP, such as for peer-to-peer 17927
communication. 17928

Table B.3 – Session support profiles 17929

Item
number

Role types
affected

Minimum
number

sessions
 supported

Comments Status Support

N/A Yes No

NCS1 I/O 4 DMAP-SMAP

UAP-Gateway

DMAP-Gateway

UAP-Peer

M

NCS2 Router 1 DMAP-SMAP M

NCS3 Backbone router 1 DMAP-SMAP M

NCS4 Gateway (2 x GUC) + 1 DMAP-SMAP

GUC x (Gateway-UAP)

GUC x (Gateway-DMAP)

M

NCS5 System manager NSD NSD x (SMAP-DMAP) M

 17930
The security manager assigns the security keys that are required for communication between 17931
devices. The number of keys that a device implementing a role shall be able to maintain is 17932
defined in Table B.4. The number of keys supported for a device depends on the number of 17933
sessions supported, with minimum capacities shown in Table B.3. In addition, each device 17934
needs capacity for a join key, a master key, and a D-key if a DL is included on the device. Key 17935
counts need to be doubled, because all keys except for the join key may be in the process of 17936
change-over. 17937

62734/2CDV © IEC(E) – 689 –

Table B.4 – Baseline profiles 17938

Item
number

Role types affected Minimum
number keys
 supported

Comments Reference Status Support

N/A Yes No

NKS1 I/O 1+((NCS1+2)×2) 7.2.2 M

NKS2 Router 1+((NCS2+2)
×2)

 7.2.2 M

NKS3 Backbone router 1+((NCS3+2)
×2)

 7.2.2 M

NKS4 Gateway 1+((NCS4+1)
×2)

Add 2 if
gateway has a
DL

7.2.2 M

NKS5 System manager (NCS5+1) ×2 Add 2 if SM
has a DL

NKS7 Security manager –N/A 7.2.2 N/A

 17939

B.5 Physical layer 17940

Since the PhL cites the specifications from IEEE 802.15.4:2011, the role capabilities for the 17941
PhL are referenced in IEEE 802.15.4:2011. 17942

Table B.5 describes the physical layer roles. 17943

Table B.5 – PhL roles 17944

Item
number

Item description IEEE 802.15.4:2011
reference

Status Support

N/A Yes No

PLR1 I/O The device is a reduced
function device

5.1 O.1

The device is a full function
device

5.1 O.1

PLR2 Router The device is a full function
device

5.1 M

PLR3 Backbone
router

The device is a full function
device

5.1 M

PLR4 Provisioning
device

The device is a full function
device

5.1 M

O.1: at least one option shall be selected.

 17945

B.6 Data-link layer 17946

B.6.1 General 17947

The DL affects four role profiles, as indicated in Table B.6. 17948

 – 690 – 62734/2CDV © IEC(E)

Table B.6 – DL required for listed roles 17949

Item number Role types Reference Status Support

N/A Yes No

DLR1 I/O 5.2.6.6 M

DLR2 Router 5.2.6.7 M

DLR3 Backbone router 5.2.6.9 M

DLR4 Provisioning 5.2.6.8 M

 17950
B.6.2 Role profiles 17951

B.6.2.1 General 17952

A DL role profile describes a set of minimum capabilities that shall be supported by every 17953
compliant device that implements the Type A field medium. For example, a device filling the 17954
router role shall support 8 neighbors. If a device meets all of the other requirements of a 17955
router, but supports only 4 neighbors, it is not compliant in its role as router. A device may 17956
exceed any of the requirements of its role, as long as all of the roles’ minimum requirements 17957
are met. 17958

The DL is configured through settings to the DL management object (DLMO) attributes, and 17959
the various roles are described as ranges of DLMO settings that a device can support. 17960

B.6.2.2 DL management object attributes 17961

A device’s level of support for a capability can be expressed in relation to a set of DLMO 17962
attributes and elements of those attributes. Each attribute and/or element whose support 17963
varies by role is included. 17964

If a number or range of numbers is listed, then a device filling this role shall support that 17965
number. If a single number is listed, it shall be interpreted as a minimum value unless 17966
indicated otherwise. For example, if a device shall support 3 neighbors, then it may support 4 17967
neighbors, but is non-compliant if it supports only 2 neighbors. An I/O device may be capable 17968
of routing even if it isn’t fully compliant with the router role; hence some capabilities related to 17969
routing are shown as optional (not prohibited) for an I/O device. 17970

Table B.7 describes simple DLMO attributes with a single element. (The remaining tables in 17971
Annex B address DLMO attributes containing multiple elements.) 17972

62734/2CDV © IEC(E) – 691 –

Table B.7 – Role profiles: General DLMO attributes 17973

Attribute Status Comments Support

I/O Router BBR N/A Yes No

ActScanHostFract O M M A non-mains device will not necessarily have the
energy to act as an active scanning host for an
extended period of time. See Table B.8

AdvJoinInfo
AdvSuperframe

O M M All routers and backbone routers can be
configured to send advertisements

TaiTime
TaiAdjust

M M M The DL is not necessarily the source of TaiTime
for a particular device, and there are cases
where a device’s DL might not be involved in time
propagation as a source or recipient. For
example, a BBR might remain time synchronized
through a backbone mechanism, and not be
involved in DL time propagation

ClockTimeout M M M A BBR may be configured as a clock recipient,
but this is not intended as typical

 17974
Table B.8 describes baseline role profiles for the dlmo.Device_Capability attribute. Those 17975
device elements not mentioned in Annex B shall be supported as described in Clause 9. 17976

Table B.8 – Role profiles: dlmo.Device_Capability 17977

Element
Status

Notes
Support

I/O Router BBR N/A Yes No

QueueCapacity 0 10 20 (Note 1)

ClockStability 100 10 10 (Note 2)

DLRoles 0000 xxx1 0000 xx1x 0000 x11x a)

AdvRate 0 (X) 6 6 b)

ListenRate 0 (X) 36 36 c)

TransmitRate 0 (X) 30 60 d)

NOTE 1 A system manager configures the DL queue only to the extent that the device is forwarding messages
on behalf of other devices. The DL queue in a BBR is an internal device matter for graphs that originate or
terminate in the device’s DL.

NOTE 2 ClockStability values, as multiples of 1 x 10-6 are maximum allowed values over any continuous 30 s
interval under industrial operating conditions. While low-cost I/O devices may have clocks with a short-term
stability of only 100 x 10-6, industrial I/O devices in general should have better stability. This standard was
designed assuming that I/O devices have clocks with a short-term stability of 25 x 10-6 or better, and it is
anticipated that most application profiles will be constrained accordingly.

a) Bits indicate all of the DL roles that are supported by the device. Note that BBR is required to act as a
router, such as for peer-to-peer messaging within a D-subnet.

b) All devices serving router and backbone router roles shall have sufficient resources to transmit an
advertisement every 10 s (6 DPDUs per minute), on average. See 9.1.17.

c) All devices serving router and backbone roles shall have sufficient resources to operate their receivers for
36 s per hour (1%), on average. A mains powered BBR will normally be capable of running its receiver
continuously, but some BBR classes (such as wireless bridges) might be energy constrained

d) All devices serving router and backbone roles shall have sufficient resources to transmit the specified
number of DSDUs per minute. See 9.1.17.

 17978
Table B.9 describes baseline role profiles for the dlmo.Ch attribute. Those device elements 17979
not mentioned in Annex B shall be supported as described in Clause 9. 17980

 – 692 – 62734/2CDV © IEC(E)

Table B.9 – Role profiles: dlmo.Ch (channel-hopping) 17981

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

10 10 10 Five default channel-hopping sequences, numbered
1..5, are defined by this standard. A device can be
provisioned or configured with up to 5 additional
channel-hopping sequences

MaxRowID
(metadata)

127 127 127 One octet

 17982
Table B.10 describes baseline role profiles for the dlmo.TsTemplate attribute. Those device 17983
elements not mentioned in Annex B shall be supported as described in Clause 9. 17984

Table B.10 – Role profiles: dlmo.TsTemplate 17985

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

8 10 10 Three default timeslot templates, numbered 1..3,
are defined by this standard. These are included
in the capacity

MaxRowID
(metadata)

127 127 127 One octet

 17986
Table B.11 describes baseline role profiles for the dlmo.Neighbor attribute. Those device 17987
elements not mentioned in Annex B shall be supported as described in Clause 9. 17988

Table B.11 – Role profiles: dlmo.Neighbor 17989

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

2 8 32 An I/O shall support at least two neighbors, so
that it can maintain two active DL routes for
reporting. A router adds additional capacity to
support routing on behalf of neighbors

MaxRowID
(metadata)

215 215 215 6LoWPAN unicast address limited to 215

GroupCode O M M GroupCode enables links to be used for
multiple neighbors

ExtendGraph O O O Automatic extension of graphs is required for
all devices. Support for the ExtendGraph field
is a construction option that provides a finer
degree of control over graph extensions

 17990
Table B.12 describes baseline role profiles for the dlmo.Diagnostic attribute. Those device 17991
elements not mentioned in Annex B shall be supported as described in Clause 9. 17992

62734/2CDV © IEC(E) – 693 –

Table B.12 – Role profiles: dlmo.NeighborDiag 17993

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

2×15
+1×9

3×15
+2×9

3×15
+2×9

Diagnostic capacity (metadata) is measured in
octets.

Summary diagnostics, in Table 188, involve 15
octets of storage in the worst case. Actual
storage and transmission may be more
compact. Summary diagnostics are intended
to be maintained on the “publication” side of a
given link, to collect diagnostics from the
direction where more traffic flows. Summary
diagnostics include a baseline clock
diagnostic (ClockSigma).

More detailed clock diagnostics (Table 190)
involve 9 octets of storage in the worst case.
A summary clock diagnostic is provided along
with the general diagnostic. Capacity is
provided to collect these detailed clock
diagnostics on an as-needed basis

MaxRowID
(metadata)

215 215 215 6LoWPAN unicast address limited to 215

 17994
Table B.13 describes baseline role profiles for the dlmo.Superframe attribute. Those device 17995
elements not mentioned in Annex B shall be supported as described in Clause 9. 17996

Table B.13 – Role profiles: dlmo.Superframe 17997

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

3 5 10 Default superframes for discovery of
provisioning device are included in this count

MaxRowID
(metadata)

127 127 127 One octet

AlwaysHop O O O Support for this feature is a construction option

 17998
Table B.14 describes baseline role profiles for the dlmo.Graph attribute. Those device 17999
elements not mentioned in Annex B shall be supported as described in Clause 9. 18000

Table B.14 – Role profiles: dlmo.Graph 18001

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

2 8 16

MaxRowID
(metadata)

127 127 127 One octet

 18002
Table B.15 describes baseline role profiles for the dlmo.Link attribute. Those device elements 18003
not mentioned in Annex B shall be supported as described in Clause 9. 18004

 – 694 – 62734/2CDV © IEC(E)

Table B.15 – Role profiles: dlmo.Link 18005

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

9 15 30 Default links for discovery of
provisioning device are included in
this count

MaxRowID
(metadata)

127 127 127 One octet

Discovery 0, 3 0, 1, 2, 3 0, 1, 2 Discovery refers to bits 3/2 in Table
182. A system manager may be
configured to discover routing-
capable neighbors through active or
passive scanning for advertisements

JoinResponse O M M

NeighborType=2 O M M Support of neighbor groups is
mandatory for routing devices

 18006
Table B.16 describes baseline role profiles for the dlmo.Route attribute. Those device 18007
elements not mentioned in Annex B shall be supported as described in Clause 9. 18008

Table B.16 – Role profiles: dlmo.Route 18009

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

3 1 64 I/O device has capacity for routing to the system
manager, a first device, and a second device.

Router needs only a route to the system
manager.

BBR needs at least one route (outbound route
lookup) for each device in its sphere of influence,
even if those routes are identical to each other

MaxRowID
(metadata)

127 127 127 One octet

 18010
Table B.17 describes baseline role profiles for the dlmo.Queue_Priority attribute. Those 18011
device elements not mentioned in Annex B shall be supported as described in Clause 9. 18012

Table B.17 – Role profiles: dlmo.Queue_Priority 18013

Element Status Comments Support

I/O Router BBR N/A Yes No

Capacity
(metadata)

O 2 2

MaxRowID
(metadata)

127 127 127 One octet

 18014

B.7 Network layer 18015

Table B.18 describes role profiles for routing table sizes. 18016

62734/2CDV © IEC(E) – 695 –

Table B.18 – Routing table size 18017

Item
number

Role types
affected

Minimum number
entries supported

Comments Reference Status Support

N/A Yes No

RTS1 I/O 0 M

RTS2 Router 0 M

RTS3 Backbone router 15 M

 18018
Table B.19 describes role profiles for address table sizes. 18019

Table B.19 – Address table size 18020

Item
number

Role types
affected

Minimum number
entries supported

Comments Reference Status Support

N/A Yes No

ATS1 I/O 4 M

ATS2 Router 3 M

ATS3 Backbone router 15 M

 18021
B.7.1 Transport layer 18022

Table B.20 describes role profiles for port support sizes. 18023

Table B.20 – Port support size 18024

Item
number

Role types
affected

Minimum number
entries supported

Comments Reference Status Support

N/A Yes No

PSS1 I/O 2 M

PSS2 Router 1 M

PSS3 Backbone router 1 M

 18025

B.8 Application layer 18026

Table B.21 describes the minimum number of APs per role. 18027

Table B.21 – APs 18028

Item
number

Role types
affected

Minimum number
APs supported

Comments Reference Status Support

N/A Yes No

UAPO1 I/O 2 Clause 6,12.17 M

UAP02 Router 1 Clause 6 M

UAP03 Backbone router 1 Clause 6 M

UAP04 Gateway 2 Clause 6,
Annex U

M

NOTE The maximum number of contained objects supported includes the UAPMO.

 18029

 – 696 – 62734/2CDV © IEC(E)

B.9 Provisioning 18030

Table B.22 provides the role profile devices implementing the I/O, router, gateway, or 18031
backbone router roles, all devices with a Type A field medium. 18032

Table B.22 – Role profiles: I/O, routers, gateways, and backbone routers 18033

Item
number

Feature Reference Status Range Comments Support

N/A Yes No

DBPR-1 Joining a
provisioning
network using
K_global

13.6 M See 7.2.2.2

DBPR -2 Joining a
provisioning
network using
K_open

13.6 O Default value of K_join =
K_open. Disabled once S is
overwritten. Enabled again
only if device reset to factory
defaults

 18034

B.10 Gateway (informative) 18035

Table B.23 provides a notional role profile for a gateway. 18036

Table B.23 – Role profile: Gateway 18037

Item
number

Feature Reference Status Comments Support

N/A Yes No

GWRP1 Native access U.3.1.5 O.1 Allows native
service access only

GWRP2 Interworkable tunnel
mechanism

U.3.1.5 O.1 Allows tunneled
access only

 18038
Table B.24 provides the notional role profile for gateway native access. 18039

Table B.24 – Role profile: Gateway native access 18040

Item
number

Feature Reference Status Comments Support

N/A Yes No

GWRP1.1 Min IFOs supported U.3.1.5 1

GWRP1.2 Buffered message
behavior

U.3.4 Constant, static,
dynamic, non-
cacheable.

GWRP1.3 Min devices Table 373 NSD NSD ≥ 5

GWRP1.4 Min leases Table 373 2 x NSD - 3 NSD ≥ 5

 18041
Table B.25 provides the notional role profile for a gateway interworkable tunnel mechanism. 18042

62734/2CDV © IEC(E) – 697 –

Table B.25 – Role profile: Gateway interworkable tunnel mechanism 18043

Item number Feature Reference Status Comments Support

N/A Yes No

GWRP2.1 Min TUNs supported U.3.1.5 GD x AD + 1 GD ≥ 1
AD ≥ 5

GWRP2.1.1 Supports a foreign
protocol

U.3.1.5 Annex O

GWRP2.1.2 2-part tunneling U.3.1.5

GWRP2.1.3 TUN objects with Array
of Tunnel endpoints
attributes with multiple
address elements

U.3.1.5 1

GWRP2.1.3.1 Number of elements in
TUN with multiple
address elements

U.3.1.5 A A ≥ 5

GWRP2.2 Min devices Table 373 A A ≥ 5

GWRP2.3 Min leases Table 373 2 x A A ≥ 5

Key:

FNG = number of foreign nodes behind gateway.

FNA = number of foreign nodes behind adapter(s).

A = number of adapters.

 18044

 – 698 – 62734/2CDV © IEC(E)

Annex C 18045
(informative) 18046

 18047
Background information 18048

C.1 Industrial needs 18049

The wireless needs for industrial applications are significantly different than those required for 18050
residential, commercial, or military applications. These differences stem from the unique 18051
industrial ranking of priorities of characteristics such as device cost, system cost, lifecycle 18052
cost, reliability, maintainability, consistency, robustness, extensibility, security, coexistence, 18053
regulatory restrictions, interconnectability, and (within the relevant domains) interworkability 18054
or interoperability. 18055

ISA100 committee members collected and analyzed more than 500 use cases to define more 18056
completely the wireless communication needs of the industrial sector. The major conclusions 18057
of this effort were: 18058

• Opportunity: Non-existent wireless sensing is an opportunity for end users, vendors, and 18059
emerging standards. 18060

• Interworkable: Since multi-instrument-vendor facilities dominate the industrial 18061
environment, wireless standards should be of high value. 18062

• Interoperable: Devices that target the same broad application domain (e.g., process 18063
control or asset management) should be interoperable with respect to basic functionality 18064
needed for cooperative action in that application domain. 18065

• Integration: Multiple communication paths between devices are needed, especially to 18066
distributed control system (DCS) instruments. 18067

• Applications: Applications such as monitoring/alerting are of greatest immediate interest 18068
since they constitute the largest potential use of wireless devices. 18069

• Reliability and security: Critical factors for emerging standards and vendors. 18070

• Power: Battery life expectations will vary due to application, environment, cost constraints, 18071
etc. Some devices will have mains power, while others will be powered by batteries or will 18072
scavenge energy from the environment. 18073

C.2 Usage classes 18074

C.2.1 General 18075

While there are many techniques that may be used to categorize the communications needs 18076
of industrial applications, this standard uses classes based upon usage. Analysis of the 18077
patterns of intended use of inter-device industrial wireless communications resulted in a 18078
partitioning of such communications into six classes. These classes are summarized in Table 18079
C.1. 18080

62734/2CDV © IEC(E) – 699 –

Table C.1 – Usage classes 18081

Safety Class 0: Emergency action Always critical

Control Class 1: Closed loop regulatory control Often critical

Class 2: Closed loop supervisory control Usually non-critical

Class 3: Open loop control Human in the loop

Monitoring Class 4: Alerting Short-term operational consequence (e.g.,
event-based maintenance)

Class 5: Logging and downloading / uploading No immediate operational consequence (e.g.,
history collection, sequence-of-events,
preventive maintenance)

NOTE Batch levels 3 and 4 could be class 2, class 1 or even class 0, depending on function. Batch levels are
defined in IEC 61512-1, where L3 = unit and L4 = process cell.

 18082
C.2.2 Class examples 18083

• Class 0: Emergency action (always critical) 18084
Examples include: 18085
– safety interlock; 18086
– emergency shutdown; 18087
– automatic fire control. 18088

• Class 1: Closed loop regulatory control (often critical) 18089
Examples include: 18090
– direct control of primary actuators (e.g., field device to host connection availability on 18091

demand of at least 99,99%, with link outages > 500 ms intolerable, with demand rates 18092
of 0,2 Hz or greater); 18093

– high-frequency cascade loops. 18094

• Class 2: Closed loop supervisory control (usually non-critical) 18095
Examples include: 18096
– low-frequency cascade loops; 18097
– multivariable controls; 18098
– optimizers. 18099

• Class 3: Open loop control (human in the loop) 18100
Examples include: 18101
– operator manually initiates a flare and watches the flare; 18102
– guard remotely opens a security gate; 18103
– operator performs manual pump/valve adjustment. 18104

• Class 4: Alerting – Short-term operational consequence 18105
Examples include: 18106
– event-based maintenance; 18107
– marginal bearing temp results in technician sent to field; 18108
– battery low indicator for a device results in technician sent to change battery; 18109
– asset tracking. 18110

• Class 5: Logging – data/messages with no immediate operational consequence 18111
Examples include: 18112
– history collection; 18113
– preventive maintenance rounds; 18114

 – 700 – 62734/2CDV © IEC(E)

– sequence of events (SOE) uploading. 18115

NOTE SOE uses lossless communication, such as file transfer, rather than timely communication such as used by 18116
control messaging. 18117

C.2.3 Other uploading and downloading alarms (human or automated action) 18118

Alarm examples include: 18119

• Class 0: leak detector for radiation or fatally toxic gas, automated response (e.g., 18120
automated containment response). 18121

• Class 1: high-impact process condition, automated response (e.g., automated shutdown of 18122
reaction). 18123

• Class 2: automated response to process condition (e.g., automated flow diversion). 18124

• Class 3: process condition with manually-initiated operational response (e.g., decide 18125
whether to divert flow to a parallel reactor). 18126

• Class 4: equipment condition with short-time-scale maintenance response (e.g., send 18127
technician to field). 18128

• Class 5: equipment condition with long-time-scale maintenance action (e.g., order spare 18129
parts). 18130

C.3 The Open Systems Interconnection Basic Reference Model 18131

C.3.1 Overview 18132

This standard defines the protocol suite of the wireless network. A protocol suite is a 18133
particular software implementation of a networking protocol suite. In practical implementation, 18134
protocol suites are often divided into layers such as those defined by the Open Systems 18135
Interconnection Basic Reference Model ISO/IEC 7498-1. The format in this standard is based 18136
upon this reference model (see Figure C.1), implementing five of the basic reference model’s 18137
seven layers. 18138

NOTE It is useful to realize that this is a virtual model, which therefore imposes no actual requirements on 18139
implementations, or even specifications. 18140

 18141

Figure C.1 – OSI Basic Reference Model 18142

The upper layer, application (AL), of the Basic Reference Model of this standard provides 18143
local functionality for one or more associated UAPs. 18144

62734/2CDV © IEC(E) – 701 –

The four lower layers, transport (TL), network (NL), data-link (DL), and physical (PhL), are 18145
devoted to data communication. Each has the capability of multiplexing and demultiplexing, 18146
and of splitting and merging information flows from adjacent layers. In other words, the 18147
messaging relationships between an AL entity and a TL entity, or between a TL entity and an 18148
NL entity, or between an NL entity and a DL entity, or between a DL entity and a PhL entity, 18149
do not have to be one-to-one. 18150

These lower layers also have the following abilities to: 18151

• to sequence service data units (SDUs) to maintain the order of original presentation; 18152

• to do one or more of the following 18153
– segment or reassemble SDUs into protocol data units (PDUs), 18154
– block or deblock SDUs into protocol data units (PDUs), and 18155
– concatenate or separate PDUs, 18156
so that they are sized more appropriately for the conveyance capabilities of the lower 18157
layer; 18158

• to split PDUs for conveyance over multiple lower layer routes, or to recombine such PDUs 18159
on receipt before forwarding on a higher-layer route; and 18160

• to acknowledge receipt of PDUs as a form of error control. 18161

C.3.2 Application layer 18162

The AL is the layer that interfaces directly to (and conceptually includes) UAPs, managing 18163
communications with other UAPs under the guidance of the local management UAP. A UAP 18164
may perform an individual function or any combination of functions. UAPs may be used, for 18165
example, to: 18166

• handle input and/or output hardware; 18167

• distribute communications to a set of co-resident UAPs within a device (proxy function); 18168

• support tunneling of a non-native (e.g., control system legacy) protocol compatible with 18169
the network environment described in this standard; and/or 18170

• perform a computational function. 18171

The AL is usually composed of one or more UAPs that share common service elements. 18172

The primary tasks of an AL entity are to provide: 18173

• a place in the architecture of this standard for UAPs; 18174

• the means by which UAPs manage communications with UAPs for other devices through 18175
the protocol suite, including: 18176
– identification of intended communications partners (e.g., by name, by address, by 18177

description, etc.), 18178
– agreement on security aspects (e.g., authentication, data integrity), 18179
– determination of acceptable quality of service (e.g., priority, time windows for control 18180

messaging, acceptability of out-of-order message delivery, acceptability of message 18181
delivery in partial increments, etc.), 18182

– agreement on responsibility for error recovery, 18183
– identification of abstract syntaxes, and 18184
– synchronization of cooperating UAPs; 18185

• the means by which UAPs can inform the associated application entity of needed resource 18186
requirements, including those applicable to message buffering: 18187
– expected and maximum message sizes, and 18188

 – 702 – 62734/2CDV © IEC(E)

– maximum expected burstiness of message transmission and reception or how many 18189
messages can be sent or arrive within a short amount of time as compared to the 18190
average periodicity of messages; and 18191

• any necessary communication functions that are not already performed by the lower 18192
layers. 18193

C.3.3 Transport layer 18194

The TL is the highest layer at which communicating applications are addressable. The primary 18195
tasks of a TL entity are: 18196

• to provide addressing of UAPs via selection of a specific associated AL entity; 18197

• to establish end-to-end messaging paths from one UAP to one or more other UAPs via 18198
their associated AL entities, where those processes are usually in separate devices; 18199

• to convey and regulate the flow of messages between or among those UAPs; and 18200

• to terminate those messaging paths when appropriate. 18201

C.3.4 Network layer 18202

The NL is the highest layer at which communicating devices are addressable. It is the lowest 18203
layer with more than local scope, which forwards messages between one entity group and 18204
others, or discards the messages. The primary tasks of an NL entity are: 18205

• to provide network-wide addressing of devices; 18206

• to relay messages (NPDUs) between entities (e.g., a router) via D-subnets, usually 18207
changing source and destination DL entity addresses associated with the message 18208
envelopes (DPDUs) in the process, or to discard the NPDUs; and 18209

• to provide segmentation and reassembly of messages, as appropriate, to match the 18210
capabilities of the D-subnets on which messages are being forwarded. 18211

NOTE The NL is the OSI layer where endpoint device addressing and routing occur. Lower layer relays are able 18212
to forward messages within a single addressing domain without message modification, but are unable to readdress 18213
messages or span addressing domains. Network-wide device addresses are IPv6Addresses. 18214

C.3.5 Data-link layer 18215

The DL is the lowest information-centric layer, which coordinates interacting PhL entities and 18216
provides basic low-level messaging among DL entities. The primary tasks of a DL entity are: 18217

• to provide link-local addressing of peer-DL entities; 18218

• to convey messages (DPDUs) from one DL entity to all others whose PhL entities are 18219
correspondents (e.g., to all PhL entities of the local link), or to discard the DPDUs; 18220

• to manage use of the PhL; 18221

• to provide low-level message addressing, message timing and message integrity checks; 18222

• to provide low-level detection of and recovery from message loss (e.g., immediate 18223
acknowledgment; retry if no acknowledgment); and 18224

• optionally, to relay DPDUs between DL entities (e.g., a bridge). 18225

NOTE The DL is the OSI layer that manages and compensates for the specific characteristics of the selected 18226
physical communications technology. It provides only local addressing, and forwards messages within the local 18227
addressing domain without readdressing. It does not modify message addresses. DL16Addresses have only local 18228
scope, so it is possible that the same DL16Addresses are duplicated in other local links. 18229

C.3.6 Physical layer 18230

The PhL is the lowest layer of the OSI model and the only layer that deals with real-world 18231
physics. All other layers deal with abstract information, ultimately represented as bits; the PhL 18232
is concerned with physical signals (sometimes referred to as baud or chips). The primary 18233
tasks of a PhLE are: 18234

62734/2CDV © IEC(E) – 703 –

• to code bits, either singly or in multi-bit groups, into physical signals; 18235

• to convey those signals from one physical location to another; 18236

• to decode those signals into single-bit or multi-bit groups, possibly with error correction; 18237

• to take direction from the associated DLE with respect to physical channel setup, physical 18238
receiver addressing and other aspects of the communications channel and coding; 18239

• to convey to the locally-associated DLE information about the state of the PhLE, the 18240
channel and the last set of received signals; and 18241

• optionally, to relay PhPDUs between PhLEs (e.g., a repeater). 18242

 – 704 – 62734/2CDV © IEC(E)

Annex D 18243
(normative) 18244

 18245
Configuration defaults 18246

D.1 General 18247

Annex D summarizes the default settings for configuration. 18248

D.2 System management 18249

Table D.1 lists the system management configuration defaults. 18250

Table D.1 – System management configuration defaults 18251

Name Initial default value Reference

Confirmation_Timeout_Device_Diagnostics 10 Table 7

Alerts_Disable_Device_Diagnostics 0 Table 7

Confirmation_Timeout_Comm_Diagnostics 10 Table 7

Alerts_Disable_Comm_Diagnostics 0 Table 7

Confirmation_Timeout_Security 10 Table 7

Alerts_Disable_Security 0 Table 7

Confirmation_Timeout_Process 10 Table 7

Alerts_Disable_Process 0 Table 7

Comm_Diagnostics_Alarm_Recovery_AlertDescriptor Default value: [FALSE, 3] Table 7

Security_Alarm_Recovery_AlertDescriptor Default value: [FALSE, 3] Table 7

Device_Diagnostics_Alarm_Recovery_AlertDescriptor Default value: [FALSE, 3] Table 7

Process_Alarm_Recovery_AlertDescriptor Default value: [FALSE, 3] Table 7

DL_Alias_16_Bit 0 Table 10

Network_Address_128_Bit 0 Table 10

Device_Power_Status_Check_AlertDescriptor Default value: [FALSE, 8] Table 10

DMAP_State 1 Table 10

Join_Command 0 Table 10

Static_Revision_Level 0 Table 10

Restart_Count 0 Table 10

Uptime 0 Table 10

TAI_Time 0 Table 10

Comm_SW_Major_Version 0 Table 10

Comm_SW_Minor_Version 0 Table 10

System_Manager_128_Bit_Address 0 Table 10

System_Manager_EUI64 0 Table 10

System_Manager_DL_Alias_16_Bit 0 Table 10

Contract_Request_Timeout 30 Table 10

Max_ClientServer_Retries 3 Table 10

Max_Retry_Timeout_Interval 30 Table 10

DMAP_Objects_Count 1 Table 10

Warm_Restart_Attempts_Timeout 60 Table 10

62734/2CDV © IEC(E) – 705 –

Name Initial default value Reference

Current_UTC_Adjustment 35 Table 25

Next_UTC_Adjustment_Time See Table 25 Table 25

Next_UTC_Adjustment 35 Table 25

 18252

D.3 Security 18253

Table D.2 lists the security configuration defaults. 18254

Table D.2 – Security configuration defaults 18255

Name Initial default value Reference

Security_Level 1 Table 87

Protocol_Version 1 Table 92

DL_Security_Level 1 Table 92

Transport_Security_Level 1 Table 92

Join_Timeout 60 s Table 92

MPDU_MIC_Failure_Limit 5 Table 92

MPDU_MIC_Failure_Time_Unit 60 s Table 92

TPDU_MIC_Failure_Limit 5 Table 92

TPDU_MIC_Failure_Time_Unit 5 Table 92

DSMO_KEY_Failure_Limit 1 Table 92

DSMO_KEY_Failure_Time_Unit 1 Table 92

Security_MPDU_Fail_Rate_Exceeded_AlertDescriptor [FALSE, 6] Table 92

Security_TPDU_Fail_Rate_Exceeded_AlertDescriptor [FALSE, 6] Table 92

Security_Key_Update_Fail_Rate_Exceeded_AlertDescriptor [FALSE, 6] Table 92

pduMaxAge 510 Table 92

SoftLifeTime 50 Table 93

DSMO alert type 0 = Security_MPDU_Fail_Rate_Exceeded 0 Table 97

DSMO alert type 1 = Security_TPDU_Fail_Rate_Exceeded 0 Table 97

DSMO alert type 2 =
Security_Key_Update_Fail_Rate_Exceeded

0 Table 97

 18256

D.4 Data-link layer 18257

Table D.3 lists the DLE configuration defaults. 18258

 – 706 – 62734/2CDV © IEC(E)

Table D.3 – DLE configuration defaults 18259

Name Initial default
value

Reference

ActScanHostFract 0 Table 141

AdvJoinInfo Null Table 141

AdvSuperframe 0 Table 141

SubnetID 0 Table 141

SolicTemplate Null Table 141

AdvFilter See 9.4.2.20 Table 141

SolicFilter See 9.4.2.20 Table 141

TaiAdjust Null Table 141

MaxBackoffExp 5 Table 141

MaxDsduSize 96 Table 141

MaxLifetime 120 (30 s) Table 141

NackBackoffDur 60 (15 s) Table 141

LinkPriorityXmit 8 Table 141

LinkPriorityRcv 0 Table 141

EnergyDesign See 9.4.2.22 Table 141

DeviceCapability See 9.4.2.23 Table 141

IdleChannels 0 Table 141

ClockExpire See 9.4.2.1 Table 141

ClockStale 45 Table 141

RadioSilence 600 Table 141

RadioSleep 0 Table 141

RadioTransmitPower See 9.4.2.1 Table 141

CountryCode 0x3C00 Table 141

Candidates Null Table 141

DiscoveryAlert 60 Table 141

SmoothFactors See Table 153 Table 141

QueuePriority N=0 Table 141

Ch See 9.4.3.2 Table 141

TsTemplate See 9.4.3.3 Table 141

Neighbor Empty Table 141

Superframe Empty Table 141

Graph Empty Table 141

Link Empty Table 141

Route Empty Table 141

NeighborDiag Empty Table 141

ChannelDiag See 9.4.2.27 Table 141

Transaction receiver template parameters See Table 165 Table 165

Transaction initiator template parameters See Table 166 Table 166

Transaction receiver template for scanning
parameters

See Table 167 Table 167

 18260

62734/2CDV © IEC(E) – 707 –

D.5 Network layer 18261

Table D.4 lists the NLE configuration defaults. 18262

Table D.4 – NLE configuration defaults 18263

Name Initial default value Reference

Enable_Default_Route FALSE Table 206

Max_NSDU_size 70 Table 206

Frag_Reassembly_Timeout 60 Table 206

Frag_Datagram_Tag uniform random Table 206

DroppedNPDUAlertDescriptor [TRUE, 7] Table 206

Source_Address* 0 Table 207

Destination_Address 0 Table 207

Contract_Priority 00 Table 207

Include_Contract_Flag FALSE Table 207

NWK_HopLimit 64 Table 208

Outgoing_Interface 0 Table 208

 18264

D.6 Transport layer 18265

Table D.5 lists the TLE configuration defaults. 18266

Table D.5 – TLE configuration defaults 18267

Name Initial default value Reference

MaxNbOfPorts 15 Table 229

TPDUin 0 Table 229

TPDUinRejected 0 Table 229

TSDUout 0 Table 229

TSDUin 0 Table 229

TSDUinRejected 0 Table 229

TPDUout 0 Table 229

IllegalUseOfPortAlertDescriptor [TRUE, 8] -- medium) Table 229

TPDUonUnregisteredPortAlertDescriptor [TRUE, 4] -- low Table 229

TPDUoutOfSecurityPoliciesAlertDescriptor [TRUE, 2] -- journal Table 229

 18268

D.7 Application layer 18269

Table D.6 lists the ALE configuration defaults. 18270

 – 708 – 62734/2CDV © IEC(E)

Table D.6 – ALE configuration defaults 18271

Name Initial default value Reference

ObjectIdentifier 0 Table 240

UAP_ID 0=N/A Table 240

UAP_TL_Port 0=N/A Table 240

State Active Table 240

Command 0=None Table 240

MaxRetries 3 Table 240

Number of unscheduled communication
correspondents

0=N/A Table 240

Number of objects in the UAP including
this UAPMO

1 Table 240

Static_Revision_Level 0 Table 240

Categories 0 Table 243

Errors 0 Table 243

State 0=Idle Table 246

MaxBlockSize 1..(MaxNPDUsize + Max TL header size -
max(sizeof (additional coding of AL UploadData
service request), additional coding of sizeof(AL
DownloadData service response))

Table 246

MaxDownloadSize 0 Table 246

MaxUploadSize 0 Table 246

DownloadPrepTime 0 Table 246

DownloadActivationTime 0 Table 246

UploadPrepTime 0 Table 246

UploadProcessingTime 0 Table 246

DownloadProcessingTime 0 Table 246

CutoverTime 0 Table 246

LastBlockDownloaded 0 Table 246

LastBlockUploaded 0 Table 246

ErrorCode 0 =(noError) Table 246

Revision 0 Table 256

CommunicationEndpoint The configured connection endpoint valid
element indicates not configured (i.e., endpoint
is not valid)

Table 256

MaximumItemsPublishable Local matter Table 256

NumberItemsPublishing 0 Table 256

Array of ObjectAttributeIndexAndSize Element size is 0 Table 256

Concentrator ContentRevision 0 Table 258

CommunicationEndpoint The configured connection endpoint valid
element indicates not configured (i.e., endpoint
is not valid)

Table 258

MaximumItemsSubscribing Local matter Table 258

NumItemsSubscribing 0 Table 258

62734/2CDV © IEC(E) – 709 –

Name Initial default value Reference

Array of ObjectAttributeIndexAndSize Element size is 0 Table 258

Protocol Local matter (protocol-specific) Table 260

Status (Configuration status) 0 Table 260

Period (Data publication period) 0 Table 260

Max_Peer_Tunnels 0 Table 260

Num_Peer_Tunnels 0 Table 260

ObjectIdentifier 7 Table 283

MalformedAPDUsAdvise FALSE Table 283

TimeIntervalForCountingMalformedAPDUs 0 Table 283

MalformedAPDUsThreshold 0 Table 283

MalformedAPDUAlertDescriptor [TRUE, 7] Table 283

PV NaN Table 287

Mode OOS Table 287

Scale Engineering units values for 0% and for 100%
BOTH indicate 0

Table 287

OP NaN Table 290

Mode OOS Table 290

Readback NaN Table 290

Scale Engineering units values for 0% and for 100%
BOTH indicate 0

Table 290

PV_B 0 Table 293

Mode Read only for actual mode; target mode,
permitted mode, and normal mode all have
read/write access

Table 293

OP_B 0 Table 296

Mode Read only for actual mode; target mode,
permitted mode, and normal mode all have
read/write access

Table 296

Readback_B 0 Table 296

Target OOS Table 302

Actual OOS Table 302

Permitted OOS Table 302

Normal OOS Table 302

Engineering units at 100% 0 Table 304

Engineering units at 0% 0 Table 304

Decimal point location 0 Table 304

 18272

D.8 Provisioning 18273

Table D.7 lists the provisioning configuration defaults. 18274

 – 710 – 62734/2CDV © IEC(E)

Table D.7 – Provisioning configuration defaults 18275

Name Initial default value Reference

Default_NWK_ID 0x0001 Table 368

Default_SYM_Join_Key K_global Table 368

Open_SYM_Join_Key K_open Table 368

Default_Channel_List 0x7FFF Table 368

Join_Method_Capability 00 Table 368

Allow_Provisioning TRUE (1) Table 368

Allow_Over_The_Air_Provisioning TRUE (1) Table 368

Allow_OOB_Provisioning TRUE (1) Table 368

Allow_Reset_to_Factory_defaults TRUE (1) Table 368

Allow_Default_Join TRUE (1) Table 368

Target_NWK_ID 0 Table 368

Target_NWK_BitMask 0xFFFF Table 368

Target_Join_Method 1 (Asymmetric key) Table 368

Number of PKI_Certificates 1 Table 368

Current_UTC_Adjustment 35 Table 368

White_List [] Table 371

Symmetric_Key_List {K_global} Table 371

Symmetric_Key_Expiry_Times {0xFFFF FFFF} Table 371

Target_NWK_ID 0 Table 371

Target_Join_Method 1 (Asymmetric key) Table 371

Target_Join_Time 0 Table 371

Allow_Provisioning TRUE (1) Table 371

Allow_Default_Join TRUE (1) Table 371

 Device_Specific_Provisioning_Flag disabled (0) Table 371

DPSO_Alerts_AlertDescriptor [FALSE, 6] Table 371

Current_UTC_Adjustment 35 Table 371

Device_EUI 0x0000 0000 0000 0001 Table 372

Device_Symmetric_Key K_global Table 372

Device_Symmetric_Key_Expiry_Time {0xFFFF FFFF} Table 372

Target_NWK_ID 0 Table 372

Target_Join_Method 1 (Asymmetric key) Table 372

Allow_Provisioning TRUE Table 372

Allow_Default_Join TRUE Table 372

 18276

D.9 Gateway (informative) 18277

Table D.8 lists the gateway configuration defaults. 18278

Table D.8 – Gateway configuration defaults 18279

Name Initial default value Reference

Max_Devices 0 Table U.41

 18280

62734/2CDV © IEC(E) – 711 –

Annex E 18281
(informative) 18282

 18283
Use of backbone networks 18284

E.1 General 18285

Use of a backbone network can be advantageous to the system designer, since it takes the 18286
message off of the Type A field medium, allowing additional bandwidth and higher QoS for 18287
other messages. 18288

E.2 Recommended characteristics 18289

Although the backbone itself is not specified within this standard, it is assumed and 18290
recommended that the backbone will have the following characteristics: 18291

• Throughput equal to or greater than the throughput of the Type A field medium 18292
(≥ 250 kbit/s). 18293

• Capability of supporting two-way unsolicited message traffic. 18294

• Quality of service of a sufficient level such that time synchronization can be maintained 18295
across the network. This may place specific time synchronization methods on the 18296
backbone. 18297

• High reliability. Operation should not burden the network with frequent lost messages and 18298
retries. 18299

• Security sufficient not to present a security threat to the end users application or the 18300
network. 18301

• Capability of either encapsulating (tunneling) protocol TPDUs or TSDUs defined by this 18302
standard or translating them in a such a way that they may traverse the backbone without 18303
being modified when emerging at the backbone devices. In general, the backbone shall be 18304
able to take a standard-compliant TSDU from the point of ingress and deliver it across the 18305
backbone to the point of egress unmodified. 18306

• Capability of preserving the end-to-end application security mechanisms. 18307

• Support for multipoint networking between devices. 18308

It is recognized that many standard fieldbuses may not have these characteristics and 18309
therefore may not be suitable for use as a backbone network. In many cases, a backbone 18310
network will be an IP network such as ISO/IEC 8802-3 (IEEE 802.3) or ISO/IEC 8802-11 18311
(IEEE 802.11), but there is no requirement for this. There are many other alternatives in the 18312
marketplace that exist and are well-suited for the purposes of a backbone network. These 18313
might include simple point-to-point or point-to-multipoint wireless networks. 18314

E.3 Internet protocol backbones 18315

E.3.1 Methods of IPv6 protocol data unit transmission 18316

In many cases, an available backbone will use an Internet protocol (IP) NL. In this case there 18317
are many different ways to transport the wireless industrial sensor network (WISN) TPDUs 18318
using standardized protocol behavior: 18319

• Encapsulate wireless industrial sensor network transport protocol data units within IPv4 18320
NPDUs. 18321
The mechanism used to encapsulate WISN TPDUs within IPv4 NPDUs is formally known 18322
as IPv6 over IPv4 or 6over4 and is sometimes called virtual Ethernet. This method is 18323
documented in IETF RFC 2529. A backbone router – IETF RFC 2529 refers to them as 18324

 – 712 – 62734/2CDV © IEC(E)

IPv6 hosts – located on a physical link that has no directly connected IPv6 router may 18325
become a fully functional IPv6 host by using an IPv4 multicast domain as its virtual local 18326
link. Backbone routers connected using this method do not require IPv4-compatible 18327
addresses or configured tunnels. 18328

• Tunnel wireless industrial sensor network transport protocol data units over IPv4 network. 18329
Following IETF RFC 4213, this method encapsulates IPv6 protocol data units (PDUs) 18330
within IPv4 headers to carry them over IPv4 routing infrastructures. Two types of tunneling 18331
are possible, configured and automatic. In configured tunneling, the IPv4 tunnel endpoint 18332
address is determined by configuration information on the encapsulating node. In 18333
automatic tunneling, the IPv4 tunnel endpoint address is determined from the IPv4 18334
address embedded in the IPv4-compatible destination address of the IPv6 PDU. 18335

• Encapsulate wireless industrial sensor network transport protocol data units within raw 18336
Ethernet DPDUs. 18337
This method specifies the NPDU format for transmission of IPv6 PDUs following 18338
IETF RFC 2464. Furthermore, this method dictates the formation of link-local 18339
IPv6Addresses and statelessly-autoconfigured addresses on Ethernet networks. Finally, 18340
this approach specifies the content of the source/target link-layer addresses used in router 18341
solicitation, router advertisement, neighbor solicitation, neighbor advertisement, and 18342
redirect messages when those messages are transmitted on an Ethernet network. 18343

• Use native IPv6 backbone without any encapsulation or tunnelling. 18344
If the backbone uses an IPv6 NL, neither encapsulation nor tunneling is necessary, since 18345
the backbone native mode is to transport IPv6 PDUs. 18346

E.3.2 Backbone router peer device discovery 18347

For the backbone router (BBR) to function properly and to connect WISN devices on the 18348
backbone, it needs to know the backbone addresses of the other BBRs or peers in the 18349
backbone network. Within each BBR, the addressing information of its peers should be stored 18350
in a backbone router peer table (BRPT). There are two basic methods of generating the 18351
BRPT, configuration and discovery. 18352

NOTE The BRPT and the mechanism for discovering peers are beyond the scope of this standard. 18353

Configuration occurs when the addresses of peer BBRs are inserted into the BRPT by the 18354
system manager or an operator. The advantages of this method are that it is straightforward 18355
and prevents the BBR from accessing inappropriate devices on the backbone. 18356

Discovery occurs when the BBR automatically searches the backbone for peer devices. There 18357
are multiple discovery techniques, such as those mentioned in IETF RFC 2529 and others. 18358
The advantages of this method are that it is automatic, requires no operator involvement, and 18359
can be easily and often updated. 18360

E.3.3 Security 18361

E.3.3.1 Security of transport protocol data units 18362

The security mechanisms of the backbone are beyond the scope of this standard. Typical IP 18363
security methods include IPSec, SSL, and others. In addition to any security mechanisms on 18364
the backbone, the WISN TL security mechanism protects the TPDU within the backbone. 18365

E.3.3.2 Security of the backbone 18366

There is a perception by some that allowing a WISN to access an IP backbone could degrade 18367
the security of the backbone. This concern may be mitigated by restricting the BBR access to 18368
only peer BBRs via an access control list or by the use of firewalls set up to restrict access 18369
properly to specific devices. 18370

62734/2CDV © IEC(E) – 713 –

Annex F 18371
(normative) 18372

 18373
Basic security concepts – Notation and representation 18374

F.1 Strings and string operations 18375

A string is a sequence of symbols over a specific set (e.g., the binary alphabet (0, 1) or the 18376
set of all octets). 18377

The size of a string is the number of symbols it contains (over the same alphabet). 18378

The right-concatenation of two strings x and y of size m and n respectively (notation x || y) is 18379
the string z of size m+n that coincides with x on its leftmost m symbols and with y on its 18380
rightmost n symbols. 18381

An octet is a symbol string of size 8. In this context, all octets are strings over the binary 18382
alphabet. 18383

F.2 Integers, octets, and their representation 18384

Throughout this standard, the representation of integers as octet strings and of octet strings 18385
as binary strings shall be fixed. 18386

All integers shall be represented as octet strings in most-significant-octet-first order. This 18387
representation conforms to the convention in ANSI X9.63:2011, 4.3. 18388

All octets shall be represented as binary strings in most-significant-bit-first order. 18389

F.3 Entities 18390

Throughout this standard, each entity shall be a DEV and shall be uniquely identified by its 18391
EUI64Address. The parameter entityIdSize shall have the value 64. 18392

 – 714 – 62734/2CDV © IEC(E)

Annex G 18393
(informative) 18394

 18395
Using certificate chains for over-the-air provisioning 18396

This standard uses implicit certificate called the PublicReconstrKey (see Annex H for details) 18397
for the asymmetric key-based cryptography. Given the identity of a device A (IDA) and the 18398
implicit certificate γA of the device, the public key of the device A can be computed using the 18399
following equation: 18400

QA = Hash(γA||IDA)γA+QCA 18401

where QCA is the public key of the certificate authority (CA). 18402

With this background, the following steps outline the process for OTA provisioning using 18403
asymmetric-key cryptography as outlined in Figure 137. 18404

1) The CA publishes QCA, its public key, on the web. 18405
2) The device manufacturer (DM) gets a certificate from the CA: 18406

C_DM = PublicReconstrKey(DM) || Subject(DM) || Issuer(CA) || Text 18407
where: 18408

• Subject = ID of the DM 18409

• Issuer = ID of the CA 18410

• PublicReconstrKey_DM = γ_DM is used to calculate the public key of the DM using the 18411
equation: 18412
QDM = HASH(γ_DM||Subject)γ_DM + QCA 18413

3) The individual device gets a certificate from the DM: 18414
C_DEV = PublicReconstrKey(DEV) || Subject(DEV) || Issuer(DM) || Text 18415

where: 18416

• Subject = ID of the device 18417

• Issuer =ID of the DM 18418

• PublicReconstrKey_DEV = γ_DEV is used to calculate the public key of the device 18419
using the equation: 18420
QDEV = HASH(γ_DEV||Subject)γ_DEV + QDM 18421

• C_DEV and C_DM are populated in the DBP by the DM. 18422
4) The DBP joins the PD in a provisioning network. The PD has QCA. 18423
5) The DBP sends a random number, C_DEV, and C_DM to the PD. The PD calculates 18424

Q_DEV as explained in steps 2) and 3). 18425
6) A challenge/response mechanism is used to authenticate the device, and the security 18426

manager should validate the manufacturer's implicit certificate at this point. 18427
7) If the challenge/response is passed, the PD sends K_join encrypted with Q_DEV. 18428

62734/2CDV © IEC(E) – 715 –

Annex H 18429
(normative) 18430

 18431
Security building blocks 18432

H.1 Symmetric key cryptographic building blocks 18433

H.1.1 Overview 18434

The following symmetric key cryptographic primitives and data elements are defined for use 18435
with all security processing operations specified in this standard. 18436

H.1.2 Symmetric key domain parameters 18437

The symmetric key shall have key size keylen=128 (in bits). 18438

H.1.3 Block cipher 18439

The block cipher used in this standard shall be AES-128, as specified in ISO/IEC 18033-3. 18440
This block-cipher shall be used with symmetric keys as specified in H.1.2. In this case the key 18441
size is equal to the block size of the block-cipher, 128 bits. 18442

H.1.4 Mode of operation 18443

The block-cipher mode of operation used in this standard shall be the CCM* mode of 18444
operation, as specified in IEEE 802.15.4:2011, B.3.2. 18445

H.1.5 Cryptographic hash function 18446

The cryptographic hash function used in this standard shall be the block cipher-based 18447
cryptographic hash function specified in Clause H.9, with the following instantiations: 18448

• each entity shall use the block-cipher E as specified in H.1.3; 18449

• all integers and octets shall be represented as specified in Clause F.2. 18450

The Matyas-Meyer-Oseas hash function (see Clause H.9) has a message digest size hashlen 18451
that is equal to the block size, in bits, of the established block cipher. 18452

H.1.6 Keyed hash function for message authentication 18453

The keyed hash message authentication code (HMAC) used in this standard shall be HMAC, 18454
as specified in the FIPS 198, with the following instantiations: 18455

• each entity shall use the cryptographic hash H function as specified in H.1.5; 18456

• the block size B shall have the integer value B=keylen/8, where keylen is as specified in 18457
H.1.2 (i.e., B is equal to the size of the symmetric key, in octets, that is used by the keyed 18458
hash function); 18459

• the output size HMAClen of the HMAC function shall have the same integer value as the 18460
message digest parameter hashlen, as specified in H.1.5. 18461

 – 716 – 62734/2CDV © IEC(E)

H.1.7 Specialized keyed hash function for message authentication 18462

The specialized12 keyed hash message authentication code used in this standard shall be the 18463
keyed hash message authentication code, as specified in H.1.6. 18464

H.1.8 Challenge domain parameters 18465

The challenge domain parameters used in this standard shall be as specified in H.6.2, with 18466
the instantiation (minchallengelen, maxchallengelen)=(keylen, keylen), where keylen is as 18467
specified in H.1.2. 18468

All challenges shall be validated using the challenge validation primitive as specified in 18469
Clause H.7. 18470

H.2 Asymmetric-key cryptographic building blocks 18471

H.2.1 General 18472

The following asymmetric-key cryptographic primitives and data elements are defined for use 18473
with all security processing operations specified in this standard. 18474

NOTE See also ISO/IEC 18033-2 for more information on asymmetric cryptography. 18475

H.2.2 Elliptic curve domain parameters 18476

The elliptic curve domain parameters used in this specification shall be those for the curve 18477
ansit283k1 as specified in ANSI X9.63:2011, Appendix J4.5, example 1. 18478

All elliptic curve points shall be validated using the public key validation primitive as specified 18479
in ANSI X9.63:2011, 5.2.2. 18480

H.2.3 Elliptic curve point representation 18481

All elliptic curve points shall be represented in polynomial notation as specified in ANSI 18482
X9.63:2011, 4.1.2.1. All elliptic curve points shall be transmitted in compressed form, as 18483
specified in ANSI X9.63:2011, 4.2.2. 18484

H.2.4 Elliptic curve public-key pair 18485

An elliptic curve-key pair consists of an integer q and a point Q on the curve determined by 18486
multiplying the generating point G of the curve by this integer (i.e., Q=qG) as specified in 18487
ANSI X9.63:2011. Here, Q is called the public key, whereas q is called the private key; the 18488
pair (q, Q) is called the public-key pair. Each private key shall be represented as specified in 18489
ANSI X9.63:2011, 4.3.1. Each public key shall be on the curve as specified in H.2.2 and shall 18490
be represented as specified in H.2.3. 18491

H.3 Keying information 18492

H.3.1 General 18493

The following specifies the format of asymmetric-key keying information used in this standard. 18494

12 This refers to a MAC scheme where the MAC function has the additional property that it is also pre-image and

collision resistant for parties knowing the key (see also remark 9.8 of Menezes et al.). Such MAC functions
allow key derivation in contexts where unilateral key control is undesirable.

62734/2CDV © IEC(E) – 717 –

H.3.2 Elliptic curve cryptography implicit certificates 18495

Implicit certificates ICU shall be specified as 18496

ICU = PublicKeyReconstrData || Subject || Issuer || Usage_Serial || KeyValidityInfo || Text 18497

where: 18498

• The parameter PublicKeyReconstrData shall be the public-key reconstruction data BEU as 18499
specified in the implicit certificate generation scheme (see H.5.1). 18500

• The parameter Subject shall be the entity U that is bound to the public key reconstruction 18501
data BEU during execution of the implicit certificate generation scheme, i.e., the entity that 18502
purportedly owns the private key corresponding to the public key that can be 18503
reconstructed from PublicReconstrKey. 18504

• The parameter Issuer shall be the entity of the certificate authority (CA) that creates the 18505
implicit certificate during the execution of the implicit certificate generation scheme. 18506

• The parameter Usage_Serial is defined in Table 68. 18507

• The parameter KeyValidityInfo shall indicate the validity period of the keying material as 18508
indicated by the parameters ValidNotBefore and ValidNotAfter, which indicate the 18509
beginning and the end of the validity period, respectively. The KeyValidityInfo shall be 18510
formatted as 18511

KeyValidityInfo = ValidNotBefore || ValidNotAfter 18512
where ValidNotBefore and ValidNotAfter shall be represented as specified in . 18513

• The parameter Text shall be the representation of additional information, as specified in 18514
H.3.4. 18515

• The string IU as specified in the implicit certificate generation scheme (see H.5.1) shall be 18516
the octet string consisting of the octet strings Subject, Issuer, and Text, as follows: 18517

IU = Subject || Issuer || Text 18518

H.3.3 Elliptic curve cryptography manual certificates 18519

Manual certificates MCU shall be specified as MCU = PublicKey || Subject || Issuer || Text, 18520
where: 18521

• The parameter PublicKey shall be the octet representation of the public key WU as 18522
specified in the manual certificate generation transformation. 18523

• The parameter Subject shall be the entity U of the purported owner of the private key 18524
corresponding to the public key represented by PublicKey. 18525

• The parameter Issuer shall be the entity of the CA that creates the manual certificate 18526
during the execution of the manual certificate generation transformation (the so-called 18527
certificate authority). 18528

• The parameter Usage_Serial is defined in Table 68. 18529

• The parameter KeyValidityInfo shall indicate the validity period of the keying material as 18530
indicated by the parameters ValidNotBefore and ValidNotAfter, which indicate the 18531
beginning and the end of the validity period, respectively. The KeyValidityInfo shall be 18532
formatted as 18533

KeyValidityInfo = ValidNotBefore || ValidNotAfter 18534

• where ValidNotBefore and ValidNotAfter shall be represented as specified in . 18535

• The parameter Text shall be the representation of additional information, as specified in 18536
H.3.4. 18537

• The string IU as specified in the manual certificate scheme (see Clause H.10) shall be the 18538
octet string consisting of the octet strings Subject, Issuer, and Text, as follows: 18539

IU = Subject || Issuer || Text. 18540

 – 718 – 62734/2CDV © IEC(E)

NOTE A manual certificate is not a real digital certificate, since the binding between the PublicKey and the 18541
Subject is established and verified by non-cryptographic means. 18542

H.3.4 Additional information 18543

Additional information Text shall be specified as follows: 18544

Text = Reserved 18545

where the parameter Reserved allows for future extensions of the additional information and 18546
shall be set to the all-zero bit string for this version of the standard. 18547

H.4 Key agreement schemes 18548

H.4.1 Symmetric-key key agreement scheme 18549

The symmetric-key key agreement scheme used in this standard shall be the full symmetric-18550
key with key confirmation scheme as specified with the following instantiations: 18551

• Each entity shall be identified as specified in Clause F.3. 18552

• Each entity shall use the HMAC-scheme as specified in H.1.5. 18553

• Each entity shall use the cryptographic hash function as specified in H.1.5. 18554

• The parameter keydatalen shall have the same integer value as the key size parameter 18555
keylen as specified in H.1.2. 18556

• Each entity shall use the challenge domain parameters as specified in H.1.8. 18557

• All octets shall be represented as specified in Clause F.2. 18558

H.4.2 Asymmetric-key key agreement scheme 18559

The asymmetric-key key agreement scheme used in this standard shall be the full MQV with 18560
key confirmation scheme as specified in ANSI X9.63:2011, 6.11, with the following 18561
instantiations: 18562

• Each entity shall be identified as specified in Clause F.3. 18563

• Each entity shall use the HMAC-scheme as specified in H.1.5. 18564

• Each entity shall use the cryptographic hash function as specified in H.1.5. 18565

• The parameter keydatalen shall have the same integer value as the key size parameter 18566
keylen as specified in H.1.2. 18567

• The parameter SharedData shall be the empty string; parameter shareddatalen shall have 18568
the integer value 0. 18569

• Each entity shall use the elliptic curve domain parameters as specified in H.2.2. 18570

• All elliptic curve points shall be represented as specified in H.2.3. 18571

• All octets shall be represented as specified in Clause F.2. 18572

H.5 Keying information schemes 18573

H.5.1 Implicit certificate scheme 18574

The implicit certificate scheme used in this standard shall be the ECQV implicit certificate 18575
scheme as specified in SEC 4, with the following instantiations: 18576

• Each entity shall be identified as specified in Clause F.3. 18577

• Each entity shall use the cryptographic hash function as specified in H.1.5. 18578

• Each entity shall use the elliptic curve domain parameters as specified in H.2.2. 18579

62734/2CDV © IEC(E) – 719 –

• All elliptic curve points shall be represented as specified in H.2.3. 18580

• All implicit certificates shall be represented as specified in H.3.2. 18581

• The implicit certificate infrastructure shall be one of the schemes as specified in H.3.2. 18582

• All octets shall be represented as specified in Clause F.2. 18583

H.5.2 Manual certificate scheme 18584

The manual certificate scheme used in this standard shall be the manual certificate scheme 18585
as specified in Clause H.10, with the following instantiations: 18586

• Each entity shall be identified as specified in Clause F.3. 18587

• Each entity shall use the elliptic curve domain parameters as specified in H.2.2. 18588

• All elliptic curve points shall be represented as specified in H.2.3. 18589

• All manual certificates shall be represented as specified in H.3.2. 18590

• The manual certificate infrastructure shall be one of the schemes as specified in H.3.2. 18591

• All octets shall be represented as specified in Clause F.2. 18592

H.6 Challenge domain parameter generation and validation 18593

H.6.1 Overview 18594

Challenge domain parameters impose constraints on the size(s) of bit challenges that a 18595
scheme expects. As such, this determine a bound on the entropy of challenges and, thereby, 18596
on the security of the cryptographic schemes in which these challenges are used. In most 18597
schemes, the challenge domain parameters will be such that only challenges of a fixed size 18598
will be accepted (e.g., 128-bit challenges). However, one may define the challenge domain 18599
parameters such that challenges of varying size might be accepted. The latter is useful in 18600
contexts wherein entities that wish to engage in cryptographic schemes might have a 18601
defective or low-quality random bit generator. Allowing both entities that engage in a scheme 18602
to contribute sufficiently long inputs enables each of these to contribute sufficient entropy to 18603
the scheme at hand. 18604

In this standard, challenge domain parameters will be shared by a number of entities using a 18605
scheme of this standard. The challenge domain parameters may be public; the security of the 18606
system does not rely on these parameters being secret. 18607

H.6.2 Challenge domain parameter generation 18608

Challenge domain parameters shall be generated using the following routine: 18609

• Input: This routine does not take any input. 18610

• Actions: The following actions are taken: 18611
– Choose two nonnegative integers minchallengelen and maxchallengelen, such that 18612

minchallengelen ≤ maxchallengelen. 18613

• Output: Challenge domain parameters D = (minchallengelen, maxchallengelen). 18614

H.6.3 Challenge domain parameter verification 18615

Challenge domain parameters shall be verified using the following routine: 18616

• Input: Purported set of challenge domain parameters D=(minchallengelen, 18617
maxchallengelen). 18618

• Actions: The following checks are made: 18619
– Check that minchallengelen and maxchallengelen are nonnegative integers. 18620

 – 720 – 62734/2CDV © IEC(E)

– Check that minchallengelen ≤ maxchallengelen. 18621

• Output: If any of the above verifications has failed, then output invalid and reject the 18622
challenge domain parameters. Otherwise, output valid and accept the challenge domain 18623
parameters. 18624

H.7 Challenge validation primitive 18625

Challenge validation refers to the process of checking the size properties of a challenge. It is 18626
used to check whether a challenge to be used by a scheme in this standard has sufficient size 18627
(e.g., messages that are too short are discarded, due to insufficient entropy). 18628

The challenge validation primitive is used in Clause H.7 and uses the following routine: 18629

• Input: The input of the validation transformation is a valid set of challenge domain 18630
parameters D = (minchallengelen, maxchallengelen), together with the bit string 18631
Challenge. 18632

• Actions: The following actions are taken: 18633
– Compute the bit-length challengelen of the bit string Challenge. 18634

– Verify that challengelen ∈ [minchallengelen, maxchallengelen]. (That is, verify that the 18635
challenge has an appropriate size.) 18636

• Output: If the above verification fails, then output invalid and reject the challenge. 18637
Otherwise, output valid and accept the challenge. 18638

H.8 Secret key generation (SKG) primitive 18639

The SKG primitive derives a shared secret value from a challenge owned by an entity U1 and 18640
a challenge owned by an entity U2 when all the challenges share the same challenge domain 18641
parameters. If the two entities both correctly execute this primitive with corresponding 18642
challenges as inputs, the same shared secret value will be produced. 18643

The shared secret value shall be calculated as follows: 18644

• Prerequisites: The following are the prerequisites for the use of the SKG primitive: 18645
– Each entity shall be bound to a unique identifier (e.g., distinguished names). All 18646

identifiers shall be bit strings of the same size, entityIdSize. Entity U1s identifier will be 18647
denoted by the bit string U1. Entity U2s identifier will be denoted by the bit string U2. 18648

– A specialized13 MAC scheme shall have been chosen, with tagging transformation as 18649
specified in ANSI X9.63:2011, 5.7.1. The size in bits of the keys used by the 18650
specialized MAC scheme is denoted by macKeySize. 18651

• Input: The SKG primitive takes as input: 18652
– A bit string MACKey of size macKeySize bits to be used as the key of the established 18653

specialized MAC scheme. 18654
– A bit string QEU1 owned by U1. 18655
– A bit string QEU2 owned by U2. 18656

• Actions: The following actions are taken: 18657
– Form the bit string consisting of U1’s identifier, U2’s identifier, the bit string QEU1 18658

corresponding to U1’s challenge, and the bit string QEU2 corresponding to U2’s 18659
challenge: 18660

– MacData = U1 || U2 || QEU1 || QEU2. 18661

13 This refers to a MAC scheme wherein the MAC function has the additional property that it is also pre-image-

and collision-resistant for parties knowing the key (see also remark 9.8 of Menezes et al.). Such MAC functions
allow key derivation in contexts where unilateral key control is undesirable.

62734/2CDV © IEC(E) – 721 –

– Calculate the tag MacTag for MacData under the key MacKey using the tagging 18662
transformation of the established specialized MAC scheme: 18663

– MacTag = MACMacKey(MacData). 18664
– If the tagging transformation outputs invalid, output invalid and stop. 18665
– Set Z=MacTag. 18666

• Output: The bit string Z as the shared secret value. 18667

H.9 Block-cipher-based cryptographic hash function 18668

The Matyas-Meyer-Oseas hash function is a cryptographic hash function based on block-18669
ciphers. This hash function is defined for block-ciphers with a key size that is equal to the 18670
block size, such as AES-128, and with a particular choice for the fixed initialization vector IV 18671
(which here is defined to be IV=0). 18672

NOTE For a more general definition of the Matyas-Meyer-Oseas hash function, see Handbook of applied 18673
cryptography, 9.4.1, listed in the Bibliography. 18674

The hash function is defined as follows: 18675

• Prerequisites: The following are the prerequisites for the operation of Matyas-Meyer-18676
Oseas hash function: 18677
– A block-cipher encryption function E shall have been chosen, with a key size that is 18678

equal to the block size. The Matyas-Meyer-Oseas hash function has a message digest 18679
size that is equal to the block size of the established encryption function. It operates 18680
on bit strings of size less than 2n, where n is the block size, in octets, of the 18681
established block-cipher. 18682

– A fixed representation of integers as binary strings or octet strings shall have been 18683
chosen. 18684

• Input: The input to the Matyas-Meyer-Oseas hash function is as follows: 18685

– A bit string M of size l bits, where 0 ≤ l < 2n. 18686

• Actions: The hash value shall be derived as follows: 18687
– Pad the message M according to the following method: 18688
– Right-concatenate to the message M the binary value consisting of one bit of 1 18689

followed by k bits of 0, where k is the smallest non-negative solution to the equation 18690

l+1+k ≡ 7n (mod 8n). 18691
– Form the padded message M by right-concatenating to the resulting string the n-bit 18692

string that is equal to the binary representation of the integer l. 18693
– Parse the padded message M as M1 || M2|| … || Mt where each message block Mi is an 18694

n-octet string. 18695
– The output Hasht is defined by 18696

Hash0 =08n; Hashj =E(Hashj-1, Mj) ⊕ Mj for j=1,…,t. 18697

Here, E(K, x) is the ciphertext that results from encryption of the plaintext x, using the 18698
established block-cipher encryption function E with key K; the string 08n is the n-octet all-zero 18699
bit string. 18700

• Output: The bit string Hasht as the hash value. 18701

The cryptographic hash function operates on bit strength of size less than 2n bits, where n is 18702
the block size (or key size) of the established block cipher, in octets. For example, the 18703
Matyas-Meyer-Oseas hash function with AES-128 operates on bit strings of size less than 216 18704
bits. It is assumed that all hash function calls are on bit strings of size less than 2n bits. Any 18705
scheme attempting to call the hash function on a bit string exceeding 2n bits shall output 18706
invalid and stop. 18707

 – 722 – 62734/2CDV © IEC(E)

H.10 Elliptic curve cryptography manual certificate scheme 18708

H.10.1 Overview 18709

A manual certificate scheme based on elliptic curve cryptography (ECC) that is used in this 18710
standard is described. 18711

The manual certificate scheme is used by three entities: a certificate authority CA, a 18712
certificate requester U, and a certificate processor V, where U wishes to obtain a manual 18713
certificate from CA in order to convey U’s associated public key to V. 18714

The manual certificate scheme is described in terms of a certificate generation transformation 18715
and a certificate processing transformation. CA, U, and V use these schemes when they wish 18716
to communicate. 18717

Prior to use of the scheme, U, V, and CA agree on the parameters with which the scheme 18718
shall be used. In particular, this includes U and V obtaining an authentic copy of CA’s unique 18719
identifier. 18720

CA executes the manual certificate generation transformation to compute an elliptic curve 18721
public-key pair for U and a manual certificate MC for this public key provided by CA. V 18722
executes the manual certificate processing transformation, to obtain U’s purported static 18723
public key from U’s purported manual certificate MC presented to V. 18724

The manual certificate generation transformation yields a public-key pair and a certificate for 18725
this public key. This public-key pair shall be communicated to the purported holder in a secure 18726
and authentic way. The mechanism by which this public-key pair is communicated is outside 18727
the scope of this standard. 18728

The manual certificate processing transformation yields a static public key (and associated 18729
keying information) purportedly bound to the claimed holder; evidence that this public key is 18730
genuinely bound to this entity can, however, not be corroborated via processing of the manual 18731
certificate. Thus, with manual certificates, the binding of an entity and its public or private key 18732
cannot be verified, although one may obtain evidence that some entity that claims to be 18733
bound to the public key has indeed access to the corresponding private key, during 18734
cryptographic usage of the public key (e.g., via execution of an authenticated key agreement 18735
scheme or a signing transformation involving this public-key pair). 18736

The manual certificate generation transformation is specified in H.10.2 and the manual 18737
certificate processing transformation is specified in H.10.3. 18738

The prerequisites for the use of the scheme are: 18739

• An infrastructure shall have been established for the operation of the scheme, including a 18740
certificate format, certificate processing rules, and unique identifiers. For an example of 18741
such an infrastructure, see IETF RFC 3280. 18742

• Each entity has an authentic copy of the system’s elliptic curve domain parameters 18743
D=(p,a,b,G,n,h) or D=(m,f(x),a,b,G,n,h). These parameters shall have been generated 18744
using the parameter generation primitives in SEC 1:2009, 3.1.1.1 or 3.1.2.1. Furthermore, 18745
the parameters shall have been validated using the parameter validation primitives in 18746
SEC1:2009, 3.1.1.2 or 3.1.2.2. 18747

• Each entity shall be bound to a unique identifier (e.g., distinguished names). All identifiers 18748
shall be bit strings of the same size, entityIdSize. Entity U’s identifier will be denoted by 18749
the bit string U. Entity V’s identifier will be denoted by the bit string V. Entity CA’s 18750
identifier will be denoted by the bit string CA. 18751

• A cryptographic hash function Hash shall have been chosen for use with the ECQV implicit 18752
certificate generation scheme. Let hashlen denote the size in bits of the output value of 18753
this hash function. 18754

62734/2CDV © IEC(E) – 723 –

• Each entity shall have decided how to represent elliptic curve points as octet strings (i.e., 18755
compressed form, uncompressed form, or hybrid form). 18756

• A fixed representation of octets as binary strings shall have been chosen (e.g., most-18757
significant-bit-first order or least-significant-bit-first order). 18758

H.10.2 Elliptic curve cryptography manual certificate generation transformation 18759

A CA shall execute the following transformation to provide a manual certificate for the user, U. 18760
The CA shall obtain an authentic copy of U’s identifier. 18761

• Inputs: This routine does not take any inputs. 18762

• Ingredients: The certificate generation transformation employs the key pair generation 18763
primitive in SEC 1:2009, 3.2.1, and the manual certificate generation primitive of the 18764
established infrastructure. 18765

• Actions: The CA shall proceed as follows: 18766
– The key pair generation primitive specified in SEC 1:2009, 3.2.1, shall be used to 18767

generate an ephemeral key pair (wU, WU) for the parameters D. 18768
– The elliptic curve point WU shall be converted to the octet string WEU as specified in 18769

SEC 1:2009, 2.3.3. 18770
– The octet string IU, which is the to-be-conveyed-manual-certificate data. IU shall be 18771

constructed to contain identification information according to the procedures of the 18772
established infrastructure and may also contain other information, such as the 18773
intended use of the public key, the serial number of the manual certificate, and the 18774
validity period of the manual certificate. The exact form of IU depends on the manual 18775
certificate format specified during the setup procedure. 18776

– The octet string MCU, which is U’s manual certificate, shall be constructed according 18777
to the procedures of the established infrastructure. MCU shall contain the octet strings 18778
IU and WEU encoded in a reversible manner. The exact form of MCU depends on the 18779
manual certificate format specified during the setup procedure. 18780

• Output: MCU, which shall serve as U’s manual certificate provided by CA. 18781

H.10.3 Elliptic curve cryptography manual certificate processing transformation 18782

V shall execute the following transformation to obtain U’s purported static public key from U’s 18783
purported manual certificate provided by CA. V shall obtain an authentic copy of U’s and CA’s 18784
identifier. 18785

• Input: U’s purported manual certificate MCU provided by CA. 18786

• Ingredients: The manual certificate processing transformation employs the public key 18787
validation primitive in SEC 1:2009, 3.2.2, and the manual certificate validation primitive of 18788
the established infrastructure. 18789

• Actions: V proceeds as follows: 18790
– Verify the content of MCU according to the established infrastructure. This includes 18791

verifying the contents of the certificate, such as the subject’s name and the validity 18792
period. If the subject’s name is not U, output invalid and stop. 18793

– Derive IU from MCU, according to the manual certificate format specified during the 18794
setup procedure. 18795

– Derive CA’s identifier from IU, according to the certificate format specified during the 18796
setup procedure. If CA’s identifier is unknown to V, output invalid and stop. 18797

– Derive WEU from MCU, according to the manual certificate format specified during the 18798
setup procedure. 18799

– Convert the octet string WEU to the elliptic curve point WU as specified in SEC 1:2009, 18800
2.3.4 18801

– Verify that WU is a valid key for the parameters D as specified in SEC 1:2009, 3.2.2. If 18802
the validation primitive rejects the key, output invalid and stop. 18803

 – 724 – 62734/2CDV © IEC(E)

• Output: If any of the above verifications has failed, then output invalid and stop; otherwise, 18804
output valid and accept WU as U’s purported static public key. (V may accept WU as U’s 18805
genuine static public key provided U evidences knowledge to V of the corresponding 18806
private key wU and provided V accepts U to be the only party that may have access to this 18807
private key.) 18808

62734/2CDV © IEC(E) – 725 –

Annex I 18809
(informative) 18810

 18811
Definition templates 18812

I.1 Object type template 18813

It is recommended that standard objects and their associated standard object identifiers be 18814
identified in a table for quick reference, as shown in Table I.1. This indicates the information 18815
needed to define standard object types defined by this standard. 18816

Table I.1 – Table of standard object types 18817

Defining organization:

Standard object type
name

(not expected to be
transmitted, size not
specified – check DD

limits)

Standard object type
identifier (non-negative)

Standard object
identifier (non-

negative), if applicable

Used for mandatory
objects with exactly one

instance per device

Object description

(not expected to be
transmitted, size not
specified – check DD

limits)

... … … …

 18818
Elements of the table include: 18819

• Standard object type name defines the name of the object. 18820

• Standard object type identifier is the standard non-negative numeric identifier of the object 18821
type; uniquely identifies this object type. 18822

• Standard object identifier, for standard object types that are required by a device and that 18823
may only be instantiated once, represents the standard non-negative numeric identifier for 18824
the object instance. This identifier is common to all devices. If 7 bits do not suffice, the 18825
high-order bit of the first octet shall be set, and another octet shall be available to extend 18826
the value of the identifier. 18827

• Object description is a description of the purpose and intent of this object. 18828

I.2 Standard object attributes template 18829

The template shown in Table I.2 indicates the information needed to define the attributes of a 18830
standard object. 18831

 – 726 – 62734/2CDV © IEC(E)

Table I.2 – Template for standard object attributes 18832

Standard object type name:

Standard object type identifier:

Defining organization:

Attribute name Attribute
identifier

Attribute
description

Attribute data
information

Description of
behavior of

attribute

ObjectIdentifier Key
identifier

Unique identifier for
the object

Type: Unsigned16. N/A

Classification: Static

Valid range: 1..32 767

… … … Type: … …

Classification: …

Accessibility: …

Default value: …

Valid range: …

Reserved for future
use

— — — —

 18833
Elements of the table include: 18834

• Standard object type name defines the name of the object type. 18835

• Standard object type identifier is the standard numeric identifier of the object type that 18836
uniquely identifies this object type. The value of this identifier fits into at most two octets. 18837

• Defining organization is the organization defining this object (e.g., base standard, 18838
standard defined extension to the base standard object, industry specific profile (and 18839
which industry), special interest group (and which interest group)), or device vendor. 18840

• Attribute name defines the name of the attribute. 18841

• Attribute ID is the standard numeric identifier of the attribute. All attributes of an object are 18842
uniquely identified. If 7 bits does not suffice, the high-order bit of the first octet shall be 18843
set, and another octet shall be available to extend the value of the identifier. 18844

• Description is the description of the attribute. 18845

• Type is the data type of the attribute. If the data may vary in size (such as for a variable 18846
size OctetString or a variable size VisibleString), then the maximum number of octets of 18847
data is indicated. 18848

• Classification is the data classification (constant, static, static-volatile, dynamic, non-18849
cacheable) of the attribute. 18850

• Accessibility is how the attribute may be accessed remotely (e.g., Read only, or 18851
Read/write) 18852

• Initial default value specifies the initial default value. 18853

• Valid value set specifies the valid set of values for this attribute. 18854

I.3 Standard object methods 18855

The template shown in Table I.3 indicates the information needed to describe the methods of 18856
a standard object. 18857

62734/2CDV © IEC(E) – 727 –

Table I.3 – Template for standard object methods 18858

Standard object type name:

Standard object type identifier:

Defining organization:

Method name Method ID Method description

<name of
method>

Input arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

… … … …

Output arguments

Argument
number

Argument
name

Argument type
(data type and size)

Argument
description

… … … …

 18859
Elements of the table include: 18860

• Standard object type name defines the name of the object. 18861

• Standard object type identifier is the standard numeric identifier of the object type that 18862
uniquely identifies this object type. The value of this identifier fits into at most two octets. 18863

• Defining organization is the organization defining this object (e.g., base standard, 18864
standard defined extension to the base standard object, industry specific profile (and 18865
which industry), special interest group (and which interest group)). 18866

• Method name is the name of the method. 18867

• Method ID is the numeric identification of the method. All methods of an object will have 18868
unique method identifiers. If 7 bits does not suffice, the high-order bit of the first octet 18869
shall be set, and another octet shall be available to extend the value of the identifier. 18870

• Method description is the description of the method. 18871

• List of input parameters and their data types is a list of input parameters, their type and 18872
size (if not explicitly discernable from the type), and a description of use (how they are 18873
used when sent on a method invoke). These should be listed in order of transmission. 18874

NOTE 1 For simplicity, all parameters are specified. If there are situations where parameters vary, separate 18875
methods are appropriate to accommodate each class of variance. 18876

• List of output parameters and their data types is a list of output parameters, their type and 18877
size (if not explicitly discernable from the type), and a description of use (how they are 18878
used when sent on a method invoke). These should be listed in order of transmission. 18879

NOTE 2 See NOTE 1. 18880

• Description of behavior describes the behavior of the object when this method is invoked. 18881

I.4 Standard object alert reporting template 18882

The template shown in Table I.4 indicates the information needed to describe the alert 18883
reporting behavior of a standard object. 18884

 – 728 – 62734/2CDV © IEC(E)

Table I.4 – Template for standard object alert reporting 18885

Standard object type name(s):

Standard object type identifier:

Defining organization:

Description of the alert:

Alert class
(Enumerated:

alarm or
event)

Alert category
(Enumerated: device

diagnostic, comm.
diagnostic, security, or

process)

Alert type

(Enumerated:
based on

alert
category)

Alert
priority

Value data type Description of
value included

with alert

<name of
alert>

… … … Type: … …

Default value: … …

Valid range: … …

 18886
Elements of the table include: 18887

• Standard object type name defines the name of the object. 18888

• Standard object type identifier is the standard numeric identifier of the object type that 18889
uniquely identifies this(these) object type(s) that may report this alert. The value of this 18890
identifier fits into at most two octets. 18891

• Defining organization is the organization defining this object (e.g., base standard, industry 18892
specific profile (and which industry), special interest group (and which interest group)). 18893

• Description of the alert describes the semantic meaning of the alert. 18894

• Alert class indicates if this is an event (stateless) or alarm (state-oriented) type of alert. 18895

• Alert category indicates if this is a device related (e.g., a device specific diagnostic), 18896
communication related, security related, or process related alert. Only one category 18897
applies. Selection of the best fit for an alert may need to be discussed in order to be best 18898
established. 18899

• Alert type is dependent on the alert category. See the alert reporting model in 12.8 for 18900
further details. 18901

• Alert priority is the priority of the alert. 18902

• Value and size is the size and value included in the alert report. 18903

• Description of value included in alert report is the description of the value, if a value is 18904
included in the alert report (e.g., for a process alarm that is a high alarm, this may be the 18905
process variable (PV)). 18906

• Accessibility defines if the attribute is readable, writeable, or both. 18907

• Initial default value indicates the initial default value of the attribute. 18908

• Description of value set describes the set of values that may be taken on by this attribute. 18909

• Description of behavior describes the behavior of this attribute (e.g., when a particular 18910
value is written, or error conditions). Restrictions on use (e.g., operators should not write 18911
to this attribute) may be noted here. 18912

I.5 Data structure definition 18913

The template for describing data structures that are used to define special data types is given 18914
in Table I.5. 18915

62734/2CDV © IEC(E) – 729 –

Table I.5 – Template for data structures 18916

Standard data type name:

Defining organization:

Element name Element identifier Element scalar type

… … Type: …

Size: …

Classification: …

Accessibility: …

Default value: …

Valid range: …

 18917

 – 730 – 62734/2CDV © IEC(E)

Annex J 18918
(informative) 18919

 18920
Operations on attributes 18921

J.1 Operations on attributes 18922

J.1.1 General 18923

Attribute classification and accessibility dictate the operations permitted on a given attribute. 18924
Attribute classification and accessibility are described in 12.6. 18925

J.1.2 Attribute classification 18926

For a discussion of attribute classification, see 12.6.3. 18927

J.1.3 Retrieving, setting, and resetting attributes 18928

J.1.3.1 General 18929

Attributes defined in the management objects can be accessed using the standard ASL-18930
provided read or write services. Such operations enable configuration of the layers, as well as 18931
monitoring of their status. They can be used to retrieve, set / modify, and reset the values of 18932
attributes. The service primitives for these services, as well as the enumerated service 18933
feedback codes, are given in Clause 12. 18934

Attributes can be reset using the write service by writing the default value to the relevant 18935
attribute. If a reset attribute is defined for a management object, it can be used to reset all the 18936
attributes in that management object that belong to certain classes of attributes. 18937

More complex methods may be defined if necessary, but only if the equivalent results cannot 18938
be achieved using the more direct read / write services. A complex method may be warranted, 18939
for example, to replace a sequence of communication transactions in order to save energy. A 18940
complex method may also be warranted when synchronization issues may result if individual 18941
actions are used, rather than an atomic transaction set. 18942

J.1.3.2 Scheduled operations to enable synchronized cutover 18943

The generic method template Scheduled_Write provided in Table J.1 can be used to define a 18944
method for writing a value to an attribute at a scheduled TAI time. It can also be used to reset 18945
an attribute to its default value at a scheduled TAI time. 18946

62734/2CDV © IEC(E) – 731 –

Table J.1 – Scheduled_Write method template 18947

Method name Method ID Method description

Scheduled_Write <given in
management
object
definition>

Method to write a value to an indicated attribute at an indicated TAI time

Input Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Attribute_ID Data type:
Unsigned16 <given in
management object
definition>

The attribute ID in the
management object to which
this method is being applied

2 Scheduled_TAI_
Time

Data type:
TAITimeRounded

TAI time at which the value
should be written to the
attribute

3 Value Data type: <given in
management object
definition>

The value that needs to be
written to the attribute

Output Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

None

 18948
The service feedback codes given in 12.17.4.2.2 are expected to be used to indicate if the 18949
method execution was successful or not. If not successful, this code provides information 18950
indicating why it was not successful. 18951

J.1.4 Retrieving and setting structured attributes 18952

The generic method templates Read_Row and Write_Row given in Table J.2 and Table J.3 18953
can be used for defining methods that retrieve and set / modify the values of structured 18954
attributes. When the structured attribute is visualized as an information table, these methods 18955
allow access to a particular row based on one or more unique index field values. It is 18956
assumed that each table has at least one unique index field. The index field may either be a 18957
single element or the concatenation of a few elements in the row. 18958

The input argument Scheduled_TAI_Time in the Write_Row method template allows 18959
scheduled operation for a particular row of the structured attribute. A value of 0 for this 18960
argument indicates an immediate write operation. 18961

 – 732 – 62734/2CDV © IEC(E)

Table J.2 – Read_Row method template 18962

Method
name

Method ID Method description

Read_Row <given in
management
object definition>

Method to read the value of a single row of a structured attribute whose data
is visualized as an information table

Input Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Attribute_ID Data type: Unsigned16 <given
in management object
definition>

The attribute ID in the
management object to
which this method is being
applied

2 Index_1 Data type of first index field of
the structured attribute <given
in management object
definition>

The first index field in the
structured attribute to
access a particular row

n+1 Index_n Data type of nth index field of
the structured attribute <given
in management object
definition>

The nth index field in the
structured attribute to
access a particular row

Output Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Data_Value Data type: <given in
management object definition>

An octet string that contains
the data value

 18963
Table J.3 – Write_Row method template 18964

Method
name

Method ID Method description

Write_Row <given in
management
object definition>

Method to set / modify the value of a single row of a structured attribute
whose data is visualized as an information table

Input Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

1 Attribute_ID Data type: Unsigned16 <given in
management object definition>

The attribute ID in the
management object to
which this method is
being applied

2 Scheduled_T
AI_
Time

Data type: TAITimeRounded TAI time at which the
value should be written
to the row of the
structured attribute

3 Index_1 Data type of first index field of the
structured attribute <given in
management object definition>

The first index field in
the structured attribute
to access a particular
row

N+2 Index_n Data type of nth index field of the
structured attribute <given in
management object definition>

The nth index field in the
structured attribute to
access a particular row

N+3 Data_Value Data type: <given in management
object definition>

An octet string that
contains the data value

Output Arguments

Argument
number

Argument
name

Argument type
(data type and size) Argument description

None

62734/2CDV © IEC(E) – 733 –

 18965
The service feedback codes given in 12.17.4.2.2 are expected to be used to indicate if the 18966
method execution was successful or not. If not successful, this code provides information 18967
indicating why it was not successful. 18968

A method based on the Write_Row template can also be used to create a new row in the 18969
structured attribute if the index field(s) provided in the input argument(s) does(do) not exist. 18970

J.1.5 Resetting structured attribute values 18971

For a structured attribute, the generic method template Reset_Row given in Table J.4 can be 18972
used for defining methods that reset / clear certain values in the structured attribute. The 18973
input argument Scheduled_TAI_Time in this method allows a scheduled reset operation. A 18974
value of 0 for this argument indicates an immediate reset operation. 18975

Table J.4 – Reset_Row method template 18976

Method
name

Method ID Method description

Reset_Row <given in
management object
definition>

Method to reset a single row of a structured attribute whose data is
visualized as an information table

Input arguments

Argument number Argument
name

Argument type
(data type and size) Argument description

1 Attribute_ID Data type: Unsigned16
<given in management
object definition>

The attribute ID in the
management object to
which this method is
being applied

2 Scheduled_TAI_
Time

Data type:
TAITimeRounded

TAI time at which the
row of the structured
attribute should be
reset

3 Index_1 Data type of first index field
of the structured attribute
<given in management
object definition>

The first index field in
the structured attribute
to access a particular
row

n+2 Index_n Data type of nth index field
of the structured attribute
<given in management
object definition>

The nth index field in
the structured attribute
to access a particular
row

Output arguments

Argument number Argument
name

Argument type
(data type and size) Argument description

None

 18977
The service feedback codes given in 12.17.4.2.2 are expected to be used to indicate if the 18978
method execution was successful or not. If not successful, this code provides information 18979
indicating why it was not successful. 18980

J.1.6 Deleting structured attribute values 18981

The generic method template Delete_Row described in Table J.5 can be used for defining 18982
methods that delete the values of structured attributes. The input argument 18983
Scheduled_TAI_Time in this method allows a scheduled delete operation. A value of 0 for this 18984
argument indicates an immediate delete operation. 18985

 – 734 – 62734/2CDV © IEC(E)

Table J.5 – Delete_Row method template 18986

Method
name

Method ID Method description

Delete_Row <given in
management object
definition>

Method to delete a single row of a structured attribute whose data is
visualized as an information table

Input arguments

Argument number Argument
name

Argument type
(data type and size) Argument description

1 Attribute_ID Data type: Unsigned16
given in management
object definition>

The attribute ID in the
management object to
which this method is
being applied

2 Scheduled_TAI_
Time

Data type:
TAITimeRounded

TAI time at which the
row of the structured
attribute should be
deleted

3 Index_1 Data type of first index
field of the structured
attribute <given in
management object
definition>

The first index field in
the structured attribute
to access a particular
row

n+2 Index_n Data type of nth index field
of the structured attribute
<given in management
object definition>

The nth index field in
the structured attribute
to access a particular
row

Output arguments

Argument number Argument
name

Argument type
(data type and size) Argument description

None

 18987
The service feedback codes given in 12.17.4.2.2 are expected to be used to indicate if the 18988
method execution was successful or not. If not successful, this code provides information 18989
indicating why it was not successful. 18990

J.2 Synchronized cutover 18991

A synchronized cutover capability is needed for some attributes and structured attributes that 18992
represent management information. For such an attribute, updates for the attribute value may 18993
be scheduled by indicating the TAI cutover time information; this operation may be 18994
accomplished by using one of the methods defined above. Such updates are sent to the 18995
management object for which this attribute is defined. The management object immediately 18996
validates whether the cutover is feasible, and, if feasible, arranges for the cutover to occur on 18997
schedule. 18998

62734/2CDV © IEC(E) – 735 –

Annex K 18999
(normative) 19000

 19001
Standard object types 19002

Annex K specifies the standard object types defined by this standard. Each object type has 19003
three pieces of information to identify it: 19004

• a corresponding standard object type identifier that identifies the standard defined base 19005
object type (example: analog input); 19006

• a corresponding object standard subtype identifier that identifies the standard subtype of a 19007
standard base type (example: analog input specialized for temperature); and 19008

• a corresponding vendor subtype identifier that identifies a vendor specific subtype of 19009
either a standard base object or standard subtype. 19010

Standard base objects shall have their object subtype identifier value equal to zero (0) and 19011
their vendor subtype identifier equal to zero (0). 19012

A newer version of this standard that finds it necessary to extend the base object type 19013
definition of this standard may maintain the standard object identifier value and the subtype 19014
value of zero (0). This is permitted since the DMO contains an attribute to represent the 19015
version of the standard in use by the device, which can be thus be used to establish the base 19016
object type structure in use. 19017

IEC62734 industry profiles may define a standard object subtype as a standard object. Doing 19018
so creates a standard profile subtype. This standard provides a range of 1..255 to represent 19019
all such standard object subtype across all profiles. 19020

Vendors may also subtype either a standard base object or a standard subtype object. This 19021
standard provides a range of 1..255 for vendor specific subtyping. 19022

Object subtyping occurs when: 19023

• one or more attributes is/are added to the base type; 19024

• one or more methods is/are added to the base type; 19025

• one or more alerts is/are added to the base type; or 19026

• any combination of the above. 19027

Examples of object identification with subtyping follow: 19028

• Analog input standard base object: 19029
– object type identifier = 99, 19030
– object standard subtype identifier = 0, 19031
– vendor subtype identifier = 0. 19032

• Analog input temperature subtype object: 19033
– object type identifier = 99, 19034
– object standard subtype identifier = (this standard defines (this standard’s profile 19035

team), range 1..255), 19036
– vendor subtype identifier = 0. 19037

• Vendor-specific analog input object: 19038
– object standard type identifier = 99, 19039
– object standard subtype identifier = 0, 19040

 – 736 – 62734/2CDV © IEC(E)

– vendor-specific subtype identifier = (vendor defines, range 1..255). 19041

• Vendor-specific analog input temperature object: 19042
– object standard type identifier = 99, 19043
– object standard subtype identifier = n, 19044
– vendor specific subtype identifier = (vendor defines, range 1..255). 19045

Table K.1 specifies standard object types. 19046

Table K.1 – Standard object types 19047

Object type Standard object type
identifier
(1 octet)

Standard object
industry subtype

identifier (1 octet)

Object identifier
restrictions

Object types available to all UAPs

Null object 0 0 Reserved

UAP management object 1 0 This object is required for
all UAPs, but is not
required for the DMAP.

AlertReceiving object 2 0

UploadDownload object 3 0

Concentrator object 4 0

Dispersion object 5 0

Tunnel object 6 0

Interface object 7 0

Reserved for use by this
standard for standard
UAP objects

8..50 0 Reserved for future
standard object
definitions for profile
independent objects

Reserved for use by this
standard

51..95 0 Industry-specific types

Process control industry object types

Analog input 99 0 Analog input

Analog output 98 0 Analog output

Binary input 97 0 Binary input

Binary output 96 0 Binary output

DMAP object types

DMAP: Device
management object
(DMO)

127 0 This object facilitates the
management of the
device’s general device-
wide functions

DMAP: Alert reporting
management object
(ARMO)

126 0 This object facilitates the
management of the
device’s alert reporting
functions

DMAP: Device security
management object
(DSMO)

125 0 This object facilitates the
management of the
device’s security
functions

DMAP: DL management
object (DLMO)

124 0 This object facilitates the
management of the
device’s DL

DMAP: NL management
object (NLMO)

123 0 This object facilitates the
management of the
device’s NL

62734/2CDV © IEC(E) – 737 –

Object type Standard object type
identifier
(1 octet)

Standard object
industry subtype

identifier (1 octet)

Object identifier
restrictions

DMAP: TL management
object (TLMO)

122 0 This object facilitates the
management of the
device’s TL

DMAP: Application
sublayer management
object (ASLMO)

121 0 This object facilitates the
management of the
device’s application
sublayer

DMAP: Device
provisioning object (DPO)

120 0 This object facilitates the
provisioning of the device
before it joins the network

DMAP: Health reports
concentrator object
(HRCO)

128 0 This object facilitates the
periodic publication of
device health reports to
the system manager

Standard management
objects

119..114 0

System time service
object (STSO)

100 0 This object facilitates the
management of system-
wide time information

Directory service object
(DSO)

101 0 This object facilitates the
management of
addresses for all existing
devices in the network

System configuration
object (SCO)

102 0 This object facilitates the
configuration of the
system including contract
establishment,
modification and
termination

Device management
service object (DMSO)

103 0 This object facilitates
device joining, device
leaving, and device
configuration

System monitoring object
(SMO)

104 0 This object facilitates the
monitoring of system
performance

Proxy security
management object
(PSMO)

105 0 This object acts as a
proxy for the security
manager

Device provisioning
service object (DPSO)

106 0 This object facilitates
device provisioning

Standard system
management objects

107..113 0 Reserved for standard
management object type
definitions. See Clause 6
for details

Vendor-defined types

Vendor-defined objects 129..255 0 Reserved for use by
implementers

 19048
Table K.2 specifies standard object instances. 19049

 – 738 – 62734/2CDV © IEC(E)

Table K.2 – Standard object instances 19050

Object type Standard object
type identifier (1

octet)

Standard object
industry subtype
identifier (1 octet)

Standard object
identifier
(1 octet)

Object identifier
restrictions

Object types available to all UAPs

Null object 0 0 0 Reserved

UAP management
object

1 0 1 This object is
required for all
UAPs, but is not
required for the
DMAP

UploadDownload
object

3 0 2 For UAP upgrade
use only

Process control industry object types

N/A

DMAP object types

DMAP: Device
management object
(DMO)

127 0 1 This object
facilitates the
management of the
device’s general
device-wide
functions

DMAP: Alert
reporting
management object
(ARMO)

126 0 2 This object
facilitates the
management of the
device’s alert
reporting functions

DMAP: Device
security
management object
(DSMO)

125 0 3 This object
facilitates the
management of the
device’s security
functions

DMAP: DL
management object
(DLMO)

124 0 4 This object
facilitates the
management of the
device’s DL

DMAP: NL
management object
(NLMO)

123 0 5 This object
facilitates the
management of the
device’s NL

DMAP: TL
management object
(TLMO)

122 0 6 This object
facilitates the
management of the
device’s TL

DMAP: Application
sublayer
management object
(ASLMO)

121 0 7 This object
facilitates the
management of the
device’s application
sublayer

DMAP:
Upload/download
object (UDO)

3 0 8 This object
facilitates the
management of the
device’s
upload/download
functions

DMAP: Device
provisioning object
(DPO)

120 0 9 This object
facilitates the
provisioning of the
device before it
joins the network

62734/2CDV © IEC(E) – 739 –

Object type Standard object
type identifier (1

octet)

Standard object
industry subtype
identifier (1 octet)

Standard object
identifier
(1 octet)

Object identifier
restrictions

DMAP: Health
reports concentrator
object (HRCO)

128 0 10 This object
facilitates the
periodic publication
of device health
reports to the
system manager

System management AP standard types

System time service
object (STSO)

100 0 1 This object
facilitates the
management of
system-wide time
information

Directory service
object (DSO)

101 0 2 This object
facilitates the
management of
addresses for all
existing devices in
the network

System
configuration object
(SCO)

102 0 3 This object
facilitates the
configuration of the
system including
contract
establishment,
modification and
termination

Device
management
service object
(DMSO)

103 0 4 This object
facilitates device
joining, device
leaving, and device
configuration

System monitoring
object (SMO)

104 0 5 This object
facilitates the
monitoring of
system performance

Proxy security
management object
(PSMO)

105 0 6 This object acts as
a proxy for the
security manager

Upload/download
object (UDO)

3 0 7 This object
facilitates
downloading
firmware/data to
devices and
uploading data from
devices

Alert-receiving
object (ARO)

2 0 8 This object receives
all the alerts
destined for the
system manager

Device provisioning
service object
(DPSO)

106 0 9 This object
facilitates device
provisioning

Health reports
concentrator object
(HRCO)

4 0 10 This object
facilitates the
periodic publication
of device health
reports to the
system manager

Vendor-defined types

… … … … …

 19051

 – 740 – 62734/2CDV © IEC(E)

Annex L 19052
(informative) 19053

 19054
Standard data types 19055

Table L.1 specifies the standard data type identifiers for the standard data types. Standard 19056
data types are defined for constructs that are accessible using ASL services, such as read 19057
and write. 19058

NOTE 1 It is possible for data structures to not be directly accessible using ASL services, e.g., a data structure 19059
that is used as a parameter of a method, but which is not exposed as an ASL-accessible object attribute. 19060

NOTE 2 Many of the type identifiers in this table are based on type identifiers used in an existing IEC standard. 19061

Table L.1 – Standard data types 19062

Data type Type
identifier

(Unsigned16)

Size
(octets)

Reserved types

Invalid (type not specified) 0 0

AP standard data structure types

Communication association endpoint 468 See Table 265

ObjectAttributeIndexAndSize 469 See Table 264

Communication contract data 470 See Table 266

Alert communication endpoint 471 See Table 267

ObjectIDandType 472 See Table 271

Unscheduled correspondent 473 See Table 272

Process control types

Process control value and status for
analog value

65 See Table 300

Process control value and status for
binary value

66 See Table 301

Process control scaling 68 See Table 304

Process control mode 69 See Table 302

Alert descriptor types

Process control alarm report
descriptor for analog with single
reference condition

498 See Table 270

Alert report descriptor

(also used for process control binary
alarms)

499 See Table 269

62734/2CDV © IEC(E) – 741 –

Data type Type
identifier

(Unsigned16)

Size
(octets)

General communication / management types

Contract_Data 401 See Table 30

Address_Translation_Row 402 See Table 14

New_Device_Contract_Response 405 See Table 31

Metadata_attribute 406 See Table 2

Security_Sym_Join_Request 410 See Table 62

Security_Sym_Join_Response 411 See Table 63

Security_Sym_Confirm 412 See Table 66

Security_Pub_Join_Request 415 See Table 70

Security_Pub_Join_Response 416 See Table 70

Security_Pub_Confirm_Request 417 See Table 72

Security_Pub_Confirm_Response 418 See Table 72

Security_New_Session_Request 420 See Table 81

Security_New_Session_Response 421 See Table 82

Security_Key_and_Policies 422 See Table 84

Security_Key_Update_Status 423 See Table 85

DPSOWhiteListTbl 440 See Table 372

NLContractTbl 441 See Table 207

NLRouteTbl 442 See Table 208

NLATTbl 443 See Table 209

 19063

 – 742 – 62734/2CDV © IEC(E)

Annex M 19064
(normative) 19065

 19066
Identification of tunneled legacy fieldbus protocols 19067

Table M.1 lists the Unsigned8 protocol identification values currently defined to tunnel legacy 19068
wired fieldbus protocols via the tunnel object. 19069

Table M.1 – Identification of tunneled legacy fieldbus protocols 19070

Value Protocol

0 None (required)

1 HART (see IEC 61158)

2 FF-H1 (see IEC 61158)

3 Modbus/RTU (see IEC 61158)

4 PROFIBUS PA (see IEC 61158)

5 CIP (see IEC 61158)

6..255 <reserved>

 19071
NOTE These protocol identification values have been isolated into Annex M in order to facilitate ease of 19072
maintenance. 19073

Value 0 for None should be preserved or tunnel functionality will be impaired. 19074

62734/2CDV © IEC(E) – 743 –

Annex N 19075
(informative) 19076

 19077
Tunneling and native object mapping 19078

N.1 Overview 19079

Tunneling involves the exchange of PDUs of one protocol by using a second protocol. Most 19080
often these PDUs are application PDUs, but lower layer PDUs may also be exchanged. The 19081
PDU is encapsulated in the second protocol at an origination node and sent through the 19082
network to a termination node. With tunneling, what goes in one end comes out the other end, 19083
no more, no less. 19084

Foreign protocol application communication (FPAC) is a more sophisticated PDU exchange 19085
mechanism. It involves the usage of additional mechanisms, including caching, compression, 19086
address translation, and proxy. As far as the application is concerned, the same PDUs are 19087
still exchanged between the origination node and the termination node as with tunneling. The 19088
difference is that the additional mechanisms act to improve energy efficiency and host system 19089
responsiveness. 19090

N.2 Tunneling 19091

Tunneling carries messages verbatim between endpoints of a tunnel. This standard provides 19092
tunneling that uses un-buffered client/server exchange of foreign PDUs between exactly two 19093
pre-configured tunnel endpoints. No interpretation of the PDU content is required. For most 19094
legacy protocols, this method will not be energy efficient, and some protocols may not operate 19095
properly due to variable or lengthy response times associated with sleeping devices. 19096
Regardless of the shortcomings, in many cases this will be the most expedient method for 19097
adapting existing devices and systems to this standard. 19098

An extension of tunneling interprets the addressing within foreign PDUs to allow dynamic 19099
foreign PDU exchange with multiple endpoints. 19100

N.3 Foreign protocol application communication 19101

Tunneling is not an appropriate mechanism for most low-power wireless link applications. It is 19102
usually necessary to minimize PhPDU overhead and the number of transactions in order to 19103
conserve energy stored in batteries or to operate within the power budget of scavenging and 19104
harvesting techniques. In addition, foreign protocols often have a need for fast response in 19105
order to avoid built-in timeouts. Devices in low-power wireless operation are most often in a 19106
sleep mode and thus cannot respond immediately. 19107

FPAC increases energy efficiency and addresses potential timing issues by using change-of-19108
state transfer and caching to eliminate redundant transfer. Improvements in energy efficiency 19109
and performance are achieved by caching the information in the gateway, transferring 19110
information to the gateway only when it changes, and providing a heartbeat mechanism for 19111
integrity. This minimizes transfers initiated by the end devices (i.e., periodic publications), as 19112
well as minimizing transfers initiated by the foreign communication link (i.e., multi-master 19113
access through the gateway). In addition, this method can address foreign protocol timing 19114
requirements. Compared to tunneling, additional effort is necessary to translate the foreign 19115
protocol. 19116

This standard provides support for FPAC that minimizes PhPDU overhead using a 19117
combination of techniques: 19118

 – 744 – 62734/2CDV © IEC(E)

• Encapsulation is limited to a single encapsulation. Protocol translators provide additional 19119
encapsulation across foreign links as necessary. 19120

• Encapsulation is achieved through configuration agreement by carrying the foreign 19121
protocol within the protocol defined by this standard, rather than by carrying additional 19122
protocol headers. Mapping occurs as follows: 19123
– Transport supported relationships (publish/subscribe and client/server). 19124
– Foreign addresses and native addresses. 19125
– Size fields and integrity fields. 19126

• This standard provides a native application service format for message exchange. Foreign 19127
protocols have their own service formats and message exchange protocols. The tunnel 19128
object allows the transfer of foreign APDUs with no extraneous overhead imposed by the 19129
native application service format. 19130

This standard provides support for FPAC that minimizes transaction overhead using the 19131
following techniques: 19132

• Distributed buffer caching mechanisms to minimize redundant transfer of unchanged data 19133
between gateways and end devices. 19134

• Periodic, change-of-state (CoSt), and aperiodic transfer mechanisms. 19135

• Watchdog timers to monitor endpoint and communication channel availability and assure 19136
data quality. 19137

This standard provides support for FPAC that improves foreign protocol device access timing 19138
performance (and minimizes unnecessary transactions) by the provision of buffered device 19139
information through a gateway high side interface. 19140

NOTE Change of state (CoSt) is distinct from class of service (CoS) as defined by IEEE 802.1Q. 19141

N.4 Native object mapping 19142

This standard supports a native object format and messaging services. Automation-specific 19143
objects can be used to support protocol translation by using these objects to perform a 19144
mapping of the foreign protocol into these objects and their messaging. Compared to the 19145
tunneling and FPAC methods, additional effort is necessary to translate the foreign protocol. 19146

N.5 Tunneling and native object mapping tradeoffs 19147

Native object mapping has a unique advantage in the ability to build a single standard-19148
compliant end device for use with multiple foreign protocols. This is especially attractive for 19149
new devices. 19150

Tunneling and FPAC have an advantage in simplicity for adapting wired automation devices 19151
through an adapter. Little, if any, translation may be required on either end. 19152

Using tunneling in conjunction with native object mapping is also useful. This allows common 19153
legacy functions to use native object mapping, while rarely used functions can be tunneled. 19154
This can lead to less total effort in protocol translation. 19155

62734/2CDV © IEC(E) – 745 –

Annex O 19156
(informative) 19157

 19158
Generic protocol translation 19159

O.1 Overview 19160

This standard does not include protocol translators. It does include features to support the 19161
construction of protocol translators (generally located within gateways) for common fieldbus 19162
protocols, where such a translator would also be sensitive to the constraints of low-power 19163
wireless automation networks. Since specific protocol translators are not defined in this 19164
standard, all support for protocol translation is thus generic. 19165

Annex O provides an example of how to use the tunnel object and a conceptual GIAP to 19166
support common protocol translation interactions. The tunnel object includes the normative 19167
features to support protocol translation. 19168

Specific protocol translators (for specific fieldbuses) could include Annex O, potentially in 19169
modified form. They could also use a different approach. Such choices are not specified by 19170
this standard. 19171

O.2 Publish 19172

A portion of a generic gateway is depicted in Figure O.1, which relates to the usage of 19173
publication. A generic protocol translator interacts with a gateway UAP through the GIAP. The 19174
gateway UAP uses the TUN object to interact with remote peers via the lower protocol suite 19175
through the ASL SAP. 19176

FPT-PAI FPT-PDUOther FPT-PCI

Protocol- specific mapping

GS_Session_ID,
GS_Lease_ID

Foreign PDU

Protocol- specific filtering

GS_Publish_Data

Flow_Type = publish
Update_Policy
Period, Phase, Stale_Limit
Array of Tunnel endpoints

Store/forward
process

Publication(s) to linked
tunnel endpoint(s)

Generic
protocol
translator

Gateway
UAP

Period/phase
Timer

GSAP
G_Publish

TUN

Publication
buffering

Attributes

GS_Transfer_Mode

Transmit
portion

of
foreign
PDU

ASL SAP

 19177

Figure O.1 – Generic protocol translation publish diagram 19178

A foreign PDU is received by the protocol translator, and protocol-specific filtering is applied. 19179
Depending on the protocol, a combination of FPT-PAI, other FPT-PCI, and FPT-PDU may be 19180
necessary in order to determine the proper GS_Session_ID and GS_Lease_ID for GIAP 19181

 – 746 – 62734/2CDV © IEC(E)

usage in linking to a subscriber. The protocol-specific filtering determines the portion of the 19182
foreign PDU that needs to be transmitted (GS_Publish_Data) and foreign protocol-specific 19183
transport parameters such as priority (GS_Transfer_Mode). The parameters are then used to 19184
invoke GIAP services. 19185

The GS_Session_ID and GS_Lease_ID are used by the gateway UAP to identify the TUN 19186
object and to retrieve the necessary parameters for store and forward processing decisions. 19187
GS_Publish_Data is buffered and forwarded at the appropriate time based on the 19188
Update_Policy, the period, the phase, the Stale_Limit, and the prior and current data content. 19189
Store and forward decisions are also driven by timer events based on the period and the 19190
phase. The ASL SAP is used to forward any messages. 19191

A publication may be sent to one or more endpoints depending on the number of elements 19192
contained by the array of tunnel endpoints. 19193

O.3 Subscribe 19194

A portion of a generic gateway is depicted in Figure O.2, which relates to the usage of 19195
subscription. A generic protocol translator interacts with a gateway UAP through the GIAP. 19196
The gateway UAP uses the TUN object to interact with remote peers via the lower protocol 19197
suite through the ASL SAP. 19198

GSAP
G_Subscribe

Foreign PDU

Protocol - specific PDU assembly

Store/forward
process

Generic
protocol
translator

Flow_Type= subscribe
Update_Policy
Period, Phase, Stale_Limit
Tunnel endpoint
Foreign Source_Address
Foreign_Destination_Address
Connection_Info[]

TUN
Attributes

Publication
buffering

Period/phase
Timer

Gateway
UAP

ASL SAP

GS_Publish_Data

Receive
portion

of
foreign
PDU

GS_Connection_Info

Publication from
linked tunnel endpoint

GS_Session_ID,
GS_Lease_ID

Stale_Limit_Count

GS_Foreign_Source_Address,
GS_Foreign_Destination_Address

 19199

Figure O.2 – Generic protocol translation subscribe diagram 19200

A publication APDU arrives at the gateway UAP through the ASL SAP. The addressing 19201
indicates a local TUN object that is linked to the remote publisher TUN object. The necessary 19202
attributes are retrieved from the TUN object for store and forward decisions. 19203

Publication data includes the GS_Publish_Data from the publisher. Publication buffering is 19204
based on Update_Policy, the Period, the Phase, the Stale_Limit, and Period/Phase based 19205
timer events. Forwarding occurs to the protocol translator through the GIAP based on polled 19206
and event driven interaction with the protocol translator. The gateway UAP also stores and 19207
includes the GS_Session_ID and GS_Lease_ID for the protocol translator to identify the 19208
publication. Publication specific information may be stored locally and used to reduce 19209
unnecessary transmission of the information. This information includes addressing information 19210

62734/2CDV © IEC(E) – 747 –

(GS_Foreign_Source_Address and GS_Foreign_Destination_Address) and connection 19211
specific information (GS_Connection_Info). 19212

The protocol translator performs a protocol-specific assembly to generate the foreign PDU. 19213

O.4 Client 19214

A portion of a generic gateway is depicted in Figure O.3, which relates to the transmission of 19215
client/server tunneled messages. A generic protocol translator interacts with a gateway UAP 19216
through the GIAP. The gateway UAP uses the TUN object to interact with remote peers via 19217
the lower protocol suite through the ASL SAP. 19218

FPT-PAI FPT-PDUOther FPT-PCI

Protocol-specific mapping

Foreign PDU

Protocol -specific filtering

GS_Request_Data
-or-

GS_Response_Data

Store/forward
process

Generic
protocol
translator

- conditional -
GS_Transaction_Info

Transmit
portion

of
foreign
PDU

GSAP
G_Client_Server

GS_Buffer,
GS_Transfer_Mode

Gateway
UAP

ASL SAP

Tunnel messages(s) to linked
tunnel endpoint(s)

Flow_Type = tunnel
Array of Tunnel endpoints
Transaction_Info[]

TUN
Attributes

GS_Session_ID,
GS_Lease_ID

Buffering

 19219

Figure O.3 – Generic protocol translation client/server transmission diagram 19220

A foreign PDU is received by the protocol translator, and protocol-specific filtering is applied. 19221
Depending on the protocol, a combination of FPT-PAI, other FPT-PCI, and FPT-PDU may be 19222
necessary in order to determine the proper GS_Session_ID and GS_Lease_ID for GIAP 19223
usage. Protocol-specific filtering determines the portion of the foreign PDU that needs to be 19224
transmitted (GS_Request_Data or GS_Response_Data) and the appropriate transport 19225
parameters such as priority (GS_Transfer_Mode). For requests, the SDU may also specify 19226
GS_Transaction_Info that is to be returned at the GIAP when a matching response arrives. 19227
The parameters are then used to invoke GIAP services. 19228

The GS_Session_ID and GS_Lease_ID are used by the gateway UAP to identify the TUN 19229
object and to retrieve the necessary parameters for store and forward processing decisions. 19230
The GIAP information (GS_Request_Data or GS_Response_Data) may be buffered before 19231
forwarding, depending on whether buffering is requested (GS_Buffer), depending on the prior 19232
buffer content, and depending on whether a request or response is specified. The ASL SAP is 19233
used to forward any messages. 19234

A tunnel request message may be sent to one or more endpoints depending on the number of 19235
elements contained by the array of tunnel endpoints. A tunnel response message can be sent 19236
to a single endpoint, but multiple responses can be sent to the same endpoint over time. 19237

 – 748 – 62734/2CDV © IEC(E)

O.5 Server 19238

A portion of a generic gateway is depicted in Figure O.4, which relates to the reception of 19239
client/server tunneled messages. A generic protocol translator interacts with a gateway UAP 19240
through the GIAP. The gateway UAP uses the TUN object to interact with remote peers via 19241
the lower protocol suite through the ASL SAP. 19242

Foreign PDU

Protocol- specific PDU assembly

Store/forward
process

Generic
protocol
translator

Receive
portion

of
foreign
PDU

BufferingFlow_Type= tunnel
Tunnel endpoint
Foreign_Source_Address
Foreign_Destination_Address
Connection_Info[]
Transaction_Info[]

TUN
Attributes

Tunnel messages(s) from a
linked tunnel endpoint

Gateway
UAP

ASL SAP

GSAP
G_Client_Server

GS_Request_Data
-or-

GS_Response_Data

GS_Connection_Info
+

GS_Transaction_InfoGS_Session_ID,
GS_Lease_ID

GS_Foreign_Source_Address,
GS_Foreign_Destination_Address

 19243

Figure O.4 – Generic protocol translation client/server reception diagram 19244

A tunnel request or response APDU arrives at the gateway UAP through the ASL SAP. The 19245
addressing indicates a local TUN object that is linked to a remote TUN object. The necessary 19246
attributes are retrieved from the TUN for store and forward decisions. 19247

Tunnel APDU data includes either GS_Request_Data or GS_Response_Data. Depending on 19248
the tunnel mode, the response data may be buffered to answer subsequent requests from 19249
local buffers. Forwarding occurs to the protocol translator through the GIAP based on polled 19250
and event driven interaction with the protocol translator. The gateway UAP also stores and 19251
includes the GS_Session_ID and GS_Lease_ID for the protocol translator to identify the 19252
tunnel data. Tunnel message specific information may be stored and used to reduce 19253
unnecessary duplicated transmission of the information. This includes addressing information 19254
(GS_Foreign_Source_Address and GS_Foreign_Destination_Address), connection specific 19255
information (GS_Connection_Info) and transaction specific information (GS_Transaction_Info) 19256
to be conveyed in responses. 19257

The protocol translator performs a protocol-specific assembly to generate the foreign PDU. 19258

62734/2CDV © IEC(E) – 749 –

Annex P 19259
(informative) 19260

 19261
Exemplary GIAP adaptations for this standard 19262

P.1 General 19263

This standard does not define functionality for a complete gateway. It does include supporting 19264
examples that allow gateway construction by the addition of a protocol translator, and a 19265
hardware interface and protocol stack for a foreign network. Annex P does not define a 19266
protocol translator; that might be a subject for future standardization. 19267

Annex P provides an example of a conceptual interface that would be internal to a gateway – 19268
the GIAP, which is intended to be an abstraction of the underlying wireless system. In 19269
particular, it is intended to provide an abstraction for the wireless system described in this 19270
standard. 19271

Annex P describes one way to implement the informative GIAP by using this standard’s 19272
normative objects and services. It is not a complete design, but a reference to aid 19273
understanding. 19274

Specific gateways (for specific fieldbuses) could include Annex P, thus making it normative. 19275
They could also determine a different approach that was compliant. 19276

In this exemplary gateway, the GIAP services are implemented as a specialized UAP that 19277
uses native objects as defined in this standard. 19278

P.2 Parameters 19279

GS_Network_Address is the IPv6Address. 19280

P.3 Session 19281

The GIAP session service tracks resources and releases the resource when the session is 19282
closed or expires. Resources include communication contracts, bulk transfers in progress, 19283
buffered information, publication/subscribe/Client/server resources in objects, and alert 19284
subscriptions. 19285

P.4 Lease 19286

The GIAP lease service allows allocation of resources and individual release when the lease 19287
is closed or expires. Resources include communication contracts and object resources for: 19288
bulk transfer, publish/subscribe, client/server, and alerts. 19289

A lease differs from a communication contract in that a lease allocates resources both within 19290
a gateway entity and, when needed, the resources corresponding to a related communication 19291
contract. 19292

The specification of multiple IPv6Addresses within the GS_Network_Address_List represents 19293
a multicast group. Specifying multiple addresses will result in a simulated multicast via 19294
multiple unicast operations. Even though this is a single lease, simulated multicast requires 19295
the allocation of multiple point-to-point contracts and simultaneous management of this 19296
contract set within the gateway. 19297

 – 750 – 62734/2CDV © IEC(E)

GS_Resource specifies the bulk transfer item for a lease (Destination_Port and OID). 19298
GS_Resource is also used in the linkage of matching sets of TUN objects and matching CON 19299
and DIS objects. A matched publisher and subscriber(s) specify related values in lease 19300
creation. These values, along with the GS_Network_Address_List, allow the Array of Tunnel 19301
endpoint to be filled on linked TUN objects and CON and DIS objects to be allocated and 19302
linked. 19303

Subscriber leases specify GS_Update_Policy, GS_Period, GS_Phase, and GS_Stale_Limit. 19304

P.5 Device list report 19305

There is no specific adaptation information for this item. 19306

P.6 Topology report 19307

There is no specific adaptation information for this item. 19308

P.7 Schedule report 19309

There is no specific adaptation information for this item. 19310

P.8 Device health report 19311

There is no specific adaptation information for this item. 19312

P.9 Neighbor health report 19313

GS_Signal_Strength maps to ED and GS_Signal_Quality maps to LQI as defined in 9.1.15.2. 19314

P.10 Network health report 19315

There is no specific adaptation information for this item. 19316

P.11 Time 19317

There is no specific adaptation information for this item. 19318

P.12 Client/server 19319

P.12.1 General 19320

The GIAP client/server service uses the TUN object or the IFO, depending on the lease 19321
establishment. 19322

P.12.2 Native access 19323

Where the lease establishment specifies GS_Protocol_Type = 0, the native protocol is 19324
configured through an IFO, the GS_Network_Address_List is empty, the 19325
GS_Lease_Parameters specify only GS_Transfer_Mode, which in turn specifies both priority 19326
and discard eligibility, as defined in Clause 12 for the read, write and execute services. 19327

62734/2CDV © IEC(E) – 751 –

The payloads (GS_Request_Data and GS_Response_Data) conform to the native APDU 19328
formats and use only the ASL service types: read, write, and execute. The IFO objects in 19329
gateways transfer these payloads via the read, write, and execute services. 19330
GS_Transfer_Mode is used with each transfer to indicate the quality of service, including 19331
priority, associated with the transfer. 19332

GS_Buffer is used to request buffered and unbuffered behavior as appropriate to the ASL 19333
service and attribute classifications. 19334

GS_Transaction_Info is empty. 19335

The native client/server service is used to address native objects in the gateway. 19336

P.12.3 Foreign access 19337

Where the lease establishment specifies a GS_Protocol_Type, a foreign protocol is 19338
configured through a TUN object. GS_Network_Address_List is supplied to establish the 19339
remote TUN endpoints. GS_Resource is used to determine whether 2-part or 4-part tunnel 19340
services apply and to match the TUN endpoints within devices. A lone client or server lease 19341
establishes a 2-part tunnel. A pair of client and server leases with the same GS_Resource 19342
establishes a 4-part tunnel. GS_Lease_Parameters supply GS_Connection_Info on Server 19343
services as appropriate for the foreign protocol and GS_Transfer_Mode in order to set default 19344
transfer quality of service and priority. 19345

The payloads (GS_Request_Data and GS_Response_Data) conform to the foreign APDU 19346
formats, including specification of foreign service types and service-specific fields. The TUN 19347
objects in gateways transfer these payloads by using the 2-part and 4-part tunnel services. 19348
GS_Cache is used to request buffered and unbuffered behavior as appropriate to the TUN 19349
object configuration and the foreign protocol requirements. GS_Transfer_Mode is used with 19350
each transfer to indicate the quality of service, including priority, associated with the transfer. 19351

The GS_Transfer_Mode specifies priority and discard eligibility, as defined in Clause 12 for 19352
the tunnel service. 19353

GS_Transaction_Info is supplied on client services and returned on server services as 19354
appropriate for the foreign protocol. 19355

P.13 Publish/subscribe 19356

P.13.1 General 19357

The GIAP publish/subscribe service uses the TUN object or CON and DIS objects, depending 19358
on the lease establishment. 19359

P.13.2 Native access 19360

Where the lease establishment specifies GS_Protocol_Type = 0, the native application 19361
protocol will be published through the CON object and subscribed through the DIS object. 19362
GS_Network_Address_List is empty. GS_Lease_Parameters contain only GS_Transfer_Mode 19363
in order to set default transfer quality of service and priority. 19364

GS_Network_Address_List is used to establish the publish and subscribe endpoints. 19365
GS_Network_Address determines the remote device address. GS_Resource is used to 19366
determine the DIS object within this device. A local CON object is selected to be linked with 19367
the remote DIS object. GS_Lease_Parameters supply GS_Update_Policy, GS_Period, 19368
GS_Phase, and GS_Stale_Limit to establish the periodic or changes of state behavior for the 19369
CON and DIS objects. GS_Connection_Info is empty. 19370

 – 752 – 62734/2CDV © IEC(E)

The publication payload (GS_Publish_Data) is sent and received in NativeIndividualValue or 19371
NativeValueList format. The CON and DIS objects in gateways transfer these payloads by 19372
using the publish service. GS_Transfer_Mode is provided with each transfer in order to 19373
indicate the quality of service, including priority, associated with the transfer. 19374

The GS_Transfer_Mode specifies priority and discard eligibility, as defined in Clause 12 for 19375
the publish service. 19376

P.13.3 Foreign access 19377

Where the lease establishment specifies GS_Protocol_Type not equal to 0, 19378
GS_Protocol_Type is used to specify the foreign application protocol that will be published 19379
through the TUN objects. GS_Network_Address_List is used to establish the remote TUN 19380
endpoints. GS_Resource is used to match the TUN endpoints within devices. 19381
GS_Lease_Parameters supply GS_Update_Policy, GS_Period, GS_Phase, and 19382
GS_Stale_Limit to establish the periodic or changes of state behavior for Publish and 19383
Subscribe services. GS_Lease_Parameters supply GS_Connection_Info on Subscribe 19384
services as appropriate for the foreign protocol and GS_Transfer_Mode in order to set default 19385
transfer quality of service and priority. 19386

The publication payload (GS_Publish_Data) is sent and received in non-native format. The 19387
TUN objects in gateways transfer these payloads by using the publish service. 19388
GS_Transfer_Mode is provided with each transfer in order to indicate the service, including 19389
priority, associated with the transfer. 19390

The GS_Transfer_Mode specify priority and discard eligibility, as defined in Clause 12 for the 19391
tunnel service. 19392

P.14 Bulk transfer 19393

The GIAP bulk transfer service is implemented through the bulk transfer protocol and IFO and 19394
UDO objects. 19395

Bulk transfer is used for upload/download in half-duplex mode. An IFO acts as a client. UDOs 19396
act as servers. The UDO object identifier represents the target resource for the operation. A 19397
series of AL block transfers are controlled by the end objects to provide ordered, error-free 19398
delivery of complete blocks of a negotiated size. There is no reliance on reliable transfer in 19399
lower layers. A multi-phase transfer protocol (open, transfer and close) is employed. A series 19400
of separate requests and responses track the total transfer size. Timing attributes are defined 19401
for the UDO to assist the client in determining timeout and retry policies and to avoid 19402
congestion errors. An upload or download operation may be closed due to errors on either 19403
end. 19404

Lease establishment for bulk transfers establishes the necessary communication resources 19405
via a communication contract prior to bulk transfer. 19406

The G_Bulk_Open request primitive is used to initiate a bulk transfer. The target device for a 19407
bulk transfer is addressed by the GS_Network_Address, which is aIPv6Address. The target 19408
item for a bulk transfer is identified by GS_Resource, which contains the Transport_Port and 19409
the OID pointing to a specific UDO. 19410

P.15 Alert 19411

The GIAP alert service is implemented through the alert (alarms and events) services. 19412

62734/2CDV © IEC(E) – 753 –

Lease establishment for alerts establishes the necessary communication resources via a 19413
communication contract to enable alert receipt. GS_Alert_Source_ID specifies 19414
Transport_Port, OID, and alert type. 19415

P.16 Gateway configuration 19416

There is no specific adaptation information for this item. 19417

P.17 Device configuration 19418

There is no specific adaptation information for this item. 19419

 – 754 – 62734/2CDV © IEC(E)

Annex Q 19420
(informative) 19421

 19422
Exemplary GIAP adaptations for IEC 62591 19423

NOTE The following information was derived by analysis of IEC 62591 and may contain errors. See the actual 19424
IEC standard for a full and correct understanding. 19425

Q.1 General 19426

Q.1.1 Overview 19427

This standard does not define functionality for a complete gateway. It does include supporting 19428
examples that allow gateway construction by the addition of a protocol translator and a 19429
hardware interface and stack for a foreign network. Such an addition requires a separate 19430
effort to define the protocol translator. 19431

Annex Q describes an exemplary gateway interface, called the GIAP, which is intended to be 19432
an abstraction of an underlying wireless system. In particular, it is intended to provide an 19433
abstraction for the wireless system described in this standard, and also of the wireless system 19434
described in IEC 62591. 19435

Annex Q describes one way to implement the informative GIAP by using the IEC 62591 19436
command set. It is not a complete design, but a reference to aid understanding. 19437

Specific gateways (for specific fieldbuses) could include Annex Q, thus making it normative. 19438
They might also adopt a different approach. 19439

Q.1.2 Reference 19440

Annex Q references IEC 62591, IEC 61158-5-20, IEC 61158-6-20, and HCF_SPEC-183, 19441
which specify some of the HART commands and field encodings used by IEC 62591. 19442

Q.1.3 Addressing 19443

IEC 62591 device addressing and identification information includes: 19444

• Nickname: a 2-octet short identifier for a device; 19445

• Unique ID: an 8-octet globally unique identifier formed by HCF OUI = 0x00 1B1E + 5 octet 19446
HART Unique ID, together conforming to EUI64Address requirements; 19447

• Long Tag: a 32-octet human-readable string. 19448

The GIAP interface uses logical IPv6Addresses. Most IEC 62591 commands use nicknames. 19449
IEC 62591 gateways are required to implement command 841 (Read Network Device Identity) 19450
using nickname that returns a unique ID and a long tag for a nickname. Command 832 (Read 19451
Network Device Identity) converts the unique ID to the nickname and long tag of a device. 19452

It is recommended to map the unique ID into the low octets of the longer GIAP address. 19453

Q.1.4 Stack Interface 19454

IEC 62591 describes its highest interface as an interface to the NL. The NL interface 19455
description receives parameters that it uses to invoke a TL. Regardless of the interface 19456
description, the over-the-air packet encapsulates the TL header within a NL payload. 19457

The TL payload encapsulates one or more HART or IEC 62591 commands, both requests and 19458
responses. Annex Q describes the mapping of the GIAP services to commands that are 19459
carried by the TL. 19460

62734/2CDV © IEC(E) – 755 –

Q.1.5 Tunneling 19461

IEC 62591 gateways are required to tunnel HART commands. This means that a gateway 19462
includes a foreign network (the host interface) connected to the gateway and the gateway will 19463
tunnel HART commands through the foreign network. 19464

Q.1.6 Entities 19465

The virtual gateway, network manager, host interface (host applications) and network 19466
interface (network devices) are all IEC 62591 entities that implement (issue and respond to) 19467
HART and IEC 62591 commands. The network manager has exclusive communication to a 19468
security manager. All communication between the network manager and the network devices 19469
and all communication between the host applications and the network devices is routed 19470
through the virtual gateway, which acts as a command routing hub. The virtual gateway itself 19471
also implements certain commands. The virtual gateway communicates to the network 19472
devices through one or more network access points as well as interposing network devices 19473
that perform routing. 19474

Q.1.7 Delayed response 19475

HART incorporates a delayed response mechanism, where a first response indicates that the 19476
command was received but that the actual response is delayed due to extended processing 19477
requirements. The GIAP services require handling of delayed responses within the gateway. 19478
An error is returned if a command that expects an acknowledgment is not acknowledged. 19479

Q.2 Parameters 19480

GS_Network_Address is a logical IPv6Address used to identify a specific IEC 62591 device 19481
within a network. 19482

GS_Unique_Device_ID is a device-unique identifier in EUI64Address format, used to identify 19483
a unique IEC 62591 device. All gateways share a unique ID of 0xF9 8100 0002. 19484

GS_Network_ID indicates an IEC 62591 network that is accessible through the gateway. 19485
IEC 62591 defines a 16-bit ID. IEC 62591 specifies a single gateway per network. A multi-19486
mode gateway specifies multiple networks per gateway and uses the network ID to identify 19487
the specific network associated with an IEC 62591 virtual gateway. 19488

Q.3 Session 19489

Multiple sessions may be established through a gateway. Each session is used to 19490
communicate with a specific network as indicated by the GS_Network_ID that is provided 19491
when the session is invoked. 19492

IEC 62591 includes a different concept that is also called a session. This session refers to an 19493
end to end security session. Annex Q does not refer to the security session, but the GIAP 19494
session. 19495

The session service releases IEC 62591 virtual gateway resources when a session ends 19496
explicitly or by timer expiration by using the following commands: 19497

• release all leases; 19498

• release unused communication resources; 19499

• release unused cache. 19500

 – 756 – 62734/2CDV © IEC(E)

Q.4 Lease 19501

A lease is used to allocate and release specific communication resources within the context of 19502
a session. 19503

NOTE IEC 62591 “services” are allocated communication path resources from a requesting device (including the 19504
gateway) to a destination. Services are requested from the network manager and identified by a service ID. 19505
Services have independent bandwidth and latency guarantees, based on service allocation requests. The network 19506
manager handles establishment and management of intermediate resources, such as common (shared) routes, 19507
based on requests. 19508

A lease is established with command 799 (request service). This command is used to request 19509
from the network manager a connection to another device (a service) with specified bandwidth 19510
and latency. 19511

The service is identified by a service ID (maps to GS_Lease_ID). 19512

GS_Lease_Period is set by the protocol translator. 19513

GS_Lease_Type is defined by the service request flags and the service application domain. 19514

GS_Protocol_Type is defined in Annex M. 19515

The nickname specifies the address of the gateway peer for the service (maps to 19516
GS_Network_Address_List which includes a single GS_Network_Address). IEC 62591 19517
includes multicast mechanisms, but not for services. Device level peer-to-peer is possible 19518
within the protocol, but not recommended due to security concerns. 19519

GS_Resource is unused in this context, so is set to 0. 19520

The period/latency maps to GS_Lease_Parameters (GS_Period, GS_Phase, and 19521
GS_Stale_Limit). 19522

Command 801 (delete service) is used to notify a device of the deletion of a specific service 19523
(based on the service ID) due to peer request or network manager decision. 19524

Q.5 Device list report 19525

An IEC 62591 gateway is required to implement command 814 (read device list entities). This 19526
command retrieves a list of the unique IDs for the devices known to the gateway. 19527

All devices returned are on the active device list. Whitelist and blacklist indication are 19528
maintained in the network manager and within the gateway. 19529

GS_Network_Address, GS_Unique_Device_ID, GS_Manufacturer, GS_Model, and 19530
GS_Revision are returned for each device. 19531

Q.6 Topology report 19532

The topology report returns a list of devices (GS_Device_List), their address 19533
(GS_Network_Address), and related information. The device list report identifies the devices 19534
in a system. 19535

An IEC 62591 gateway is required to implement command 834 (read network topology 19536
information). This command is used to retrieve the graph information (GS_Graph_List) for a 19537
specific device. Retrieved information includes a list of Graph IDs (GS_Graph_ID) for the 19538

62734/2CDV © IEC(E) – 757 –

graphs that the device participates in and a list of nicknames for the neighbors in the graph 19539
(associated to GS_Network_Address). 19540

An IEC 62591 gateway is required to implement command 833 (read network device’s 19541
neighbor health), which returns the set of neighbors of a specific device. Each element in the 19542
list returns the neighbor nickname (which maps to GS_Network_Address within 19543
GS_Neighbor_List). 19544

Q.7 Schedule report 19545

The schedule report service returns schedule information for a specific device identified by 19546
GS_Network_Address. The device list report may be used to identify the devices in the 19547
system. 19548

Command 783 (read superframe list, normally used by the network manager) is used to 19549
retrieve the list of superframes and their related information from a specific device. Retrieved 19550
information includes the superframe ID (GS_Superframe_ID), the number of slots 19551
(GS_Num_Time_Slots) and superframe mode flags (HCF_SPEC-183, table 47). 19552

GS_Slot_Size is fixed to 10 ms. GS_Start_Time is calculated from SuperframeSlot = 19553
(Absolute Slot Number) % Superframe.NumSlots. 19554

Command 784 (read link list; normally used by the network manager) is used to retrieve 19555
information about the link entries from a specific device. Link entries are related to slot usage 19556
within superframes. Retrieved information includes the Superframe ID (GS_Superframe_ID), 19557
the slot number in the superframe, the channel (GS_Channel), linkOptions (HCF_SPEC-183, 19558
table 46), linkType (HCF_SPEC-183, table 45), and nickname (associated to 19559
GS_Network_Address) of the link neighbor to build GS_Link_List. 19560

GS_Channel_List contains a list of whitelist and blacklist channels as defined by 19561
GS_Channel_Status to reach GS_Channel_Number. GS_Channel_Number maps to Index = 0 19562
for IEEE 802.15.4 channel = 11, 2,405 MHz … Index = 14 for IEEE 802.15.4 channel = 25, 19563
2,475 MHz. Command 817 (read channel blacklist) is used to identify the GS_Channel_Status 19564
for each channel. 19565

Q.8 Device health report 19566

The device health report returns device health information for a list of devices 19567
(GS_Device_List) each identified by GS_Network_Address. 19568

All IEC 62591 devices implement and periodically publish command 779 (report device 19569
neighbor health) to make information available to the network manager and applications. 19570

An IEC 62591 gateway is required to implement command 840 (read network device’s 19571
statistics), which reports most of the command 779 information (no power status). This 19572
command uses a Unique ID to retrieve a variety of information related to a specific device, 19573
including: 19574

• number of DPDUs generated by this device (GS_DPDUs_Transmitted); 19575

• number of DPDUs terminated by this device (GS_DPDUs_Failed_Transmission); 19576

• number of DL MIC failures (GS_DPDUs_Received, GS_DPDUs_Failed_Reception); 19577

• number of NL MIC failures (GS_DPDUs_Received, GS_DPDUs_Failed_Reception); 19578

• number of CRC errors (GS_DPDUs_Received, GS_DPDUs_Failed_Reception). 19579

Command 840 is used multiple times to gather information for each device in the list. 19580

 – 758 – 62734/2CDV © IEC(E)

Q.9 Neighbor health report 19581

Neighbor health is periodically published to the network manager by command 780 (report 19582
neighbor health list). Neighbor signal strength is periodically published to the network 19583
manager by command 787 (report neighbor signal levels), which duplicates information in 19584
command 780. 19585

G_Neighbor_Health_Report returns a list of link-level connection quality information for the 19586
set of neighbors of a specific device. The service is primarily implemented by command 833. 19587

A list of devices known to the gateway (and each device address GS_Network_Address) may 19588
be retrieved by using the GIAP device list report service (G_Device_List_Report). 19589

An IEC 62591 gateway is required to implement command 833 (read network device’s 19590
neighbor health) which returns a list of link-level connection quality information for the set of 19591
neighbors of a specific device. Each element in the list returns the neighbor nickname (which 19592
maps to GS_Network_Address), the receive signal level in dB (GS_Signal_Strength), the 19593
number of packets transmitted to the neighbor (GS_DPDUs_Transmitted), the number of 19594
failed transmissions to the neighbor where no ACK/NAK DPDU was received 19595
(GS_DPDUs_Failed_Transmission), and the packets received from neighbor 19596
(GS_DPDUs_Received). 19597

GS_Link_Status = 1 indicates that the neighbor is available for communication. 19598
GS_Link_Status = 0 indicates that the neighbor is unavailable for communication. 19599

An IEC 62591 gateway is required to implement command 840 (read network device’s 19600
statistics), which reports GS_DPDUs_Failed_Reception as described in the device health 19601
report clause. 19602

GS_Signal_Quality is not available, so is set to the maximum quality value. 19603

Q.10 Network health report 19604

The device health report and neighbor health report are used to determine 19605
GS_Device_Health_List and GS_Network_Health. 19606

An IEC 62591 gateway is required to implement command 840 (read network device’s 19607
statistics). This command uses a Unique ID to retrieve a variety of information related to a 19608
specific device, including: 19609

• number of joins (GS_Join_Count); 19610

• date of most recent join and time of join (GS_Start_Date); 19611

• average latency from the gateway to this node (GS_GPDU_Latency). 19612

ASN is a count of all slots that have occurred since forming the network. It always increments 19613
and is never reset. ASN is 5-octets long. ASN 0 is when the network is born. GS_Start_Date 19614
and GS_Current_Date are derived from ASN. 19615

Q.11 Time 19616

IEC 62591 network time is measured relative to the absolute slot number 0 (ASN 0), which is 19617
the time when the network was last restarted. Time advances in 10 ms increments per slot. 19618

Time distribution is configured by the network manager by using command 971 (write 19619
neighbor property flag) to specify a neighbor with the neighbor flags (0x01 time source, 19620

62734/2CDV © IEC(E) – 759 –

HCF_SPEC-183, table 59) indicating a specific neighbor as a time source. The IEC 62591 19621
gateway is always configured as the source of network time. 19622

Slot time is updated through neighbors by synchronization via time errors seen in packet 19623
exchanges (i.e., an ACK/NAK DPDU’s TsError field). 19624

The virtual gateway is required to synchronize with an external time source at least once per 19625
hour. UTC time is mapped to slot time from an external reference through the gateway. The 19626
mapping of ASN 0 to UTC is broadcast from the gateway. Command 793 (write UTC time 19627
mapping) is a gateway command that allows the network manager to set the mapping of the 19628
start of ASN 0 to UTC time on a device. 19629

GS_Time is based on TAI time. UTC time is based on TAI time with leap seconds added at 19630
irregular intervals. This service applies time updates through the GIAP. TAI and UTC time 19631
updates occur due to drift. UTC adds additional updates due to leap seconds. A conversion is 19632
necessary to the internal HART time format from and to GS_Time: HART date 3 octets, time 19633
of day, 3 octets. 19634

Command 794 (read UTC time mapping) is a gateway command that allows a device or the 19635
network manager to set and read the mapping of the start of ASN 0 to UTC time. 19636
GS_Command is used to set and read GS_Time within the gateway for synchronization 19637
purposes. Command 89 (Set Real-Time Clock) is used to set the time. Command 90 (read 19638
real-time clock) is used to read the current time. 19639

Q.12 Client/server 19640

Unless specified elsewhere in Annex Q, the gateway tunnels all HART commands through the 19641
GIAP client/server service. These commands are issued from a master to a slave (field 19642
device). The master assumes the client role and the slave assumes the server role. 19643

The commands follow a request/response format. Request data octets are sent from the client 19644
to the server in GS_Request_Data. Response data octets are returned from the server to the 19645
client in GS_Response_Data. The command-specific response codes are mapped into 19646
GS_Status. 19647

The GS_Buffer flag is set or cleared to indicate whether a command is to be buffered. The 19648
following commands are buffered: 19649

• 0: read unique id 19650

• 11: read unique id associated with tag 19651

• 13: read tag, descriptor, date 19652

• 20: read long tag 19653

• 21: read unique id associated with long tag? 19654

• 48: read additional status 19655

• 50: read dynamic variable assignments 19656

• 18: write tag, descriptor, date 19657

• 22: write long tag 19658

• 25: write primary variable range values 19659

• 44: write primary variable units 19660

Multiple server responses may be received with the same GS_Transaction_ID in the case of a 19661
delayed response. 19662

Client/server priority is established via the GS_Transfer_Mode. 19663

 – 760 – 62734/2CDV © IEC(E)

IEC 62591 priority falls into one of four levels, command (highest priority), process data, 19664
normal, and alarm (lowest priority). Command priority is reserved for packets containing 19665
network control, configuration and diagnostics. Process-data priority packets contain process 19666
data and are refused when three-quarters of a device’s packet buffers are full. Alarm priority 19667
packets contain alarms and events. Only a single alarm priority packet is buffered. Normal 19668
priority packets are all other packets and are refused when one-half of a device’s packet 19669
buffers are full. 19670

GS_Transaction_Info is not required. 19671

Q.13 Publish/subscribe 19672

Q.13.1 General 19673

The GIAP publish/subscribe service is implemented through publication of commands by the 19674
IEC 62591 devices using burst mode. Adapters are able to publish on behalf of non-native 19675
sub-devices. IEC 62591 natively aggregates published commands where the time aligns and 19676
command 78 (read aggregated commands) is not required. 19677

Normally, a gateway subscribes to a device publication. Within G_Subscribe, 19678
GS_Publish_Data returns the published data. 19679

It is required that a lease be acquired for the subscription (obtain GS_Lease_ID). Lease 19680
establishment allocates resources between the gateway and the device using command 799. 19681

The G_Publish_Watchdog indication is received if the publication is not received by the 19682
GS_Stale_Limit. 19683

Q.13.2 Lease establishment 19684

A subscription lease is established through the lease service. GS_Resource specifies the 19685
subscription information (command number and process variable list) to the lease service. 19686

Command 108 (write publish data mode command number) is used to select the command to 19687
be published. 19688

If command 108 specifies universal command 9 (read device variables) or common practice 19689
command 33 (read device variables), process variables will be assigned to slots for 19690
publication. Command 107 (write publish data device variables) is used to assign the slots. 19691

Command 103 (write publish data period) selects the minimum (GS_Period, GS_Phase) and 19692
maximum update period (GS_Stale_Limit) for a publication (in 1/32 ms increments up to 19693
3 600 s; requested and actual values may differ). 19694

Command 104 (write publish data trigger) sets a trigger condition (GS_Update_Policy) for 19695
publication (continuous/windowed/rising and a level) resulting in dynamic changes to 19696
publication time. Publication occurs at least as often as when the maximum period is reached. 19697

Command 109 (publish data mode control) turns publishing on and off. The publication source 19698
device contacts the network manager to request bandwidth. 19699

Q.13.3 Buffering 19700

The following commands are buffered: 19701

• 1: read primary variable 19702

• 2: read current & percent 19703

62734/2CDV © IEC(E) – 761 –

• 3: read all variables 19704

• 9: device variables and status 19705

• 33: read device variables 19706

• 123: read trend 19707

• Device-specific 19708

Q.14 Bulk transfer 19709

The GIAP bulk transfer service corresponds to the AL provided block transfer. Operation 19710
permits upload/download (GS_Mode) in either half or full duplex modes, and relies on the TL 19711
to provide a series of application level block transfers. The transport segments and 19712
reassembles based on limited MTU in lower layers and provides error free delivery of 19713
complete blocks (all pieces are in order). 19714

The operation uses several phases, including open (G_Bulk_Open), transfer 19715
(G_Bulk_Transfer), reset, and close (G_Bulk_Close). New commands were created to 19716
execute these phases. A master opens a session (command 111) with a slave to initiate the 19717
operation (GS_Transfer_ID links the phases of this operation). The master proposes the block 19718
sizes (GS_Block_Size), and the slave may reduce the size. A port (an octet) identifies the 19719
target resource (GS_Resource) for the operation (firmware, parameters, and log file). The 19720
total size is not stated (GS_Item_Size = 0) and may not be known even to the application 19721
(such as a continuous stream of samples organized in blocks). There is an octet counter 19722
selected by each end to track progress. Command 112 is organized such that the request 19723
contains download data (GS_Bulk_Data) and the response has upload data (GS_Bulk_Data). 19724
The request creates an indication in the slave; the response contains an indication in the 19725
master. The session is closed on errors. No rule exists on how to deal with the partial data 19726
set. The delayed response mechanism is mentioned in status, but is not described further. 19727

Q.15 Alert 19728

The GIAP alert service is implemented through several mechanisms. Locally buffered 19729
changes include burst mode updates (process changes), event notification (general alarms 19730
and events), device status changes, device configuration changes, network topology changes, 19731
and network schedule changes. 19732

Change notification simply indicates a change, and further action is required to retrieve 19733
altered information from the gateway buffers. The gateway entity acknowledges event arrival 19734
to devices. Publications and alerts are stored in the gateway entity. The gateway entity 19735
acknowledges alert arrival to devices. 19736

For example, the gateway often internally uses HART command 115..118 to set up change 19737
notification and HART command 119 to indicate that changes have occurred. 19738

Events are configured with assigned event numbers on a per-device basis. 19739

Command 116 (write event notification bit mask) configures the event mask that is used to 19740
trigger an event notification for a specific event. The event mask corresponds to command 48 19741
(read additional device status), which refers to common tables 14, 17, 29, 30, 27, 31, 32, 28 19742
and device specific status. 19743

Command 117 controls the timing of event notifications. Event notification uses burst mode 19744
for delivery when an event is triggered. A de-bounce period is specified to prevent events that 19745
are too short from triggering a burst message. A retry time (desired burst period) and a 19746
maximum update time (maximum burst period) set the burst transfer timing if an event triggers 19747
a message. 19748

 – 762 – 62734/2CDV © IEC(E)

Command 118 (event notification control) is used to enable or disable an event notification for 19749
a specific event. 19750

Command 119 (acknowledge event notification) is used to acknowledge the event notification 19751
and clear the event from being sent in the burst updates. Other events may be in queue. 19752

Command 115 (read event notification summary) is used to determine the configuration of an 19753
event based on a specific event number. 19754

The following commands are buffered: 19755

• 119 read event notification status (time stamp + device status + command 48). 19756

• Command 788 (alarm path down), command 789 (alarm source route failed), command 19757
790 (alarm graph route failed), and command 791 (alarm TL failed) report communication 19758
failures to the network manager. 19759

IEC 62591 gateway command 836 (write update notification bit mask for a device) registers a 19760
client for notification updates. The device is addressed by the unique ID and given a set of 19761
change notification flags. Codes exist for BurstMode, EventNotification, DeviceStatus, 19762
DeviceConfiguration, NetworkTopology (gateway or NM), and NetworkSchedule (gateway or 19763
NM). This is used in G_Alert_Subscription to subscribe (by providing a GS_Subscription_List 19764
with GS_Alert_Source ID, GS_Subscribe, and GS_Enable for a specific device 19765
GS_Network_Address and a specific category GS_Category). 19766

IEC 62591 gateway command 838 (read update notification bit mask for a device) returns a 19767
list of the update notifications for a device. This is used in G_Alert_Subscription to identify the 19768
subscriptions. 19769

IEC 62591 gateway command 839 (change notification) is sent by the gateway to a client and 19770
returns a list of up to 10 change notifications (cached commands) for a device. Each change 19771
results in a single G_Alert_Notification. 19772

Q.16 Gateway configuration 19773

There is no specific adaptation information for this item. 19774

Q.17 Device configuration 19775

There is no specific adaptation information for this item. 19776

62734/2CDV © IEC(E) – 763 –

Annex R 19777
(informative) 19778

 19779
Host system interface to standard-compliant devices via a gateway 19780

R.1 Background 19781

R.1.1 Host system integration reference model 19782

A simplified reference model for a standard-compliant device/host system integration is 19783
depicted in Figure R.1. 19784

 19785

Figure R.1 – Host integration reference model 19786

R.1.2 Asset management tools 19787

Asset management involves overseeing the health of the system’s assets by monitoring 19788
health related conditions in order to identify a potential problem before the process or plant 19789
operation is affected. Host systems provide an asset management tool or set of tools to fulfill 19790
the asset management function, with goals of lowering maintenance costs, reducing down-19791
time, and ensuring that appropriate product quality levels are met. 19792

R.1.3 Configuration tools 19793

Once the system design has been established, and the system components identified, the 19794
operation of the components in the overall system needs to be configured. Host systems 19795
provide a configuration tool or set of tools that support system component configuration and 19796
define component operation in the system. 19797

 – 764 – 62734/2CDV © IEC(E)

R.1.4 Distributed control system 19798

A distributed control system (DCS) is a control system that supports a process wherein the 19799
control elements are geographically distributed. These distributed elements are connected by 19800
communication networks, which are used for communicating with the distributed elements. 19801

R.1.5 Gateway 19802

A gateway connects the host systems with the network. See Annex U for more information 19803
regarding the gateway. 19804

R.2 Device application data integration with host systems 19805

R.2.1 General 19806

There are two generic means for host systems to integrate application data from connected 19807
devices: 19808

• integration via protocol mapping; and 19809

• integration via protocol tunneling. 19810

R.2.2 Native protocol integration via mapping 19811

Existing host systems may integrate device application data by mapping the relationship 19812
between the devices and data to the information handling performed by the existing host 19813
system. This mapping function is usually performed by a gateway between the existing host 19814
system and the wireless industrial sensor network (WISN). 19815

R.2.3 Legacy device protocol integration via tunneling 19816

Existing host systems may integrate application data from existing legacy devices that are 19817
using the WISN application tunneling capability in the same manner by which it presently 19818
integrates the application data from the legacy devices. 19819

R.3 Host system configuration tool 19820

R.3.1 General 19821

Host systems usually support either one or both of two generic integration methods for 19822
configuring field devices: 19823

• electronic device description language (EDDL); 19824

• field device tool / device type manager (FDT/DTM). 19825

R.3.2 Host configuration using electronic device description language 19826

IEC 61804-3, which deals with EDDL, describes a generic language for describing automation 19827
device properties. EDDL can describe device functions, interactions supported by a device, 19828
device-supported objects, and other properties. 19829

EDDL is used by a device vendor to create an electronic device definition (EDD) file that 19830
corresponds to a particular device. An EDD file is an operating system and automation system 19831
independent structured ASCII text file that describes the capabilities of a device to allow 19832
integration of the device with a host DCS system. This independence enables vendors to 19833
describe their devices in a manner that enables vendor independent interworkability and 19834
constrained interoperability of the device across host systems. EDD files describe device 19835
data, device vendor desired user interface characteristics, and device command handling, 19836
such as command ordering and timing. 19837

62734/2CDV © IEC(E) – 765 –

Host DCSs provide tools to interpret EDD files in order to configure and handle the device, 19838
such as for monitoring or parameter handling, to support control applications. 19839

EDDs are defined by device vendors and tested by the appropriate fieldbus supporting 19840
organization. 19841

Figure R.2 represents configuration using a DD file. 19842

 19843

Figure R.2 – Configuration using an electronic device definition 19844

R.3.3 Host configuration using field device tool/device type manager 19845

The device functionality described by EDD is limited by IEC 61804-3. Additional device 19846
functionality (if any) that cannot be described via EDD can be supported via proprietary plug-19847
ins or snap-ons. To provide this greater support, field device tool / device type manager 19848
(FDT/DTM) technology may be used. FDT/DTM technology requires, for example, FDT PDU 19849
application support in the DCS. For further information on FDT/DTM, consult the FDT Group. 19850

Figure R.3 represents a configuration using the FDT/DTM approach. 19851

 – 766 – 62734/2CDV © IEC(E)

 19852

Figure R.3 – Configuration using FDT/DTM approach 19853

R.4 Field device / distributed control systems integration 19854

R.4.1 General 19855

Distributed control systems usually consist of devices such as controllers, human-machine-19856
interface (HMI) stations, data historian servers, advanced applications, etc. HMI stations, 19857
historian servers, and advanced applications often employ interfaces with rich data 19858
semantics, such as OPC. Communication with controllers usually employs simpler protocols, 19859
such as Modbus, or Foundation Fieldbus High Speed Ethernet (FF-HSE). 19860

R.4.2 Foundation Fieldbus High Speed Ethernet 19861

Application data integration with FF-HSE can, for example, be accomplished by mapping the 19862
native application data to FF transducer blocks. Application objects map to FF blocks, while 19863
object attributes map directly to the FF block parameters. 19864

R.4.3 Modbus 19865

Application data can integrate with Modbus by assigning a Modbus address to the gateway. 19866
The gateway then may present a set of register tables to Modbus masters. Each object 19867
attribute may be mapped to a specific register. The host system may provide automated 19868
support for the mapping, or mapping may be performed manually by the user. 19869

R.4.4 Open connectivity for industrial automation 19870

Open connectivity for industrial automation (OPC) allows client applications to access data in 19871
a consistent manner via an OPC server by referencing the data using a Tag.Parameter 19872
construct. 19873

An OPC client may be supported by an OPC server in the host system or by a high-side OPC 19874
interface provided by a gateway to a standard-compliant system. 19875

62734/2CDV © IEC(E) – 767 –

For example, this standard provides value, quality, and timestamp information in data 19876
publications, in support of OPC server access to online data. Native alarms and events also 19877
provide support for OPC client notification. 19878

The OPC client may specify Tag.Parameter using the device name for the Tag, and a unique 19879
object name and attribute to represent the parameter (e.g., TI101.AITB1.PV). In the OPC 19880
server, the Tag is mapped to the device, the object instance maps to a particular object 19881
instance of a particular UAP, and the attribute name maps to the particular attribute identifier 19882
of the referenced object instance. 19883

R.5 Gateway 19884

R.5.1 General 19885

Host system configuration of applications residing within the gateway itself, including data 19886
mapping (if necessary), is defined by the plant control network, which is the high side 19887
interface of the gateway that couples the WISN into a higher level control system. This 19888
includes, for example, configuration of a system management application or a tunneling 19889
application. Therefore, Annex R describes in generalities the type of information that needs to 19890
be configured for gateway support. 19891

R.5.2 Devices supported 19892

A host system configuration tool may need to establish the complement of standard-compliant 19893
devices with which the gateway will communicate. 19894

R.5.3 Data subscription 19895

A host system configuration tool may need to establish the configuration of the dispersion 19896
objects in the gateway for the data the gateway will receive via publication. 19897

R.5.4 Data publication 19898

A host system configuration tool may need to establish the configuration of the concentrator 19899
objects in the gateway for the data the gateway will itself publish. 19900

R.5.5 Client/server access 19901

Non-management related client/server communications may, for example, be established by 19902
the gateway on an as-needed basis through interface objects. 19903

R.5.6 Alerts reception 19904

A host system configuration tool may need to establish the alert categories associated with 19905
gateway-resident alert-receiving object(s) (AROs). 19906

R.6 Asset management application support 19907

R.6.1 General 19908

An asset management tool may access information about a device that is either stored in or 19909
accessed via the gateway by using plant control network services. 19910

A gateway may access information directly from a field device to satisfy asset management 19911
requests. The gateway may, for example, employ client/server services to read data, to write 19912
data, or to execute a particular method on a particular object instance within the wireless 19913
device. 19914

 – 768 – 62734/2CDV © IEC(E)

A gateway may act as a pass-through for asset information directly from an asset to an asset 19915
management application via a plant control network tunnel if the plant control network 19916
supports such a tunneling capability. 19917

R.6.2 Field device tool / device type manager 19918

A DTM may be provided by a device vendor to provide process and device information to an 19919
asset management tool. A host system supporting an FDT PDU can employ the device DTM 19920
and a communication DTM for the gateway to acquire the information necessary to manage 19921
the device via the gateway. 19922

R.6.3 HART 19923

A standard-compliant device may be made to appear as a HART14 native device on a HART 19924
asset management application (ASM) in several ways: 19925

• Manually or using automation along with either explicitly coded or data-driven conversion 19926
rules provide a HART DD source file for the device. The HART DD file can be passed 19927
through a HART tokenizer to produce binary files representing the DD content. Most HART 19928
clients use the binary format of the of the DD files. 19929

• Standard commands may be defined in HART to integrate ASM with this standard, such as 19930
a HART commands for READ_IEC62734_ATTRIBUTE, WRITE_IEC62734_ATTRIBUTE, 19931
and EXECUTE_IEC62734_METHOD. 19932

• Mapping tables in the gateway may be employed to define attribute value mapping that 19933
differs between this standard and HART, such as for engineering unit indices. 19934

R.6.4 OPC 19935

Open connectivity for industrial automation (OPC) allows client applications to access data in 19936
a consistent manner via an OPC server. An OPC client may be supported by an OPC server 19937
in the host system or by a high-side OPC interface provided by a gateway to a standard-19938
compliant system. 19939

For example, device health information may be provided by the OPC server to an OPC client. 19940

14 HART is a registered trademark of HCF. This information is given for the convenience of users of the standard

and does not constitute an endorsement of the trademark holders or any of their products. Compliance to this
profile does not require use of the registered trademark. Use of the trademarks requires permission of the trade
name holder.

62734/2CDV © IEC(E) – 769 –

Annex S 19941
(informative) 19942

 19943
Symmetric-key operation test vectors 19944

S.1 DPDU samples 19945

S.1.1 General 19946

[INGREDIENTS] 19947

• TsDur: 10464 [2^-20sec] 19948

• Data DPDU Source EUI64: 0x00 00 00 00 00 00 00 01 19949

• Data DPDU Key: 0xC0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF 19950

• Data DPDU Sequence Number: 0x04 19951

• TAI Time[TAINetworkTimeValue]: 0x00 01 02 03 04 05 19952

• Channel: 0x02 19953

• Data DPDU Headers: 0x10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 19954
24 25 26 27 28 19955

• Data DPDU Payload: 0x30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 19956
44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 19957

• ACK DPDU Source EUI64: 0x00 00 00 00 00 00 00 02 19958

• ACK DPDU Sequence Number: 0x05 19959

• ACK DPDU Headers: 0x10 11 12 13 14 15 16 17 18 19960

S.1.2 DPDU with expected DMIC32 19961

[PRE-PROCESSED MATERIAL] 19962

• Data DPDU Nonce: 0x00 00 00 00 00 00 00 01 04 08 0C 10 14 19963

• Data DPDU MIC: 0xBF 5A BB 7C 19964

• ACK DPDU Nonce: 0x00 00 00 00 00 00 00 02 04 08 0C 10 15 19965

• ACK DPDU authentication vector: 0x10 11 12 13 14 15 16 17 18 BF 5A BB 7C 19966

• ACK DPDU MIC: 0x74 F0 41 B3 19967

[DELIVERABLE] 19968

• Data DPDU: 0x10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 19969
27 28 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 19970
4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B BF 5A BB 7C 19971

• ACK DPDU: 0x10 11 12 13 14 15 16 17 18 74 F0 41 B3 19972

S.1.3 DPDU with expected ENC-DMIC32 19973

[PRE-PROCESSED MATERIAL] 19974

• Data DPDU Nonce: 0x00 00 00 00 00 00 00 01 04 08 0C 10 14 19975

• Encrypted Data DPDU Payload: 0x23 F4 C4 3F BA 9B E4 3E D8 9B FD 36 A8 76 C7 99 19976
27 14 E0 42 94 94 DE 64 B2 6B 14 18 51 9F 8D 11 36 F4 09 17 6B D6 A6 75 07 B1 D2 90 19977

• Data DPDU MIC: 0xD0 F6 B2 65 19978

• ACK DPDU Nonce: 0x00 00 00 00 00 00 00 02 04 08 0C 10 15 19979

 – 770 – 62734/2CDV © IEC(E)

• ACK DPDU authentication vector: 0x10 11 12 13 14 15 16 17 18 D0 F6 B2 65 19980

• • ACK DPDU MIC: 0x26 AB 87 D2 19981

[DELIVERABLE] 19982

• Data DPDU: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 19983
28 23 F4 C4 3F BA 9B E4 3E D8 9B FD 36 A8 76 C7 99 27 14 E0 42 94 94 DE 64 B2 6B 19984
14 18 51 9F 8D 11 36 F4 09 17 6B D6 A6 75 07 B1 D2 90 D0 F6 B2 65 19985

• ACK DPDU: 0x10 11 12 13 14 15 16 17 18 26 AB 87 D2 19986

S.2 TPDU samples 19987

S.2.1 General 19988

[INGREDIENTS] 19989

• TPDU time creation[TAINetworkTimeValue]: 0x00 01 02 03 04 05 19990

• Key: 0xC0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF 19991

• Crypto Key Identifier Mode: 0x00 19992

• Crypto Key Identifier = 0x10 19993

• Source EUI64Address: 0x00 00 00 00 00 00 00 01 19994

• Source IPv6Address: 0xFE 80 00 00 00 00 00 00 00 00 00 00 00 00 00 01 19995

• Dest IPv6Address: 0xFE 80 00 00 00 00 00 00 00 00 00 00 00 00 00 02 19996

• Source Port: 0x00 01 19997

• Dest port: 0x00 02 19998

• TSDU (Application Layer Payload): 0x10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 19999
20 21 22 23 24 25 26 27 28 29 2A 2B 20000

S.2.2 TPDU with expected ENC-TMIC-32: 20001

[PRE-PROCESSED MATERIAL] 20002

• TPDU Pseudo header: 0xFE 80 00 00 00 00 00 00 00 00 00 00 00 00 00 01 FE 80 00 00 20003
00 00 00 00 00 00 00 00 00 00 00 02 00 2B 00 11 00 01 00 02 20004

• TPDU Nonce: 0x00 00 00 00 00 00 00 01 04 08 0C 10 FF 20005

• TPDU Security header: 0xA0 0C 10 20006

[DELIVERABLE] 20007

• TPDU: 0x 00 01 00 02 00 23 00 00 A0 0C 10 8E 7C 0B B9 8B CD 15 7E 59 CE 71 18 14 20008
B7 05 FE C2 6A F1 C3 9D 05 B9 FD E6 5F 16 C9 DE 37 DE BE 20009

S.2.3 TPDU with expected TMIC-32: 20010

[PRE-PROCESSED MATERIAL] 20011

• TPDU Pseudo header: 0xFE 80 00 00 00 00 00 00 00 00 00 00 00 00 00 01 FE 80 00 00 20012
00 00 00 00 00 00 00 00 00 00 00 02 00 2B 00 11 00 01 00 02 20013

• TPDU Nonce: 0x00 00 00 00 00 00 00 01 04 08 0C 10 FF 20014

• TPDU Security header: 0x20 0C 10 20015

[DELIVERABLE] 20016

• TPDU: 0x 00 01 00 02 00 23 00 00 20 0C 10 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 20017
1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 7E 8C 35 57 20018

62734/2CDV © IEC(E) – 771 –

Annex T 20019
(informative) 20020

 20021
Data-link and network headers for join requests 20022

T.1 Overview 20023

Annex T illustrates the DL header and NL header for a typical join request. 20024

T.2 MAC header (MHR) 20025

MAC header for join messages is shown in Table T.1. IEEE convention shows bit 0 on the 20026
right, which is the nominal order of transmission. Per IEEE 802.15.4 convention, the 20027
Sequence Number and Addressing fields of the MHR, when considered as unsigned integers, 20028
are transmitted lowest-weight octet (LSB) first. 20029

NOTE IEEE 802.15.4 2.4 GHz DSSS actually transmits quartets of four bits simultaneously as 32-chip spread-20030
spectrum signaling, so there is no “first” or “last” bit transmitted within the quartet. However, the lower-bit-weight 20031
quartet in an octet, when interpreted as an Unsigned8, is transmitted before the higher-bit-weight quartet of that 20032
same octet, and the lower-weight octet is transmitted before the higher-weight octet. 20033

Table T.1 follows the convention of this standard, showing bit 7 on the left. 20034

Table T.1 – Sample MHR for join request 20035

Subfield Number
of octets

bits

7 6 5 4 3 2 1 0

Frame
Control 2

Reserved=0
PAN ID

Compress
=1 (yes)

ACK
Request
= 0 (no)

Frame
Pending
=0 (no)

Security
Enabled
=0 (no)

Frame Type
=1 (Data)

Source Addressing
Mode =3 (64-bit) Frame Version=1 Dest Addressing

Mode =2 (16-bit) Reserved=0

Sequence
Number 1 (determined by DLE at time of transmission)

Addressing

2 PAN ID (LSB), from advertisement

2 Destination Address (16-bit, LSB), from advertisement

8 Source Address (64-bit, LSB), device’s EUI64Address

 20036

T.3 DL header (DHR) 20037

DL header for join messages is shown in Table T.2. This example assumes that the 20038
advertisement does not specify slow-channel-hopping. 20039

 – 772 – 62734/2CDV © IEC(E)

Table T.2 – Sample DHR for join request 20040

Sub-
header octets

bits

7 6 5 4 3 2 1 0

DHDR 1

ACK/NAK
DPDU

needed
=1 (yes)

Signal
quality in
ACK/NAK

DPDU
=0 (no)

Request
EUI64Address

=0 (no)

Include
DAUX

= 0
(no)

Include
slow

channel
hopping-

offset
=0 (no)

Clock
recipient
=1(yes)

DL version
= 00

DMXHR
1 Reserved=0

Key identifier
mode

=1

Security level=1
(MIC-32)

1 Crypto key identifier = 0: K_global

DAUX 0 (absent by DHDR setting)

DROUT
1 Compress=1 Priority =0 (irrelevant) DlForwardLimit =1

1 GraphID (Unsigned8) =0 (Single hop source routing)

DADDR

1 DE=0 LH=0 ECN=0 Reserved=0

1 SrcAddr = 0 (Use EUI64Address in MHR)

1 DestAddr = 0 (Use DL16Address in MHR)

 20041

T.4 NL header 20042

Network header for join messages is shown in Table T.3. 20043

Table T.3 – Network header for join messages 20044

octets
bits

7 6 5 4 3 2 1 0

1 LOWPAN_IPHC dispatch = 011 LOWPAN_IPHC encoding (bits 8..12) = 11 101

2 LOWPAN_IPHC encoding (bits 0..7) = 0111 0111

 20045

62734/2CDV © IEC(E) – 773 –

Annex U 20046
(informative) 20047

 20048
Gateway role 20049

U.1 General 20050

U.1.1 Overview 20051

The primary purpose of a gateway as described by this standard is to enable host-level 20052
applications to interact with wireless field devices. A large installed base of applications 20053
exists, including automation devices, controllers, and supervisory systems, which together 20054
use numerous legacy protocols, thus requiring protocol translation when interacting with 20055
wireless field devices. Such protocol translation may be present in the gateway and also in 20056
adapters to legacy wired field devices. Within this standard, the term adapter is used to 20057
identify devices that convert from a wired fieldbus protocol to a wireless fieldbus protocol on 20058
behalf of one or more field devices.15 Such protocol translation generally serves to tunnel a 20059
foreign protocol across a wireless network as described in this standard, or to convert a 20060
legacy protocol to and from this standard’s native format. The term native field device refers 20061
to a field device that functions exclusively through the usage of the native objects, native 20062
interfaces, and native message content as defined in this standard.16 It is also possible to 20063
write or modify host-level applications to use the native application protocol directly, reducing 20064
or eliminating the need for protocol translation within a gateway. 20065

NOTE The examples provided in Annex U are symmetric, potentially applicable without modification to both 20066
gateways and adapters. In practice, the specific foreign protocol features and the usage of a gateway or adapter 20067
relative to host-level applications and field devices will dictate the subset of the protocols that apply to each. 20068

The description of the gateway role relates to the following capabilities: 20069

• Interfacing foreign host-level applications: 20070
– directly to “native” field devices (i.e., ones conforming to this standard); and 20071
– indirectly to legacy wired field devices through legacy adapters. 20072

• Interfacing host-level applications to multiple wireless systems, including a combination of 20073
one or more wireless systems as described in this standard and one or more foreign 20074
wireless systems, through a single (conceptual) device with a common high-side interface. 20075

This standard provides supporting functionality for the construction of gateways. It does not 20076
provide complete details on how to construct any particular gateway. Annex U is strictly 20077
informative, since no gateways are specified. As such it provides a suggested basis for future 20078
construction of gateway specification, but is itself not one. No validation of the content of 20079
Annex U has occurred. 20080

Annex U describes support functionality for foreign protocol translation needs, but does not 20081
describe details on how to perform any specific protocol translation or how to interface to any 20082
specific plant network. 20083

15 Usage of the term adapter is not uniform. Technically, an adapter is an interface from a CPU to a

communication channel. Technically, a gateway is an interface from one communication channel to another
communication channel, where protocol translation is used at one or more layers of the protocol suite. There is
a precedent set in the automation industry to (incorrectly) use the term adapter to identify devices that convert
from a wired fieldbus protocol to a wireless fieldbus protocol on behalf of one or more field devices. There is
also a precedent in the automation industry to (correctly) use the term gateway to identify devices that convert
from a wireless fieldbus protocol to a wired fieldbus protocol for attachment to a control system. This document
adheres to this automation industry usage in an attempt to minimize confusion.

16 The native tunnel object uses the native tunnel and publication services to carry foreign message content. A
field device that requires foreign message content to perform its function cannot be considered a native device.

 – 774 – 62734/2CDV © IEC(E)

Legacy protocols were not designed to operate over wireless networks. They do not access 20084
information in a manner that conserves energy, and they often are intolerant of delayed 20085
access to quiescent devices that are conserving energy. The gateway support functionality of 20086
this standard is, in large part, intended to enable the construction of gateways that adapt 20087
legacy protocols to the requirements of low-energy-consumption wireless devices. 20088

The gateway role includes a specialized UAP. Functionality is provided by AL objects and 20089
gateway internal operation. The objects use the interfaces of the communications protocol 20090
suite to support gateway high-side interface functions. 20091

U.1.2 Notional gateway protocol suite diagrams for native devices and adapters 20092

The diagram in Figure 17 depicts a notional gateway interfacing a host-level application (the 20093
example control system) to a wireless field device. In this case, the field device is a native 20094
device. Protocol translation is performed in the gateway to convert between the plant network 20095
protocol and this standard’s native protocol. Routers may exist between the gateway and the 20096
field device, as depicted in Figure 17, but from the gateway’s perspective their operation is 20097
transparent. 20098

The diagram in Figure 19 depicts a notional gateway interfacing a host-level application (the 20099
example control system) to a wired I/O device through a wireless system that conforms to this 20100
standard. In this specific case, the interfaced I/O device is a legacy device, not a native 20101
wireless device, and thus an adapter is required. Protocol translation is performed in both the 20102
gateway and the adapter. The gateway and the adapter each convert between legacy 20103
protocols and the communication protocols specified by this standard. 20104

NOTE 1 It is often possible to implement an adapter to a single legacy wired I/O device by performing a protocol 20105
translation to and from native formats, without carrying any foreign message content. To a gateway, such a 20106
combination of an adapter and a connected legacy device is indistinguishable from a native I/O device. No special 20107
gateway provisions are made for such devices. Additionally, there are no special gateway provisions to facilitate 20108
multiplexing of such an adapter to multiple legacy wired I/O devices. 20109

As seen in Figure 19, a notional gateway and a notional adapter share a common structure. 20110
Both have an interface and a protocol suite for a foreign network. Both have an interface and 20111
a protocol suite as described in this standard. Both have protocol translators. The common 20112
structure extends even further – they may share common objects and a common high-side 20113
interface structure. For this reason, no separate role was described for an adapter. 20114

NOTE 2 The differences between a gateway and an adapter relate mostly to the implementation. For example, 20115
certain legacy protocols only publish from the field, thus requiring support for producer functionality but not 20116
consumer functionality in the adapter. Other legacy protocols also support publishing to the field, so require both 20117
producer and consumer functionality. In another example, legacy engineering tools carried into the field and 20118
plugged into the legacy network behind the adapter sometimes need to use the same functions as if they were 20119
behind the gateway. 20120

For a gateway and an adapter to be interworkable, they require common protocol translation. 20121
If the adapter converts to and from native format, the gateway may do the same. If the 20122
adapter tunnels a legacy protocol, the gateway may tunnel the same protocol. 20123

U.1.3 Gateway scenarios 20124

Common gateway scenarios are depicted in Figure U.1. This figure does not attempt to 20125
provide an exhaustive description of all variations; rather, it is included to illustrate the 20126
bounds of this standard. 20127

62734/2CDV © IEC(E) – 775 –

 20128

Figure U.1 – Gateway scenarios 20129

As described in Clause 5, a gateway implements a role within the system. A variety of 20130
physical implementations are possible. 20131

Some device implementations may have a Class A wireless interface and protocol stack 20132
embedded in the same packaging as the gateway, providing direct access to the wireless 20133
network. Independently, some device implementations may have system management and 20134
security management roles co-resident with the gateway role. 20135

The system manager and security manager roles need not be co-resident with the gateway 20136
role. The gateway does not interact directly with the security manager, but indirectly through 20137
the system manager. The gateway functionality requires a communication path with a system 20138
manager to function as part of an operational system. 20139

A device implementing a gateway role may use backbone routers to communicate with 20140
wireless field devices conforming to this standard. 20141

Gateway communication with field devices through backbone routers is transparent in 20142
operation. NL extensions exist in other portions of this standard to support this transparency. 20143
It is, however, necessary to configure this routing within the gateway and the backbone 20144
routers. The backbone routers may be used to extend the geographical scope of gateway-20145
connected devices. Backbone routers may also be used to increase bandwidth or to add 20146
redundant paths between a gateway and a mesh. 20147

Multiple independent gateways may exist within a system. This is facilitated by independent 20148
addressing and independent communication relationships between devices. One use for 20149

 – 776 – 62734/2CDV © IEC(E)

independent gateways is to support multiple independent protocols. No special provisions are 20150
made in this standard for inter-dependent operation between gateways, such as for 20151
redundancy or load sharing. 20152

U.1.4 Basic gateway model 20153

Gateways may follow the general model depicted in Figure U.2. 20154

 20155

Figure U.2 – Basic gateway model 20156

In this example, gateways and adapters host foreign protocol translators that receive and 20157
transmit foreign interface messages (usually from a control system, an asset management 20158
system, or an engineering system) and use gateway interfaces to interact with wireless 20159
devices. Gateway interfaces are provided via a high side interface that is accessed at a GIAP. 20160
Device-local protocol translators use these interfaces through the GIAP. 20161

Protocol translation conveys application information for control, monitoring, configuration, and 20162
management. Foreign protocol messages contain this information. Tunneling, foreign protocol 20163
application communication (FPAC), and native object access methods are provided within the 20164
objects described in this standard to support protocol translation as described in Annex N. 20165
Each method entails specific tradeoffs of translation effort, energy efficiency, and 20166
performance. Practical protocol translators are likely to use a combination of these methods. 20167

Gateways and adapters may each have application processes that interface to the protocol 20168
translators through the GIAP. Each process provides the high side interfaces by using 20169
application objects (OBJ). Inter-object communication uses the messaging methods provided 20170
through the application sublayer (ASL). 20171

The GIAP interfaces are used for network management, protocol tunneling, upload and 20172
download, alerts, time management, and access to native application and management 20173
objects. The GIAP is described in detail in U.2. 20174

For wired automation devices, an adapter performs a symmetric function and converts foreign 20175
interface messages to an adapter high side interface (also a GIAP) via a gateway peer foreign 20176
protocol translator. 20177

Gateway access to a native field device (from a gateway) is enabled through the same GIAP; 20178
however, the object interactions use native messaging exclusively. A native application 20179

TLs

OBJ

UAPs

Foreign
protocol translation

Foreign interface

GatewayAdapter

Native
field device

Native
application

process

GSAP

ASLs

Gateway process

DMAP

OBJ

DMAP

OBJ OBJ

Foreign
protocol translation

Foreign interface

GSAP
DMAP

OBJ

Adapter process
DMAP

process
DMAP

process
DMAP

process

OBJ OBJ

System
manager

Native
application

process

DMAP

OBJ

DMAP
process

62734/2CDV © IEC(E) – 777 –

process interacts with the gateway or adapter process in a manner that depends on the type 20180
of the object. 20181

Gateways, adapters, and native field devices can all be managed through the same 20182
symmetric method. The DMAP process is the peer process in this instance. Such 20183
management is specific to this standard and not necessarily to foreign protocols. Foreign 20184
protocols may provide additional device and wired fieldbus management methods that are 20185
outside the scope of this standard. 20186

The basic gateway model includes interfacing to the system manager, which permits the 20187
system manager to be accessed via the gateway. 20188

Backbone routers and routing devices are not shown in Figure U.2, because gateway 20189
functionality occurs within the application layer, not within the lower communication layers. 20190

U.2 Notional GIAP 20191

U.2.1 Summary of interfaces and primitives 20192

The gateway portion of this standard describes a notional GIAP that can serve as a high side 20193
interface above a wireless communication protocol suite for conveying wireless information 20194
and managing wireless behavior. This notional GIAP is generic and could be used as a 20195
common interface above the AL of this standard and above other functionally in similar 20196
communication protocol suites. Annex P describes one potential implementation of the GIAP 20197
interfaces for the wireless protocol suite of this standard, using the defined AL objects and 20198
interfaces. Annex Q describes another notional GIAP interface implementation for an 20199
alternative wireless protocol suite. 20200

NOTE 1 A primary intent of the example GIAP interfaces is to allow multimode access where a number of wireless 20201
interfaces are available to the gateway. In configurations where the path from the system manager to the plant 20202
network is only via the gateway role the GIAP supports consistent reporting information on each underlying 20203
wireless interface to promote improved coexistence. System management information can be included in a report 20204
on communication performance to identify potential interference problems, a report on topology to identify 20205
collocated devices, and a report on channel and schedule information to identify potential usage conflicts. 20206

NOTE 2 Another intent of the example GIAP is to provide a model for the configuration and access of multiple 20207
underlying wireless networks. This potentially reduces the effort for a gateway developer if they have multiple 20208
fieldbus protocols to support. The GIAP interfaces may or may not be applicable to specialized gateway 20209
developers, such as those serving a single foreign protocol; specialized gateways may prefer to use customized 20210
gateway internal interfaces. 20211

This notional GIAP interface is usable by a variety of protocol translators to interface to 20212
wireless communication protocol suites for conveying wireless information and managing 20213
wireless behavior. A protocol translator exists in a gateway. Depending on the 20214
implementation, a protocol translator and a GIAP may also exist in an adapter. Protocol 20215
translators will vary in complexity depending on the protocol that exists above the gateway 20216
and below the adapters. Certain protocols will use a subset of these notional GIAP interfaces. 20217
For example, a protocol may only require client/server interaction and not require 20218
publish/subscribe interfaces. Functionally, an adapter is considered a subset of a gateway 20219
and would only be expected to support a subset of these notional GIAP interfaces related to 20220
conveying wireless information. 20221

NOTE 3 This gateway discussion does not describe protocol translation for specific fieldbus protocols. 20222

GIAP interfaces are summarized in Table U.1. 20223

 – 778 – 62734/2CDV © IEC(E)

Table U.1 – Summary of notional gateway high-side interface examples 20224

Interface example Interface
subtype

Primitive Description

Session — G_Session request A foreign protocol
translator within the
gateway may establish
sessions on behalf of
remote clients

G_Session confirm

Lease — G_Lease request Leases allow the
gateway to internally
manage its internal
communication
resources on a per
session basis

G_Lease confirm

Device_List_Report — G_Device_List_Report request Determines the
devices associated
with the gateway role G_Device_List_Report confirm

Topology_Report — G_Topology_Report request Provides a topology
report related to
devices in a wireless
mesh.

This interface may be
useful if, for example,
the gateway role is
operating in a system
in which the system
management interface
to the plant network is
via the gateway role

G_Topology_Report confirm

Schedule_Report — G_Schedule_Report request Provides detailed time
slot and channel
allocations on a per-
device basis.

This interface may be
useful if, for example,
the gateway role is
operating in a system
in which the system
management interface
to the plant network is
via the gateway role

G_Schedule_Report confirm

Device_Health_Report — G_Device_Health_Report request Device health report
for devices associated
with the gateway.

This interface may be
useful if, for example,
the gateway role is
operating in a system
in which the system
management interface
to the plant network is
via the gateway role

G_Device_Health_Report confirm

Neighbor_Health_Report — G_Neighbor_Health_Report request Communication health
report for the set of
neighbor devices
associated with a
specific device that is
associated with the
gateway.

This interface may be
useful if, for example,
the gateway role is
operating in a system
in which the system
management interface
to the plant network is
via the gateway role

G_Neighbor_Health_Report confirm

62734/2CDV © IEC(E) – 779 –

Interface example Interface
subtype

Primitive Description

Network_Health_Report — G_Network_Health_Report request Summary of
communication health
report for the wireless
network.

This interface may be
useful if, for example,
the gateway role is
operating in a system
in which the system
management interface
to the plant network is
via the gateway role

G_Network_Health_Report confirm

Time — G_Time request Retrieval and setting
of time for the wireless
network associated
with the gateway

G_Time confirm

Client/server — G_Client_Server request Provides client/server
communication

G_Client_Server indication

G_Client_Server response

G_Client_Server confirm

Publish/subscribe Publish G_Publish request Provides
publish/subscribe
communication G_Publish indication

G_Publish confirm

Subscribe G_Subscribe request

G_Subscribe confirm

Publish_Timer G_Publish_Timer indication

Subscribe_Timer G_Subscribe_Timer indication

Watchdog_Timer G_Watchdog_Timer indication

Bulk_Transfer1 Open G_Bulk_Open request Allows upload and
download of large
items such as
firmware images and
sample buffers

G_Bulk_Open confirm

Transfer G_Bulk_Transfer request

G_Bulk_Transfer confirm

Close G_Bulk_Close request

G_Bulk_Close confirm

Alert Subscribe G_Alert_Subscription request Allows subscription
and receipt of specific
alerts G_Alert_Subscription confirm

Notify G_Alert_Notification indication

Gateway_Configuration Read G_Read_Gateway_Configuration
request

Provides read and
write access to
configuration
attributes of the
gateway

G_Read_Gateway_Configuration
confirm

Write G_Write_Gateway_Configuration
request

G_Write_Gateway_Configuration
confirm

Device_Configuration Read G_Read_Device_Configuration request Allows the gateway to
determine which
devices are
associated with it

G_Read_Device_Configuration confirm

Write G_Write_Device_Configuration request

G_Write_Device_Configuration confirm

NOTE The interface primitives are common to both upload and download operations.

 – 780 – 62734/2CDV © IEC(E)

 20225
U.2.2 Sequence of primitives 20226

Figure U.3, Figure U.4, Figure U.5, Figure U.6, Figure U.7, Figure U.8, Figure U.9, Figure 20227
U.10, Figure U.11, Figure U.12, Figure U.13, Figure U.14, and Figure U.15 show the 20228
sequences of primitives for gateway high side interfaces. The figures are described in terms 20229
of a gateway-internal client, a gateway entity, a device client, and a device entity. A gateway-20230
internal client is a user of the GIAP interfaces within a gateway. A gateway entity is a provider 20231
of GIAP interfaces within the gateway. The provision of the interfaces entails additional 20232
interactions across the wireless network to one or more devices. A device client is a user of 20233
GIAP interfaces within a device. A device entity is a provider of GIAP interfaces within the 20234
device. 20235

 20236

Figure U.3 – Internal sequence of primitives for session interface 20237

 20238

Figure U.4 – Internal sequence of primitives for lease management interface 20239

G_Session request

G_Session confirm

Session
management

service

Gateway
client

Gateway
entity

G_Lease request

G_Lease confirm

Lease
management

service

Gateway
client

Gateway
entity

62734/2CDV © IEC(E) – 781 –

 20240

Figure U.5 – Internal sequence of primitives for system report interfaces 20241

 20242

Figure U.6 – Internal sequence of primitives for time interface 20243

G_Device_List_Report request
G_Topology_Report request
G_Schedule_Report request
G_Device_Health_Report request
G_Neighbor_Health_Report request
G_Network_Health_Report request

System
report
service

Gateway
client

Gateway
entity

G_Device_List_Report confirm
G_Topology_Report confirm
G_Schedule_Report confirm
G_Device_Health_Report confirm
G_Neighbor_Health_Report confirm
G_Network_Health_Report confirm

G_Time request

G_Time confirm

Time
service

Gateway
client

Gateway
entity

 – 782 – 62734/2CDV © IEC(E)

 20244

Figure U.7 – Internal sequence of primitives for 20245
Client/server interface initiated from gateway to an adapter device 20246

 20247

Figure U.8 – Internal sequence of primitives for 20248
publish interface initiated from gateway to an adapter device 20249

Gateway
client

Gateway
entity

Device
entity

Device
client

G_Client_Server request

G_Client_Server indication

G_Client_Server response

G_Client_Server confirm

Server
service

Gateway
client

Gateway
entity

Device
entity

Device
client

G_Publish request

G_Publish indication

G_Publish confirm
Publish
service

62734/2CDV © IEC(E) – 783 –

 20250

Figure U.9 – Internal sequence of primitives for 20251
subscribe interface initiated from an adapter device 20252

 20253

Figure U.10 – Internal sequence of primitives for 20254
publisher timer initiated from gateway to an adapter device 20255

 20256

Figure U.11 – Internal sequence of primitives for 20257
subscriber timers initiated from an adapter device 20258

G_Subscribe request

G_Subscribe confirm

Subscribe
service

Device
entity

Device
client

G_Publish_Timer indication

Gateway
client

Gateway
entity

G_Subscribe_Timer indication
G_Watchdog_Timer indication

Device
entity

Device
client

 – 784 – 62734/2CDV © IEC(E)

 20259

Figure U.12 – Internal sequence of primitives for the bulk transfer interface 20260

 20261

Figure U.13 – Internal sequence of primitives for the alert subscription interface 20262

G_Bulk_Open request
G_Bulk_Transfer request
G_Bulk_Close request

Bulk transfer
service

Gateway
client

Gateway
entity

G_Bulk_Open confirm
G_Bulk_Transfer confirm
G_Bulk_Close confirm

G_Alert_Subscription request

Alert
service

Gateway
client

Gateway
entity

G_Alert_Subscription confirm

62734/2CDV © IEC(E) – 785 –

 20263

Figure U.14 – Internal sequence of primitives for the alert notification interface 20264

 20265

Figure U.15 – Internal sequence of primitives for gateway management interfaces 20266

U.2.3 Detailed description of parameters 20267

U.2.3.1 General 20268

Parameters that are common to multiple interfaces are described in U.2.3. Parameters that 20269
are unique to an interface are described within that interface. 20270

NOTE Since this standard does not define any gateways, and because the GIAP discussed is notional, all of 20271
these parameters are also strictly notional, as are all statements about them. 20272

U.2.3.2 Parameter GS_Session_ID 20273

The parameter GS_Session_ID uniquely identifies a specific session. 20274

A valid session identifier that has not expired is provided in order to invoke all interfaces 20275
except the session interfaces. 20276

G_Alert_Notification indication

Gateway
client

Gateway
entity

G_Read_Device_Configuration request
G_Write_Device_Configuration request
G_Read_Gateway_Configuration request
G_Write_Gateway_Configuration request

Gateway
management

service

Gateway
client

Gateway
entity

G_Read_Device_Configuration confirm
G_Write_Device_Configuration confirm
G_Read_Gateway_Configuration confirm
G_Write_Gateway_Configuration confirm

 – 786 – 62734/2CDV © IEC(E)

U.2.3.3 Parameter GS_Transaction_ID 20277

The parameter GS_Transaction_ID uniquely identifies request and response portions of a 20278
transaction within the context of a specific session. 20279

The transaction identifier is used to match a GIAP interface request with the corresponding 20280
GIAP interface response. 20281

U.2.3.4 Parameter GS_Lease_ID 20282

GS_Lease_ID identifies gateway entity resources and communication resources that are 20283
allocated to a particular session. 20284

The lease identifier is provided by the GIAP interface user when an interface is invoked to 20285
identify the particular communication resources used to support the interface. 20286

U.2.3.5 Parameter GS_Status 20287

GS_Status is returned by a confirm primitive. It may represent either the status resulting from 20288
handling a local request or the status corresponding to a response received from a remote 20289
entity. 20290

The status indicates the success or failure of the interface call and, when applicable, the 20291
reason for failure. 20292

U.2.3.6 Parameter GS_Network_Address 20293

GS_Network_Address is an IPv6Address used to identify a logical device that is unique 20294
across all networks. 20295

This parameter uniquely identifies a specific NLE. 20296

U.2.3.7 Parameter GS_Unique_Device_ID 20297

GS_Unique_Device_ID is a an EUI64Address. 20298

This parameter uniquely identifies a specific physical device for asset management purposes. 20299

U.2.3.8 Parameter GS_Network_ID 20300

GS_Network_ID is a unique identifier for one of several networks that may be accessible 20301
through a single gateway. 20302

This parameter uniquely identifies a specific network. 20303

U.2.3.9 Parameter GS_Time 20304

GS_Time is a 48-bit TAI time field. 20305

The time parameter is used to describe time-related fields such as timestamp, start time, and 20306
stop time. 20307

U.2.3.10 Parameter GS_Transfer_Mode 20308

GS_Transfer_Mode identifies GPDU-level transfer variations. 20309

62734/2CDV © IEC(E) – 787 –

GS_Transfer_Mode is provided with each GPDU provided for transfer in order to indicate the 20310
desired quality of service and the priority associated with the transfer of the PDUs generated 20311
to support the notional interface primitive. 20312

U.2.4 Detailed description of interfaces 20313

U.2.4.1 Session management interface 20314

U.2.4.1.1 General 20315

A gateway entity is a process within a gateway that provides gateway interfaces through the 20316
GIAP. A gateway-internal client is a user of gateway entity-provided interfaces. Typical 20317
gateway-internal clients include host systems, asset management systems, and engineering 20318
tools. 20319

Gateway entities provide interfaces to gateway-internal clients within the context of a session. 20320
The session management interface is used to establish and manage these sessions. All other 20321
gateway entity-provided interfaces are used within the context of an established session. 20322

A foreign protocol translator within the gateway may establish sessions on behalf of remote 20323
clients and perform protocol translation on the communication flows that correspond to 20324
gateway entity-provided interfaces. 20325

The primary purpose of a session is to allow resource allocation and bulk reclamation of 20326
gateway and communication resources on a per-gateway entity client basis. 20327

A session may be established by a local process or remotely (such as through a TCP/IP 20328
remote session). 20329

One or more sessions may exist concurrently between a gateway entity and one or more 20330
gateway-internal clients. Each session is uniquely identified. 20331

NOTE The number of concurrent sessions supported is implementation-dependent. It is possible that some 20332
implementations provide a fixed function gateway with a single session, while other implementations provide a 20333
number of sessions that are allocated on demand to a variety of applications, including host systems, historians, 20334
asset management tools, and engineering tools. 20335

The gateway-internal client uses the G_Session primitive to create, renew or delete a 20336
session. 20337

U.2.4.1.2 G_Session primitive 20338

U.2.4.1.3 Primitives and their parameters 20339

Table U.2 describes parameter usage for the primitive G_Session. 20340

Table U.2 – Primitive G_Session parameter usage 20341

Parameter name G_Session

Request Confirm

GS_Session_ID M M

GS_Session_Period M M

GS_Network_ID M —

GS_Status — M

 20342

 – 788 – 62734/2CDV © IEC(E)

U.2.4.1.4 Use of G_Session request 20343

The gateway-internal client uses the primitive G_Session request to create, renew or delete a 20344
session. 20345

A session is created by providing a null session identifier (GS_Session_ID = 0) and a 20346
requested session duration. Submitting GS_Session_Period > 0 requests a limited duration 20347
session, specified in seconds. Submitting GS_Session_Period = -1 requests an indefinite 20348
session duration. 20349

A limited duration session is renewed by providing an existing (non-null) session identifier and 20350
session duration greater than 0 s. An indefinite duration session does not need to be 20351
renewed. 20352

Changing a limited duration session to an indefinite duration session by attempting to renew it 20353
with a specified duration of -1 s is not permitted. 20354

NOTE The upper bound of session duration is implementation-dependent. For instance, implementations are able 20355
to dedicate resources to specific applications, such as a host system, never releasing those resources. 20356

A session is deleted by providing an existing (non-null) session identifier and session duration 20357
of 0 s. 20358

A gateway may connect to multiple networks. Each session is associated with a specific 20359
network. A network identifier (GS_Network_ID) is specified to establish a particular network 20360
for the session. The scope of further identifiers used within a session is limited to the 20361
particular network. 20362

U.2.4.1.5 Use of G_Session confirm 20363

The gateway entity uses the G_Session confirm primitive to complete the G_Session request 20364
to the gateway-internal client. 20365

For a successful session creation request, the gateway entity returns a unique, non-null 20366
session identifier. This identifier is used in subsequent session renew and delete operations. 20367
GS_Session_Period is returned with the actual session duration allocated by the gateway 20368
entity. 20369

The GS_Session_Period value returned may not be the same as the value requested. 20370

For a session renew request, the request session identifier is echoed, and a new session 20371
duration is returned. 20372

For a session deletion request, the session identifier is echoed, and the session duration is 20373
set to 0 s. 20374

GS_Status is returned to indicate the success or failure of the operation, as described in 20375
Table U.3. 20376

62734/2CDV © IEC(E) – 789 –

Table U.3 – GS_Status for G_Session confirm 20377

Value Meaning

0 Success; new session created, renewed or deleted

1 Success; new session created or renewed with reduced period

2 Failure; session does not exist to renew or delete

3 Failure; session cannot be created (no additional sessions available)

This may occur, for example, if sessions have expired, but have not explicitly been deleted

4 Failure; other

 20378
U.2.4.2 Lease management interface 20379

U.2.4.2.1 General 20380

Gateway entities allocate communication resources to gateway-internal clients via leases. 20381
The lease management interface is used to establish and manage leases. 20382

The primary purpose of a lease is to allow fine-grained communication resource allocation 20383
and reclamation on a per-session basis. 20384

Resources may be separately allocated depending on communication needs. For example, 20385
client/server, publish/subscribe, bulk transfer, and alert subscription resources may be 20386
separately allocated. 20387

One or more leases may exist concurrently between a gateway entity and one or more 20388
gateway-internal clients. Each lease is uniquely identified within a session. 20389

U.2.4.2.2 Use of the interface 20390

The gateway-internal client uses the G_Lease primitive to create, renew or delete a lease. 20391

U.2.4.2.3 G_Lease primitive 20392

U.2.4.2.4 Primitives and their parameters 20393

Table U.4 describes parameter usage for the primitive G_Lease. 20394

 – 790 – 62734/2CDV © IEC(E)

Table U.4 – Primitive G_Lease parameter usage 20395

Parameter name G_Lease

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Lease_ID M M

GS_Lease_Period M M

GS_Lease_Type M —

GS_Protocol_Type M —

GS_Network_Address_List C —

GS_Network_Address C —

GS_Resource C —

GS_Lease_Parameters C —

GS_Transfer_Mode C —

GS_Update_Policy C —

GS_Period C —

GS_Phase C —

GS_Stale_Limit C —

GS_Connection_Info C —

GS_Wireless_Parameters C —

GS_Status — M

 20396
U.2.4.2.5 Use of G_Lease request 20397

The gateway-internal client uses the primitive G_Lease request to create, renew, or delete a 20398
lease. 20399

A session identifier (GS_Session_ID) is included in the G_Lease request primitives. 20400

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20401
of the interface. 20402

A lease is created by providing a null lease identifier (GS_Lease_ID = 0) and a requested 20403
lease duration. Submitting GS_Lease_Period > 0 requests a limited duration lease, specified 20404
in seconds. Submitting GS_Lease_Period = 0 requests an indefinite lease duration. 20405

A limited duration lease is renewed by providing an existing (non-null) lease identifier and 20406
lease duration greater than 0 s. An indefinite duration lease does not need to be renewed. A 20407
limited duration lease cannot be changed to an indefinite duration lease by renewal with 20408
duration of 0 s. 20409

The maximum supported value is implementation-dependent. Implementations can choose to 20410
dedicate resources to specific applications, such as a host system, never releasing those 20411
resources. 20412

A lease is deleted by providing an existing lease identifier and a requested lease duration of 20413
0 s. 20414

Different types of leases are available, as specified by GS_Lease_Type and as shown in 20415
Table U.5. Each lease type allocates lease-specific gateway entity resources and 20416
communication resources on behalf of the gateway-internal client. 20417

62734/2CDV © IEC(E) – 791 –

Table U.5 – GS_Lease_Type for G_Lease request 20418

Value Meaning

0 Client

1 Server

2 Publisher

3 Subscriber

4 Bulk transfer client

5 Bulk transfer server

6 Alert subscription

 20419
GS_Protocol_Type identifies the protocol that is associated with the lease, as indicated in 20420
Annex M. Specification of the protocol type allows special processing for particular protocols 20421
within the gateway entity. 20422

All leases relate to establishing communication interfaces between the gateway entity and 20423
one or more device specified by one or more elements in GS_Network_Address_List. Alert 20424
subscription leases do not allocate communication resources during lease establishment, but 20425
dynamically as alert subscriptions are modified. GS_Network_Address_List is not used with 20426
the alert subscription lease type. 20427

Client, server, subscriber, bulk transfer client, and bulk transfer server describe only a single 20428
element within GS_Network_Address_List. The publisher lease type may describe multiple 20429
elements. 20430

The specification of multiple IPv6Addresses within the GS_Network_Address_List represents 20431
a multicast group. Elements within the G_Network_Address_List include 20432
GS_Network_Address. 20433

GS_Lease_Parameters is a parameter structure for the specification of parameters necessary 20434
for the establishment of certain lease types. Usage of the GS_Lease_Parameters is 20435
conditioned on the specific lease type as follows. 20436

NOTE Annex P provides additional information on detailed GS_Lease_Parameters usage. 20437

Client, server, publish, and subscribe leases describe a unique GS_Resource. This value 20438
identifies matching client and server connection endpoints, and also identifies matching 20439
publisher and subscriber endpoints. GS_Resource also is specified by the bulk transfer client 20440
to identify the upload/download item. 20441

Publisher leases require specification of GS_Update_Policy, GS_Period, GS_Phase, and 20442
GS_Stale_Limit to control timing and buffered behavior. GS_Transfer_Mode also is specified 20443
in order to set the default transfer quality of interface and priority. 20444

Subscriber leases require specification of GS_Update_Policy, GS_Period, GS_Phase, and 20445
GS_Stale_Limit to control timing and buffered behavior. 20446

A publisher and subscriber may agree to describe GS_Connection_Info in the subscriber 20447
lease for provision on each publication receipt. 20448

Client and server leases describe GS_Transfer_Mode in order to set the default transfer 20449
quality of interface and priority. 20450

An additional GS_Wireless_Parameters field usage depends on gateway construction. This 20451
allows access to all exposed, requestable communication features. 20452

 – 792 – 62734/2CDV © IEC(E)

U.2.4.2.6 Use of G_Lease confirm 20453

The gateway entity uses the primitive G_Lease confirm to complete the G_Lease request to 20454
the gateway-internal client. 20455

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20456
returned to allow matching of the confirm primitive with the original request primitive. 20457

For a successful lease create request, the gateway entity returns a session unique lease 20458
identifier. This lease identifier is used in subsequent lease renew and delete operations. 20459
GS_Lease_Period is returned with the actual lease duration allocated by the gateway entity. 20460

For a lease renew request, the request lease identifier is echoed, and the actual lease 20461
duration is given. 20462

For a lease delete request, the lease identifier is echoed, and the lease duration is set to 0 s. 20463

GS_Status is returned to indicate success or failure of the operation, as described in Table 20464
U.6. 20465

Table U.6 – GS_Status for G_Lease confirm 20466

Value Meaning

0 Success; new lease created, renewed or deleted

1 Success; new lease created or renewed with reduced period

2 Failure; lease does not exist to renew or delete

3 Failure; no additional leases available

4 Failure; no device exists at IPv6Address

5 Failure; invalid lease type

6 Failure; invalid lease type information

7 Failure; other

 20467
U.2.4.3 Device list report interface 20468

U.2.4.3.1 General 20469

The device list report interface provides a report of the devices that are associated with a 20470
gateway. This is useful for mapping wireless devices to host systems and network browsers. 20471

The gateway-internal client uses the G_Device_List_Report primitive to retrieve a report on 20472
the devices associated with a gateway entity. 20473

U.2.4.3.2 G_Device_List_Report primitive 20474

U.2.4.3.3 Primitives and their parameters 20475

Table U.7 describes parameter usage for the primitive G_Device_List_Report. 20476

62734/2CDV © IEC(E) – 793 –

Table U.7 – Primitive G_Device_List_Report parameter usage 20477

Parameter name G_Device_List_Report

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Device_List — M

GS_Network_Address — M

GS_Device_Type — M

GS_Unique_Device_ID — M

GS_Manufacturer — M

GS_Model — M

GS_Revision — M

GS_Status — M

 20478
The gateway-internal client uses the primitive G_Device_List_Report request to retrieve a 20479
report on the devices associated with a gateway entity. 20480

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20481
in the request. 20482

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20483
of the interface. 20484

U.2.4.3.4 Use of G_Device_List_Report confirm 20485

The gateway entity uses the primitive G_Device_List_Report confirm to complete the 20486
G_Device_List_Report request to the gateway-internal client. 20487

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20488
returned to allow matching of the confirm with the original request. 20489

A list of devices associated with the gateway entity (GS_Device_List) is returned. For each 20490
device, the list includes the IPv6Address (GS_Network_Address), the type of the device 20491
(GS_Device_Type), and the unique device identifier (GS_Unique_Device_ID). 20492

The list also includes additional manufacturer related information (GS_Manufacturer, 20493
GS_Model, and GS_Revision). 20494

Where the gateway includes the role of the provisioning device, the IPv6Address may be a 20495
default address. The unique identifier and the manufacturer information are used within the 20496
host-level applications to control device commissioning through the device configuration 20497
interface. 20498

For example, a browser may display a list of devices available for provisioning along with 20499
identification information. A select set of the devices are picked from the display and are 20500
commissioned with the IPv6Address and other information to join the system. The browsing 20501
display is then refreshed with devices that are available for linkage to a control strategy. 20502

GS_Status is returned to indicate success or failure of the operation, as described in Table 20503
U.8. 20504

 – 794 – 62734/2CDV © IEC(E)

Table U.8 – GS_Status for G_Device_List_Report confirm 20505

Value Meaning

0 Success

1 Failure

 20506
U.2.4.4 Topology report interface 20507

U.2.4.4.1 General 20508

In system configurations where access to system management information is via the gateway, 20509
the topology report interface provides a topology report that relates devices within a wireless 20510
mesh. 20511

The gateway-internal client uses the G_Topology_Report primitive to retrieve a report on the 20512
devices associated with a gateway entity. 20513

U.2.4.4.2 G_Topology_Report primitive 20514

U.2.4.4.3 Primitives and their parameters 20515

Table U.9 describes parameter usage for the primitive G_Topology_Report. 20516

Table U.9 – Primitive G_Topology_Report parameter usage 20517

Parameter name G_Topology_Report

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Device_List — M

GS_Network_Address — M

GS_Neighbor_List — M

GS_Network_Address — M

GS_Graph_List — M

GS_Graph_ID — M

GS_Network_Address — M

GS_Status — M

 20518
U.2.4.4.4 Use of G_Topology_Report request 20519

The gateway-internal client uses the primitive G_Topology_Report request to retrieve a report 20520
on the topology of the devices associated with a gateway entity. 20521

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20522
in the request. 20523

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20524
of the interface. 20525

U.2.4.4.5 Use of G_Topology_Report confirm 20526

The gateway entity uses the primitive G_Topology_Report confirm to complete the 20527
G_Topology_Report request to the gateway-internal client. 20528

62734/2CDV © IEC(E) – 795 –

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20529
returned to allow matching of a confirm with the original request. 20530

A list of devices associated with the gateway entity (GS_Device_List) is returned. The list 20531
includes the IPv6Address (GS_Network_Address) for each device. 20532

Also included within the list is a second list (GS_Neighbor_List) of the neighbor devices 20533
associated with each device. The list includes the IPv6Address (GS_Network_Address) of all 20534
neighbors (as described in the neighbor health report). 20535

Also included within the list is a third list (GS_Graph_List) of the graph connections 20536
associated with each device. For each graph connection, the list includes the graph identified 20537
(GS_Graph_ID) and an associated IPv6Address list (GS_Network_Address) of the neighbors 20538
on the graph. 20539

GS_Status is returned to indicate success or failure of the operation, as described in Table 20540
U.8. 20541

U.2.4.5 Schedule report interface 20542

U.2.4.5.1 General 20543

In system configurations where access to system management information is via the gateway, 20544
the schedule report interface provides a schedule report detailing time slot and channel 20545
allocations on a per-device basis. 20546

The gateway-internal client uses the G_Schedule_Report primitive to retrieve a report on the 20547
schedule of the devices associated with a gateway entity. 20548

U.2.4.5.2 G_Schedule_Report primitive 20549

U.2.4.5.3 Primitives and their parameters 20550

Table U.10 describes parameter usage for the primitive G_Schedule_Report. 20551

 – 796 – 62734/2CDV © IEC(E)

Table U.10 – Primitive G_Schedule_Report parameter usage 20552

Parameter name G_Schedule_Report

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Network_Address M —

GS_Channel_List — M

GS_Channel_Number — M

GS_Channel_Status — M

GS_Device_Schedule — M

GS_Network_Address — M

GS_Superframe_List — C

GS_Superframe_ID — C

GS_Num_Time_Slots — C

GS_Start_Time — C

GS_Link_List — C

GS_Network_Address — C

GS_Slot_Size — C

GS_Channel — C

GS_Direction — C

GS_Link_Type — C

GS_Status — M

 20553
U.2.4.5.4 Use of G_Schedule_Report request 20554

The gateway-internal client uses the primitive G_Schedule_Report request to retrieve a 20555
schedule report for a specific device associated with a gateway entity. The particular device is 20556
identified by its IPv6Address (GS_Network_Address). 20557

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20558
in the request. 20559

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20560
of the interface. 20561

U.2.4.5.5 Use of G_Schedule_Report confirm 20562

The gateway entity uses the primitive G_Schedule_Report confirm to complete the 20563
G_Schedule_Report request to the gateway-internal client. 20564

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20565
returned to allow matching of the confirm with the original request. 20566

A list of channels is returned. Each element of the list includes the channel number 20567
(GS_Channel_Number) and the status of the channel (GS_Channel_Status). Channel status 20568
is set to 0 to indicate a disabled channel or to 1 to indicate an enabled channel. 20569

A device schedule (GS_Device_Schedule) is also returned. The schedule includes device 20570
identification information (GS_Network_Address) and a list of superframes 20571
(GS_Superframe_List) that are used by the device for communication. 20572

62734/2CDV © IEC(E) – 797 –

If a device does not use superframes, GS_Superframe_List is not returned. 20573

The superframe list includes general superframe information, including a superframe identifier 20574
(GS_Superframe_ID), the number of time slots in the superframe (GS_Num_Time_Slots), and 20575
the start time of the superframe (GS_Start_Time). Only active superframes are reported. 20576

GS_Start_Time is an offset relative to the beginning of TAI time. This number has significance 20577
only relative to the current network time, unless the communication is synchronized to an 20578
external source. GS_Start_Time is set to -1 to indicate that the superframe has no known 20579
synchronization. 20580

The superframe list also includes an ordered list (GS_Link_List) with one element per timeslot 20581
in the superframe. The link list elements are used to describe communication relationships 20582
related to the superframe. Each link list element describes the timeslot duration in 20583
microseconds (GS_Slot_Size) and the channel (GS_Channel) for communication within the 20584
superframe. The link (GS_Direction) parameter describes the direction of communications. A 20585
value of 0 describes reception, and a value of 1 describes transmission. The IPv6Address 20586
(GS_Network_Address) describes the logical IPv6Address of a communication partner for the 20587
slot. 20588

The link type (GS_Link_Type) describes the purpose of the communication: 20589

• A value of 0 describes aperiodic data communication. 20590

• A value of 1 describes aperiodic management communication. 20591

• A value of 2 describes periodic data communication. 20592

• A value of 3 describes periodic management communication. 20593

GS_Status is returned to indicate success or failure of the operation, as described in Table 20594
U.8. 20595

U.2.4.6 Device health report interface 20596

U.2.4.6.1 General 20597

The device health report interface provides a communication health report for each device’s 20598
view of its own health. 20599

The gateway-internal client uses the G_Device_Health_Report primitive to retrieve a device 20600
health report for a specified set of devices that are associated with a gateway entity. 20601

U.2.4.6.2 G_Device_Health_Report primitive 20602

U.2.4.6.3 Primitives and their parameters 20603

Table U.11 describes parameter usage for the primitive G_Device_Health_Report. 20604

 – 798 – 62734/2CDV © IEC(E)

Table U.11 – Primitive G_Device_Health_Report parameter usage 20605

Parameter name G_Device_Health_Report

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Device_List M M

GS_Network_Address M M(=)

GS_DPDUs_Transmitted — M

GS_DPDUs_Received — M

GS_DPDUs_Failed_Transmission — M

GS_DPDUs_Failed_Reception — M

GS_Status — M

 20606
U.2.4.6.4 Use of G_Device_Health_Report request 20607

The gateway-internal client uses the primitive G_Device_Health_Report request to retrieve a 20608
device health report for a specified set of devices that are associated with a gateway entity. 20609

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20610
in the request. 20611

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20612
of the interface. 20613

A health report is requested for a specific list of devices (GS_Device_List). The IPv6Address 20614
of each device (GS_Network_Address) is required. 20615

U.2.4.6.5 Use of G_Device_Health_Report confirm 20616

The gateway entity uses the primitive G_Device_Health_Report confirm to complete the 20617
G_Device_Health_Report request to the gateway-internal client. 20618

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20619
returned to allow matching of the confirm with the original request. 20620

A device list (GS_Device_List) is returned. The list includes device identification information 20621
(GS_Network_Address) and communication health information. The communication health 20622
information includes the total number of DPDUs transmitted (GS_DPDUs_Transmitted) from 20623
the device to all neighbors, the total number of DPDUs received (GS_DPDUs_Received) from 20624
the device by all neighbors, the total number of DPDUs to all neighbors that failed 20625
transmission (GS_DPDUs_Failed_Transmission), and the total number of DPDUs from all 20626
neighbors that failed reception (GS_DPDUs_Failed_Reception). Failed receptions include 20627
identifiable DPDUs that are discarded due to transmission-related corruption. 20628

NOTE Failed receptions will likely be less than failed transmissions, since many failed DPDUs will not have 20629
enough uncorrupted information to determine the addressing. Failed reception does not include protocol-related 20630
errors. 20631

GS_Status is returned to indicate success or failure of the operation, as described in Table 20632
U.8. 20633

62734/2CDV © IEC(E) – 799 –

U.2.4.7 Neighbor health report interface 20634

U.2.4.7.1 General 20635

In system configurations where access to system management information is via the gateway, 20636
the neighbor health report interface provides a communication health report for each device’s 20637
view of its neighbors. 20638

A neighbor device is a link level wireless communication partner that is configured for direct 20639
exchange of DPDUs (RF transmission without hops). The neighbor health report interfaces 20640
provide information on these physical neighbors. Neighbor devices are able to collect DPDU 20641
exchange statistics that indicate local RF conditions. 20642

The gateway-internal client uses the G_Neighbor_Health_Report primitive to retrieve a 20643
communication health report for the set of neighbor devices associated with a specific device 20644
that is associated with a gateway entity. 20645

U.2.4.7.2 G_Neighbor_Health_Report primitive 20646

U.2.4.7.3 Primitives and their parameters 20647

Table U.12 describes parameter usage for the primitive G_Neighbor_Health_Report. 20648

Table U.12 – Primitive G_Neighbor_Health_Report parameter usage 20649

Parameter name G_Neighbor_Health_Report

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Network_Address M —

GS_Neighbor_Health_List — M

GS_Network_Address — M

GS_Link_Status — M

GS_DPDUs_Transmitted — M

GS_DPDUs_Received — M

GS_DPDUs_Failed_Transmission — M

GS_DPDUs_Failed_Reception — M

GS_Signal_Strength — M

GS_Signal_Quality — M

GS_Status — M

 20650
U.2.4.7.4 Use of G_Neighbor_Health_Report request 20651

The gateway-internal client uses the primitive G_Neighbor_Health_Report request to retrieve 20652
a communication health report for the set of neighbor devices associated with a specific 20653
device that is associated with a gateway entity. 20654

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20655
in the request. 20656

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20657
of the interface. 20658

 – 800 – 62734/2CDV © IEC(E)

A neighbor health report is requested for a device at a specific IPv6Address 20659
(GS_Network_Address). 20660

U.2.4.7.5 Use of G_Neighbor_Health_Report confirm 20661

The gateway entity uses the primitive G_Neighbor_Health_Report confirm to complete the 20662
G_Neighbor_Health_Report request to the gateway-internal client. 20663

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20664
returned to allow matching of the confirm with the original request. 20665

A neighbor health list (GS_Neighbor_Health_List) is returned. The list includes the neighbor 20666
device identification information (GS_Network_Address) and communication health 20667
information. The communication health information includes a general status 20668
(GS_Link_Status). GS_Link_Status = 1 indicates that the neighbor is available for 20669
communication. GS_Link_Status = 0 indicates that the neighbor is unavailable for 20670
communication. 20671

Health information also includes the number of DPDUs transmitted to the neighbor 20672
(GS_DPDUs_Transmitted), the number of DPDUs received from the neighbor 20673
(GS_DPDUs_Received), the number of failed transmission attempts 20674
(GS_DPDUs_Failed_Transmission), and the number of failed receptions 20675
(GS_DPDUs_Failed_Reception) from the neighbor. Failed receptions include identifiable 20676
DPDUs that are discarded due to transmission related corruption. 20677

NOTE Failed receptions will likely be less than failed transmissions, since many failed DPDUs will not have 20678
enough uncorrupted information to determine the addressing. Failed reception does not include protocol-related 20679
errors. 20680

Health information also includes GS_Signal_Strength and GS_Signal_Quality. These 20681
parameters return values between 0 (worst signal) and 100 (best signal). GS_Signal_Strength 20682
indicates the average uncorrelated power level of the signals received from a specific 20683
neighbor relative to the range of the receiver. GS_Signal_Quality indicates the average 20684
correlated power level of the signals received from a specific neighbor relative to the range of 20685
the receiver. 20686

GS_Status is returned to indicate success or failure of the operation, as described in Table 20687
U.8. 20688

U.2.4.8 Network health report interface 20689

U.2.4.8.1 General 20690

In system configurations where access to system management information is via the gateway, 20691
the neighbor health report interface provides a communication health report for each device’s 20692
view of its neighbors. 20693

The gateway-internal client uses the G_Network_Health_Report primitive to retrieve a 20694
summary communication health report for an entire network. 20695

U.2.4.8.2 G_Network_Health_Report primitive 20696

U.2.4.8.3 Primitives and their parameters 20697

Table U.13 describes parameter usage for the primitive G_Network_Health_Report. 20698

62734/2CDV © IEC(E) – 801 –

Table U.13 – Primitive G_Network_Health_Report parameter usage 20699

Parameter name G_Network_Health_Report

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Network_Health — M

GS_Network_ID — M

GS_Network_Type — M

GS_Device_Count — M

GS_Start_Date — M

GS_Current_Date — M

GS_DPDUs_Sent — M

GS_DPDUs_Lost — M

GS_GPDU_Latency — M

GS_GPDU_Path_Reliability — M

GS_GPDU_Data_Reliability — M

GS_Join_Count — M

GS_Device_Health_List — M

GS_Network_Address — M

GS_Start_Date — M

GS_Current_Date — M

GS_DPDUs_Sent — M

GS_DPDUs_Lost — M

GS_GPDU_Latency — M

GS_GPDU_Path_Reliability — M

GS_GPDU_Data_Reliability — M

GS_Join_Count — M

GS_Status — M

 20700
U.2.4.8.4 Use of G_Network_Health_Report request 20701

The gateway-internal client uses the primitive G_Network_Health_Report request to retrieve a 20702
summary communication health report for an entire network. 20703

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20704
in the request. 20705

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20706
of the interface. 20707

U.2.4.8.5 Use of G_Network_Health_Report confirm 20708

The gateway entity uses the primitive G_Network_Health_Report confirm to complete the 20709
G_Network_Health_Report request to the gateway-internal client. 20710

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20711
returned to allow matching of the confirm with the original request. 20712

 – 802 – 62734/2CDV © IEC(E)

A network health summary (GS_Network_Health) is returned. The summary includes network 20713
identification information (GS_Network_ID and GS_Network_Type) and network 20714
communication health summary information. The communication health information includes 20715
the number of devices in the network (GS_Device_Count), the start date and the current date 20716
for the network (GS_Start_Date and GS_Current_Date), transmission statistics 20717
(GS_DPDUs_Sent, GS_DPDUs_Lost, and GS_GPDU_Latency), reliability statistics 20718
(GS_GPDU_Path_Reliability and GS_GPDU_Data_Reliability), and join statistics 20719
(GS_Join_Count). 20720

A device-specific health summary (GS_Device_Health_List) is also returned. The list includes 20721
device identification information (GS_Network_Address) and communication statistics that are 20722
an identical subset of those contained in the network health summary (GS_Start_Date, 20723
GS_Current_Date, GS_DPDUs_Sent, GS_DPDUs_Lost, GS_GPDU_Latency, 20724
GS_GPDU_Path_Reliability, GS_GPDU_Data_Reliability, and GS_Join_Count). 20725

GS_Start_Date is a 48-bit TAI time field indicating the time when a device first started 20726
operating. This is useful for calculation of battery replacement schedules. 20727

GS_Current_Date is a 48-bit TAI time field indicating the current time as viewed by the 20728
device. This is the time used by the device for timestamp purposes. 20729

GS_GPDU_Latency is a number from 0..100 indicating the percentage of scheduled GPDUs 20730
that arrive later than expected. These GPDUs may be delayed due to delivery over secondary 20731
paths or due to congestion in intermediate devices. 20732

GS_GPDU_Path_Reliability is a number from 0..100 indicating the percentage of first path 20733
success for acknowledged GPDU transmission. GPDUs that are transmitted on a secondary 20734
path may arrive successfully, but may reduce the path reliability. 20735

GS_GPDU_Data_Reliability is a number from 0..100 indicating the percentage of total GPDUs 20736
that are successful GPDUs. The total GPDUs are the number of acknowledged transmit 20737
GPDUs that are attempted plus the number of received GPDUs. Successful GPDUs are 20738
acknowledged transmit GPDUs that are transferred correctly on the first attempt plus receive 20739
GPDUs that pass integrity checks. 20740

GS_Join_Count is a positive integer that indicates the number of times a device has joined 20741
the system. Join count may rise if power is interrupted, a device is reset, the network is 20742
reformed, or a device is moved to a new network. Excessive joins may indicate device 20743
integrity or communication problems. 20744

GS_Status is returned to indicate success or failure of the operation, as described in Table 20745
U.8. 20746

U.2.4.9 Time interface 20747

U.2.4.9.1 General 20748

The time interface enables retrieval and setting of the time for a wireless network associated 20749
with a gateway. This is useful for time synchronization of a network of wireless devices with a 20750
host system and other host-level applications. 20751

The gateway-internal client uses the G_Time primitive to retrieve a report on the devices 20752
associated with a gateway entity. 20753

U.2.4.9.2 G_Time primitive 20754

U.2.4.9.3 Primitives and their parameters 20755

Table U.14 describes parameter usage for the primitive G_Time. 20756

62734/2CDV © IEC(E) – 803 –

Table U.14 – Primitive G_Time parameter usage 20757

Parameter name G_Time

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Command M —

GS_Time C M

GS_Status — M

 20758
U.2.4.9.4 Use of G_Time request 20759

The gateway-internal client uses the primitive G_Time request to read or set the network time. 20760

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20761
in the request. 20762

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20763
of the interface. 20764

GS_Command = 0 reads the network time. GS_Time is not included. 20765

GS_Command = 1 attempts to set the network time. A new time (GS_Time) is provided. 20766

U.2.4.9.5 Use of G_Time confirm 20767

The gateway entity uses the primitive G_Time confirm to complete the G_Time request to the 20768
gateway-internal client. 20769

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20770
returned to allow matching of the confirm with the original request. 20771

If GS_Command = 0 in the request, the current network time (GS_Time) is returned. 20772

If GS_Command = 1 in the request, the interface attempts to set the network time. The 20773
current network time (GS_Time) is returned. If the update is successful, the current time will 20774
reflect the change. 20775

GS_Status is returned to indicate success or failure of the operation, as described in Table 20776
U.15. 20777

Table U.15 – GS_Status for G_Time confirm 20778

Value Meaning

0 Success

1 Failure; not allowed to set time in this configuration

2 Failure; other

 20779

 – 804 – 62734/2CDV © IEC(E)

U.2.4.10 Client/server interface 20780

U.2.4.10.1 General 20781

The client/server interface provides for client/server data transfer. The necessary 20782
communication resources to enable the transfer are allocated through the use of the lease 20783
interface. The client and server each perform separate but related roles. Linkage of the client 20784
and the server is accomplished through the establishment of leases with matching lease 20785
information. Communication resources include local buffer facilities in order to minimize 20786
energy consuming transactions. Clients and servers may exist either in the gateway or in 20787
devices. 20788

The G_Client_Server primitive is used to send an internal client request data payload to a 20789
server and to initiate receipt of a corresponding server response data payload. Depending on 20790
implementation, the response payload may come from the internal client buffer within the 20791
gateway or from the field device. 20792

U.2.4.10.2 G_Client_Server primitive 20793

U.2.4.10.3 Primitives and their parameters 20794

Table U.16 describes parameter usage for the primitive G_Client_Server. 20795

Table U.16 – Primitive G_Client_Server parameter usage 20796

Parameter name G_Client_Server

Request Indication Response Confirm

GS_Session_ID M — — M(=)

GS_Transaction_ID M — — M(=)

GS_Lease_ID M — — —

GS_Buffer M — — —

GS_Transfer_Mode M — M —

GS_Request_Data M C(=) — —

GS_Response_Data — — C M

GS_Transaction_Info C — — C(=)

GS_Status — — M M

 20797
U.2.4.10.4 Use of G_Client_Server request 20798

The primitive G_Client_Server request is used to either attempt to acquire the requested data 20799
locally from the gateway (if GS_Buffer = 1), or to send a corresponding WISN native client 20800
application data request using the content of the data payload (GS_Request_Data) parameter 20801
to a WISN communicating device and to initiate receipt of a corresponding WISN server 20802
response. Whether the requested data is accessed locally or remotely, the data is returned 20803
via the response/confirm primitive parameter for the response payload (GS_Response_Data). 20804

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20805
in the request. 20806

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20807
of the interface. 20808

The server device is known through the lease identifier (GS_Lease_ID) that was obtained 20809
from the lease interface. 20810

62734/2CDV © IEC(E) – 805 –

The response data will be requested from the server device if the buffer is disabled for the 20811
transaction (GS_Buffer = 0). The response data will be delivered from the buffer if the buffer 20812
is enabled for the transaction (GS_Buffer = 1) and the buffer contains a matching response 20813
that has not expired. 20814

GS_Transfer_Mode is provided with the request in order to indicate the quality of interface 20815
and priority for the transfer of the data. 20816

If GS_Transaction_Info is provided as part of a request, it is returned by the corresponding 20817
confirm primitive. 20818

U.2.4.10.5 Use of G_Client_Server indication 20819

The primitive G_Client_Server indication is used to signal the arrival of a client request data 20820
payload at the server for processing. 20821

The indication is conditional on whether the server response data payload could be delivered 20822
from the client buffer. 20823

U.2.4.10.6 Use of G_Client_Server response 20824

The primitive G_Client_Server response is used to return a server response data payload to 20825
the client. 20826

GS_Transfer_Mode is provided with the response in order to indicate the quality of interface 20827
and priority for the transfer of the data. 20828

The response is conditional on whether the server response data payload could be delivered 20829
from the client buffer. 20830

U.2.4.10.7 Use of G_Client_Server confirm 20831

The primitive G_Client_Server confirm is used to complete the G_Client_Server request to the 20832
client. 20833

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20834
returned to allow matching of the confirm primitive with the original request primitive. 20835

A server response data payload is returned. The payload is either delivered from the client 20836
buffer or from the server. 20837

If GS_Transaction_Info was provided in the request, it will be returned in the confirm. 20838

GS_Status is returned to indicate success or failure of the operation, as described in Table 20839
U.17. 20840

Table U.17 – GS_Status for G_Client_Server confirm 20841

Value Meaning

0 Success

1 Failure; server is inaccessible for unbuffered request

2 Failure; server is inaccessible and client buffer is invalid for buffered
request

3 Failure; lease has expired

4 Failure; other

 20842

 – 806 – 62734/2CDV © IEC(E)

U.2.4.11 Publish/subscribe interface 20843

U.2.4.11.1 General 20844

The publish/subscribe interface provides mechanisms for publish/subscribe data transfer. The 20845
necessary communication resources to enable message exchange are allocated through the 20846
use of the lease interface. The publisher and the subscriber each perform separate but 20847
related roles. Linkage of the publisher and the subscriber is accomplished through separate 20848
establishment of matching communication. Communication resources include local buffer 20849
facilities in both the publisher and the subscriber in order to minimize energy consuming 20850
transactions. Publishers and subscribers may exist in gateways, adapters, or native devices. 20851

U.2.4.11.2 Lease establishment 20852

The G_Lease interface is used prior to the use of the G_Publish interface in order to establish 20853
a GS_Lease_ID. The GS_Lease_Type is set to either publisher or subscriber to configure the 20854
respective side and to establish and reserve the underlying gateway entity and 20855
communication channel resources. 20856

GS_Network_Address_List is used by the publisher and subscriber to establish the identity of 20857
the other endpoints. A publisher may describe multiple addresses within the list in order to 20858
configure multiple subscribers. 20859

Within the lease, GS_Protocol_Type is used to describe the application protocol that will be 20860
tunneled through the interface. This allows protocol-specific processing to occur. 20861

GS_Lease_Parameters is used to establish the expected protocol interaction between a 20862
publisher and a subscriber. 20863

U.2.4.11.3 Publication 20864

The G_Publish primitive is used by a publisher to initiate transfer of a publish data payload to 20865
one or more subscribers. 20866

The publish data payload is stored in a local buffer and forwarded from the buffer to 20867
subscribers. The lease configuration parameters determine when forwarding will occur. 20868
Forwarding occurs in order to meet scheduled deadlines. Over a period of time, the same 20869
payload may be forwarded multiple times to indicate that the publisher still exists and to 20870
prevent timeout. Invocation with unchanged data may not result in forwarding. 20871

U.2.4.11.4 Subscription 20872

The G_Subscribe primitive is used by a subscriber to retrieve the most recent publication data 20873
from the local buffer. 20874

The subscriber also receives the most recent publication associated with a subscribe lease 20875
via the G_Publish indication primitive. 20876

The primitive G_Publish_Watchdog is used within a subscriber to signal the expiration of a 20877
watchdog timer. The timer expires in the absence of expected updates from a publisher. The 20878
timer is reset on the arrival of publication data payload at the subscriber. The watchdog timer 20879
is configured as part of the lease configuration parameters. 20880

The primitive G_Publish_Timer is used within a publisher to signal the expiration of a 20881
publication timer. The publication timer is a periodic timer that expires prior to the deadline for 20882
forwarding the publish data payload. The indication may be used to publish fresh data. The 20883
publication timer is configured with the lease configuration parameters. 20884

62734/2CDV © IEC(E) – 807 –

The primitive G_Subscribe_Timer is used within a subscriber to signal the expiration of a 20885
subscription timer. The subscription timer is a periodic timer that expires at the delivery 20886
deadline for receiving the publish data payload. The indication is used to process existing 20887
publication data. Arrival of fresh data will reset the timer and will result in a G_Publish 20888
indication. The subscription timer is configured with the lease configuration parameters. 20889

U.2.4.11.5 Types of primitives and parameters 20890

U.2.4.11.6 G_Publish primitive and its parameters 20891

Table U.18 describes parameter usage for the primitive G_Publish. 20892

Table U.18 – Primitive G_Publish parameter usage 20893

Parameter name G_Publish

Request Indication Confirm

GS_Session_ID M M M

GS_Transaction_ID M — M(=)

GS_Lease_ID M M —

GS_Transfer_Mode M — —

GS_Publish_Data M C(=) —

GS_Status — — M

 20894
U.2.4.11.7 Use of G_Publish request 20895

The primitive G_Publish request is used to initiate transfer of a publish data payload 20896
(GS_Publish_Data) to one or more subscribers. The publish data payload is stored in a local 20897
buffer and forwarded from the buffer to subscribers. 20898

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20899
in the request. 20900

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20901
of the interface. 20902

The subscriber addressing is known through the lease identifier (GS_Lease_ID) that was 20903
obtained from the lease interface. 20904

Within the lease parameters, GS_Resource is an identical value specified for a publisher and 20905
one or more subscribers in order to facilitate establishment of linkage between the endpoints. 20906

GS_Transfer_Mode is provided with the request in order to indicate the quality of interface 20907
and priority for the transfer of the data. 20908

U.2.4.11.8 Use of G_Publish indication 20909

The primitive G_Publish indication is used to signal the arrival of a publish data payload at a 20910
subscriber for processing. 20911

The publish data payload (GS_Publish_Data) is delivered with the indication. 20912

The subscriber session identifier (GS_Session_ID) and subscriber lease identifier 20913
(GS_Lease_ID) are returned to allow association of the indication primitive with a specific 20914
publish/subscribe relationship. 20915

 – 808 – 62734/2CDV © IEC(E)

The indication is conditional on configuration-dependent timed delivery from the publisher and 20916
indicates fresh publication data. 20917

U.2.4.11.9 Use of G_Publish confirm 20918

The primitive G_Publish confirm is used to complete the G_Publish request. 20919

The publisher session identifier (GS_Session_ID) and transaction identifier 20920
(GS_Transaction_ID) are returned to allow matching of the confirm primitive with the original 20921
request primitive. 20922

GS_Status is returned to indicate success or failure of the operation, as described in Table 20923
U.19. 20924

Table U.19 – GS_Status for G_Publish confirm 20925

Value Meaning

0 Success

1 Failure; lease has expired

2 Failure; other

 20926
U.2.4.11.10 G_Subscribe primitive and its parameters 20927

Table U.20 describes parameter usage for the primitive G_Subscribe. 20928

Table U.20 – Primitive G_Subscribe parameter usage 20929

Parameter name G_Subscribe

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Lease_ID M —

GS_Publish_Data — M

GS_Status — M

 20930
U.2.4.11.11 Use of G_Subscribe request 20931

The primitive G_Subscribe request is used to retrieve the most recent publication data 20932
(GS_Publish_Data) from the local buffer. 20933

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 20934
in the request. 20935

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 20936
of the interface. 20937

The publisher addressing is known through the lease identifier (GS_Lease_ID) that was 20938
obtained from the lease interface. 20939

U.2.4.11.12 Use of G_Subscribe confirm 20940

The primitive G_Subscribe confirm is used to complete the G_Subscribe request. 20941

62734/2CDV © IEC(E) – 809 –

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 20942
returned to allow matching of the confirm primitive with the original request primitive. 20943

GS_Status is returned to indicate success or failure of the operation, as described in Table 20944
U.21. 20945

Table U.21 – GS_Status for G_Subscribe confirm 20946

Value Meaning

0 Success; fresh data

1 Success; stale data

2 Failure; lease has expired

3 Failure; other

 20947
U.2.4.11.13 G_Publish_Timer primitive and its parameters 20948

Table U.22 describes parameter usage for the primitive G_Publish_Timer. 20949

Table U.22 – Primitive G_Publish_Timer parameter usage 20950

Parameter name G_PublishTimer

Indication

GS_Session_ID M

GS_Lease_ID M

 20951
U.2.4.11.14 Use of G_Publish_Timer indication 20952

The primitive G_Publish_Timer indication is used within a publisher to signal the expiration of 20953
a publication timer. 20954

The publisher session identifier (GS_Session_ID) and publisher lease identifier 20955
(GS_Lease_ID) are returned to allow association of the indication primitive with a specific 20956
publish/subscribe relationship. 20957

U.2.4.11.15 G_Subscribe_Timer primitive and its parameters 20958

Table U.23 describes parameter usage for the primitive G_Subscribe_Timer. 20959

Table U.23 – Primitive G_Subscribe_Timer parameter usage 20960

Parameter name G_SubscribeTimer

Indication

GS_Session_ID M

GS_Publish_Data M

GS_Lease_ID M

 20961
U.2.4.11.16 Use of G_Subscribe_Timer indication 20962

The primitive G_Subscribe_Timer indication is used within a subscriber to signal the 20963
expiration of a subscription timer. The timer is reset by the G_Publish indication. 20964

 – 810 – 62734/2CDV © IEC(E)

The publish data payload (GS_Publish_Data) is delivered from the subscriber buffer with the 20965
indication. 20966

The subscriber session identifier (GS_Session_ID) and subscriber lease identifier 20967
(GS_Lease_ID) are returned to allow association of the indication primitive with a specific 20968
publish/subscribe relationship. 20969

U.2.4.11.17 G_Publish_Watchdog primitive and its parameters 20970

Table U.24 describes parameter usage for the primitive G_Publish_Watchdog. 20971

Table U.24 – Primitive G_Publish_Watchdog parameter usage 20972

Parameter name G_Publish_Watchdog

Indication

GS_Session_ID M

GS_Publish_Data M

GS_Lease_ID M

 20973
U.2.4.11.18 Use of G_Publish_Watchdog indication 20974

The primitive G_Publish_Watchdog indication is used within a subscriber to signal the 20975
expiration of a watchdog timer due to the absence of expected updates from a publisher. The 20976
timer is reset by the G_Publish indication. 20977

The now-stale publish data payload (GS_Publish_Data) is delivered from the subscriber buffer 20978
with the indication. 20979

The session identifier (GS_Session_ID) and lease identifier (GS_Lease_ID) are returned to 20980
allow association of the indication primitive with a specific publish/subscribe relationship. 20981

U.2.4.12 Bulk transfer interface 20982

U.2.4.12.1 General 20983

The bulk transfer interface provides for bulk data transfer. Bulk data transfer is used to 20984
transfer large items between gateway-internal clients and wireless devices. 20985

Bulk transfers operate in the context of a session between the GIAP interface provider and 20986
the GIAP interface user. All primitives supported by the gateway through a GIAP include the 20987
corresponding GS_Session_ID. 20988

The client of the session manages the session-unique GS_Transaction_IDs for each primitive 20989
invoked by the client. This is necessary in order to maintain coordination between bulk 20990
transfer primitives. 20991

The GS_Lease_ID, which represents the necessary communication resources allocated within 20992
the gateway, is supplied with each primitive. 20993

Separate parallel bulk transfers are distinguished by a GS_Transfer_ID. A GS_Transfer_ID 20994
also is included in each GIAP interface primitive. The transfer state is maintained for each 20995
bulk transfer in progress. For example, the block number being transferred is maintained by 20996
the endpoints. 20997

62734/2CDV © IEC(E) – 811 –

G_Bulk_Open is used to open a bulk transfer. G_Bulk_Close is used to close a bulk transfer. 20998
G_Bulk_Transfer is used to perform the actual transfer of data segments within a bulk 20999
transfer. 21000

U.2.4.12.2 Types of primitives and parameters 21001

U.2.4.12.3 G_Bulk_Open primitive and its parameters 21002

Table U.25 describes parameter usage for the primitive G_Bulk_Open. 21003

Table U.25 – Primitive G_Bulk_Open parameter usage 21004

Parameter name G_Bulk_Open

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Lease_ID M —

GS_Transfer_ID M —

GS_Resource M —

GS_Mode M —

GS_Block_Size M M

GS_Item_Size C C

GS_Status — M

 21005
U.2.4.12.4 Use of G_Bulk_Open request 21006

The G_Bulk_Open request primitive is used to initiate a bulk transfer. The target device for a 21007
bulk transfer is implied by the GS_Lease_ID. 21008

The target item for a bulk transfer is identified by GS_Resource. 21009

A transfer is directional (upload or download) and GS_Mode describes the direction of the 21010
transfer. GS_Mode = 0 describes download and GS_Mode = 1 describes upload. 21011

The GIAP interface user sets GS_Block_Size to request a block size for the subsequent 21012
transfer phase. 21013

The GIAP interface user sets the GS_Item_Size to request download of an item of a particular 21014
size. The item may exceed the available download limits, resulting in an error response. 21015
GS_Item_Size = 0 requests the download of an item of indeterminate size. 21016

U.2.4.12.5 Use of G_Bulk_Open confirm 21017

The G_Bulk_Open confirm primitive is used in response to the G_Bulk_Open request. 21018

The GS_Item_Size is set by the GIAP interface provider to indicate the item size. For a 21019
download, this is the maximum item size that will be accepted. For an upload, this is the 21020
actual item size. GS_Item_Size = 0 indicates that there is no limit imposed on the item size. 21021

The GIAP interface provider determines and returns the GS_Block_Size that will be used for 21022
the subsequent transfer phase. The block size may be reduced in size (based on available 21023
resources) from the original size requested in the GS_Bulk_Open request. 21024

GS_Status indicates success or failure of the G_Bulk_Open, as shown in Table U.26. 21025

 – 812 – 62734/2CDV © IEC(E)

Table U.26 – GS_Status for G_Bulk_Open confirm 21026

Value Meaning

0 Success

1 Failure; item exceeds limits

2 Failure; unknown resource

3 Failure; invalid mode

4 Failure; other

 21027
U.2.4.12.6 G_Bulk_Transfer primitive and its parameters 21028

Table U.27 describes parameter usage for the primitive G_Bulk_Transfer. 21029

Table U.27 – Primitive G_Bulk_Transfer parameter usage 21030

Parameter name G_Bulk_Transfer

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Lease_ID M —

GS_Transfer_ID M —

GS_Bulk_Data C C

GS_Status — M

 21031
U.2.4.12.7 Use of G_Bulk_Transfer request 21032

The G_Bulk_Transfer request primitive is used to move bulk data. GS_Bulk_Data is a transfer 21033
segment that is conditionally sent to the target in the case of a download. 21034

G_Bulk_Transfer is used as many times as required to complete the transfer of a large item. 21035
G_Bulk_Close is used by the GIAP interface user to indicate the completion of the transfer. 21036

U.2.4.12.8 Use of G_Bulk_Transfer confirm 21037

The G_Bulk_Transfer confirm primitive is used in response to the G_Bulk_Transfer request. 21038
GS_Bulk_Data is a transfer segment that is conditionally received from the target in the case 21039
of an upload. 21040

GS_Status indicates success or failure of the G_Bulk_Transfer, as indicated in Table U.28. 21041

Table U.28 – GS_Status for G_Bulk_Transfer confirm 21042

Value Meaning

0 Success

1 Failure; communication failed

2 Failure; transfer aborted

3 Failure; other

 21043
U.2.4.12.9 G_Bulk_Close primitive and its parameters 21044

Table U.29 describes parameter usage for the primitive G_Bulk_Close. 21045

62734/2CDV © IEC(E) – 813 –

Table U.29 – Primitive G_Bulk_Close parameter usage 21046

Parameter name G_Bulk_Close

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Lease_ID M —

GS_Transfer_ID M —

GS_Status — M

 21047
U.2.4.12.10 Use of G_Bulk_Close request 21048

The G_Bulk_Close request primitive is used to complete a bulk transfer, and to clean up any 21049
resources or state handling necessary in the GIAP interface provider. 21050

U.2.4.12.11 Use of G_Bulk_Close confirm 21051

The G_Bulk_Close confirm primitive is used in response to the G_Bulk_Close request. 21052

U.2.4.13 Alert interface 21053

U.2.4.13.1 General 21054

The alert interface provides for the establishment of alert notification events for gateway-21055
internal clients. Additional operations may be required to collect additional information related 21056
to the alert or to respond to the alert. 21057

Alert interfaces operate in the context of a session between the GIAP interface provider and 21058
the GIAP interface user. All primitives supported by the gateway through a GIAP include the 21059
corresponding GS_Session_ID. 21060

The client of the session manages the session-unique outstanding GS_Transaction_IDs for 21061
each primitive it invokes. This is necessary in order to maintain coordination between alert 21062
primitives. 21063

The GS_Lease_ID, which represents the necessary gateway entity and communication 21064
resources, is supplied with each primitive. 21065

G_Alert_Subscription is used to subscribe to alerts either by category or by specific alerts. 21066

U.2.4.13.2 Types of primitives and parameters 21067

U.2.4.13.3 G_Alert_Subscription primitive and its parameters 21068

Table U.30 describes parameter usage for the primitive G_Alert_Subscription. 21069

 – 814 – 62734/2CDV © IEC(E)

Table U.30 – Primitive G_Alert_Subscription parameter usage 21070

Parameter name G_Alert_Subscription

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Lease_ID M —

GS_Subscription_List M C

GS_Category C C

GS_Network_Address C C

GS_Alert_Source_ID C C

GS_Subscribe M C

GS_Enable M C

GS_Status — M

 21071
U.2.4.13.4 Use of G_Alert_Subscription request 21072

The G_Alert_Subscription request primitive is used to manage an alert subscription list. 21073

GS_Subscription_List contains one or more alert subscription modification requests. Each list 21074
element can be used to modify the subscription for a particular category of alerts or to modify 21075
the subscription for a specific alert from a specific source. 21076

List elements may describe the GS_Category to indicate subscription modification for a 21077
particular category of alerts. Alert categories include: 21078

0 = device; 21079
1 = network; 21080
2 = security; and 21081
3 = process. 21082

GS_Network_Address and GS_Alert_Source_ID are not supplied if GS_Category is supplied. 21083

Alternatively, list elements may describe GS_Network_Address and GS_Alert_Source_ID 21084
instead of GS_Category to describe a specific device and an identifier of a specific alert from 21085
that device. 21086

NOTE It is anticipated that some gateway-internal clients, such as full alarm management systems, will use 21087
complete categories, whereas other gateway-internal clients are able to restrict their usage to only a select subset 21088
of alerts. 21089

GS_Subscribe and GS_Enable control the actions for each list element. GS_Subscribe is 21090
used to describe which alerts are to be received within the gateway entity and forwarded to 21091
the GIAP interface user in the form of G_Alert_Notification indications. GS_Enable is used to 21092
control the underlying generation of alerts at the source. GS_Subscribe = 1 subscribes to a 21093
specific alert or an alert category, while GS_Subscribe = 0 unsubscribes from the alert. 21094
GS_Enable = 1 enables a specific alert or an alert category, while GS_Enable = 0 disables 21095
the alert at the source. 21096

In order to synchronize the alarm state between the alarm source and the gateway entity, 21097
alarm recovery is initiated on subscriptions. 21098

62734/2CDV © IEC(E) – 815 –

U.2.4.13.5 Use of G_Alert_Subscription confirm 21099

The G_Alert_Subscription confirm primitive is used in response to the G_Alert_Subscription 21100
request. 21101

GS_Status indicates success or failure of the G_Alert_Subscription request, as indicated in 21102
Table U.31. A GS_Subscription_List with a single element is conditionally returned if the 21103
operation fails. The status code relates to the particular element. Processing of the list stops 21104
at the first failed element. 21105

Table U.31 – GS_Status for G_Alert_Subscription confirm 21106

Value Meaning

0 Success

1 Failure; invalid category

2 Failure; invalid individual alert

3 Failure; other

 21107
U.2.4.13.6 G_Alert_Notification primitive and its parameters 21108

Table U.32 describes parameter usage for the primitive G_Alert_Notification. 21109

Table U.32 – Primitive G_Alert_Notification parameter usage 21110

Parameter name G_Alert_Notification

Indication

GS_Session_ID M

GS_Lease_ID M

GS_Alert M

GS_Network_Address M

GS_Alert_Source_ID M

GS_Time M

GS_Class M

GS_Direction M

GS_Category M

GS_Type M

GS_Priority M

GS_Alert_Data C

 21111
U.2.4.13.7 Use of G_Alert_Notification indication 21112

The G_Alert_Notification indication is generated by the GIAP interface provider and sent to 21113
the GIAP user in response to an alert received by the gateway. Notification is provided only 21114
for those alerts to which the GIAP client had subscribed, and for which notification has been 21115
enabled. 21116

A GS_Alert structure is provided within the indication to provide alert specific details as 21117
follows: 21118

• GS_Network_Address indicates the source device of the alert. 21119

• GS_Alert_Source_ID indicates the specific alert within the source device. 21120

 – 816 – 62734/2CDV © IEC(E)

• GS_Time is a timestamp that indicates when the alert was originally generated. 21121

• GS_Class = 0 identifies the alert as an event; GS_Class = 1 identifies the alert as an 21122
alarm. 21123

• GS_Direction further classifies alarms as follows: 21124
0: alarm condition ended; 21125
1: alarm condition began. 21126

• GS_Category describes the alert category as follows: 21127
0: process-related; 21128
1: device-related; 21129
2: network-related; 21130
3: security-related. 21131

• GS_Type describes sub-categories for alerts. The actual value is application-specific. 21132

• GS_Priority describes a priority for the alert. Larger values indicate higher priority. The 21133
actual value is application-specific. 21134

• GS_Alert_Data allows inclusion of alert-related information. This field is conditional on 21135
whether additional alert information is available. The actual value is application-specific. 21136

The gateway entity acknowledges the alert receipt. 21137

U.2.4.14 Gateway configuration interface 21138

U.2.4.14.1 General 21139

The gateway configuration interface provides for reading and writing the gateway 21140
configuration attributes. 21141

The gateway-internal client uses the G_Read_Gateway_Configuration primitive to retrieve 21142
gateway configuration attributes. 21143

U.2.4.14.2 Types of primitives and parameters 21144

U.2.4.14.3 G_Read_Gateway_Configuration primitive and its parameters 21145

Table U.33 describes parameter usage for the primitive G_Read_Gateway_Configuration. 21146

Table U.33 – Primitive G_Read_Gateway_Configuration parameter usage 21147

Parameter name G_ReadGatewayConfiguration

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Attribute_Identifier M —

GS_Attribute_Value — C

GS_Status — M

 21148
U.2.4.14.4 Use of G_Read_Gateway_Configuration request 21149

The gateway-internal client uses the primitive G_Read_Gateway_Configuration request to 21150
retrieve gateway configuration parameters. 21151

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 21152
in the request. 21153

62734/2CDV © IEC(E) – 817 –

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 21154
of the interface. 21155

The requested attribute is specified by the attribute identifier (GS_Attribute_Identifier), as 21156
shown in Table U.34. The requested value is specified by the attribute value 21157
(GS_Attribute_Value). 21158

Table U.34 – GS_Attribute_Identifier values for G_Read_Gateway_Configuration request 21159

Value Meaning

0 GS_GUID

1 GS_Max_Retries

2 GS_Max_Devices

3 GS_Actual_Devices

 21160
U.2.4.14.5 Use of G_Read_Gateway_Configuration confirm 21161

The gateway entity uses the primitive G_Read_Gateway_Configuration confirm to complete 21162
the G_Read_Gateway_Configuration request to the gateway-internal client. 21163

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 21164
returned to allow matching of the confirm with the original request. 21165

If the operation succeeds, the value (GS_Attribute_Value) is returned for the requested 21166
attribute (GS_Attribute_Identifier). 21167

GS_Status is returned to indicate success or failure of the operation, as described in Table 21168
U.8. 21169

U.2.4.14.6 G_Write_Gateway_Configuration primitive and its parameters 21170

Table U.35 describes parameter usage for the primitive G_Write_Gateway_Configuration. 21171

Table U.35 – Primitive G_Write_Gateway_Configuration parameter usage 21172

Parameter name G_Write_Gateway_Configuration

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Attribute_Identifier M —

GS_Attribute_Value M —

GS_Status — M

 21173
U.2.4.14.7 Use of G_Write_Gateway_Configuration request 21174

The gateway-internal client uses the primitive G_Write_Gateway_Configuration request to 21175
alter gateway configuration attributes. 21176

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 21177
in the request. 21178

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 21179
of the interface. 21180

 – 818 – 62734/2CDV © IEC(E)

The requested attribute is specified by the attribute identifier (GS_Attribute_Identifier), as 21181
shown in Table U.36. The requested value is specified by the attribute value 21182
(GS_Attribute_Value). 21183

Table U.36 – GS_Attribute_Identifier values for G_Write_Gateway_Configuration request 21184

Value Meaning

0 GS_GUID

1 GS_Max_Retries

 21185
U.2.4.14.8 Use of G_Write_Gateway_Configuration confirm 21186

The gateway entity uses the primitive G_Write_Gateway_Configuration confirm to complete 21187
the G_Write_Gateway_Configuration request to the gateway-internal client. 21188

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 21189
returned to allow matching of the confirm primitive with the original request primitive. 21190

GS_Status is returned to indicate success or failure of the operation, as described in Table 21191
U.37. 21192

Table U.37 – GS_Status for G_Write_Gateway_Configuration confirm 21193

Value Meaning

0 Success

1 Failure; invalid attribute value

2 Failure; other

 21194
U.2.4.15 Device configuration interface 21195

U.2.4.15.1 General 21196

The device configuration interface provides a method to manage the configuration of the 21197
devices that are associated with a gateway. This is useful for commissioning wireless devices 21198
for host systems and related applications. 21199

The device configuration has interfaces to write and to read back the configuration for one or 21200
more devices. 21201

A unique identifier is used to match the configuration to a specific device. An IPv6Address is 21202
specified for usage in configuration of the device, allowing subsequent logical access of the 21203
device. 21204

The device list report interface is used to determine the devices associated with the gateway. 21205
This interface works in conjunction with the device list report interface by providing the ability 21206
to limit the devices that are associated with a gateway. 21207

A configuration file may be provided for each device. The format of such a configuration file is 21208
gateway-implementation dependent. Information contained in this file is intended to allow 21209
gateways to automatically provision devices to join the network. Further configuration is 21210
accomplished one-on-one by client server and bulk transfer interfaces. 21211

If the gateway is used to provision devices, the device list report will be empty until devices 21212
are provisioned and join the system. 21213

62734/2CDV © IEC(E) – 819 –

The gateway-internal client uses the G_Write_Device_Configuration primitive to set the 21214
configuration for devices associated with a gateway entity. 21215

U.2.4.15.2 Types of primitives and parameters 21216

U.2.4.15.3 G_Write_Device_Configuration primitive and its parameters 21217

Table U.38 describes parameter usage for the primitive G_Write_Device_Configuration. 21218

Table U.38 – Primitive G_Write_Device_Configuration parameter usage 21219

Parameter name G_Write_Device_Configuration

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Device_List M —

GS_Configure M —

GS_Unique_Device_ID M —

GS_Network_Address M —

GS_Provisioning_Info U —

GS_Status — M

 21220
U.2.4.15.4 Use of G_Write_Device_Configuration request 21221

The gateway-internal client uses the primitive G_Write_Device_Configuration request to 21222
configure the devices associated with a gateway entity. 21223

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 21224
in the request. 21225

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 21226
of the interface. 21227

A list of devices associated with the gateway entity (GS_Device_List) is supplied. For each 21228
device in the list, the unique device identifier (GS_Unique_Device_ID) indicates the device 21229
associated with the configuration. If GS_Configure = 1, the configuration is added for the 21230
specific device, while if GS_Configure = 0, the configuration is removed for the specific 21231
device. A matching IPv6Address (GS_Network_Address) indicates the logical address to 21232
associate with the device. 21233

Device provisioning information (GS_Provisioning_Info) is supplied to the gateway for the 21234
gateway to control provisioning of the device. 21235

U.2.4.15.5 Use of G_Write_Device_Configuration confirm 21236

The gateway entity uses the primitive G_Write_Device_Configuration confirm to complete the 21237
G_Write_Device_Configuration request to the gateway-internal client. 21238

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 21239
returned to allow matching of the confirm with the original request. 21240

GS_Status is returned to indicate success or failure of the operation, as described in Table 21241
U.39. 21242

 – 820 – 62734/2CDV © IEC(E)

Table U.39 – GS_Status for G_Write_Device_Configuration confirm 21243

Value Meaning

0 Success

1 Failure; invalid or duplicate IPv6Address

2 Failure; out of memory

3 Failure; maximum gateway devices exceeded

4 Failure; provisioning information invalid

5 Failure; other

 21244
U.2.4.15.6 G_Read_Device_Configuration primitive and its parameters 21245

Table U.40 describes parameter usage for the primitive G_Read_Device_Configuration. 21246

Table U.40 – Primitive G_Read_Device_Configuration parameter usage 21247

Parameter name G_Read_Device_Configuration

Request Confirm

GS_Session_ID M M(=)

GS_Transaction_ID M M(=)

GS_Device_List U M

 GS_Unique_Device_ID U M

 GS_Network_Address — M

 GS_Provisioning_Info — U

GS_Status — M

 21248
U.2.4.15.7 Use of G_Read_Device_Configuration request 21249

The gateway-internal client uses the primitive G_Read_Device_Configuration request to 21250
retrieve the configuration of the devices associated with a gateway entity. 21251

A session identifier (GS_Session_ID) is obtained from the G_Session interface and included 21252
in the request. 21253

A session unique transaction identifier (GS_Transaction_ID) is specified for each invocation 21254
of the interface. 21255

If a list of devices associated with the gateway entity (GS_Device_List) is supplied, the 21256
request is for those specific devices, and the unique device identifier (GS_Unique_Device_ID) 21257
indicates the device associated with the configurations to be read. If no list is supplied, the 21258
request is for all devices. 21259

U.2.4.15.8 Use of G_Read_Device_Configuration confirm 21260

The gateway entity uses the primitive G_Read_Device_Configuration confirm to complete the 21261
G_Read_Device_Configuration request to the gateway-internal client. 21262

The session identifier (GS_Session_ID) and transaction identifier (GS_Transaction_ID) are 21263
returned to allow matching of the confirm with the original request. 21264

A list of devices associated with the gateway entity (GS_Device_List) is returned. For each 21265
device in the list, the unique device identifier (GS_Unique_Device_ID) indicates the device 21266

62734/2CDV © IEC(E) – 821 –

associated with the configuration. A matching IPv6Address (GS_Network_Address) indicates 21267
the logical address associated with the device. The device configuration file 21268
(GS_Provisioning_Info), when present, provides provisioning information for the device. 21269

GS_Status is returned to indicate success or failure of the operation, as described in Table 21270
U.8. 21271

U.3 Example uses of WISN standard services and objects 21272

U.3.1 Tunneling 21273

U.3.1.1 General 21274

The tunnel object (TUN) is a native object that acts as a communication endpoint for the 21275
following messaging: 21276

• encapsulated foreign protocol content (shown in Figure U.16 as a dotted line); and 21277

• native interface content (shown in Figure U.16 as a solid line) to configure and manage 21278
the tunnel object. 21279

Gateway processes and adapter processes use tunnel objects to support foreign protocol 21280
translation. An important aspect of the TUN object is that it provides buffered message 21281
behavior for foreign content. 21282

 21283

Figure U.16 – Tunnel object model 21284

One or more TUNs may exist within a UAP. 21285

Each TUN object can handle a complete foreign protocol or a portion thereof. Devices that 21286
handle multiple foreign protocols will need to implement multiple TUNs. The TUN object is 21287
independent of the foreign protocol. 21288

TL

UAP

TSAP = m

ASL

UAL

Encapsulated
foreign
content

Object
management

Tunnel
object

Object = n

Tunnel
and P/S
services

Native C/S
services

Application
process

 – 822 – 62734/2CDV © IEC(E)

The TUN object relies on the application sublayer (ASL) in order to route messages between 21289
peer TUNs and between a TUN object and other non-TUN objects. 21290

U.3.1.2 Distributing tunnel objects 21291

Each device may have one or more TUNs. Tunneling devices includes at least one TUN 21292
object as an endpoint for tunnels. Figure U.17 shows a group of related devices with tunnel 21293
endpoints interconnected between TUNs. 21294

 21295

Figure U.17 – Distributed tunnel endpoints 21296

Field devices and adapters may contain TUNs that cooperate with other TUNs in a gateway. A 21297
group of related TUNs communicate via a common foreign protocol. The typical usage of 21298
TUNs is to communicate between end devices and a host system via the gateway. Direct 21299
device-to-device tunneling is also supported within the object model. 21300

TUN object communication is established by using TL interfaces invoked and augmented via 21301
the ASL. Communication relationships include publish, subscribe, 2-part tunnel, and 4-part 21302
tunnel. Multiple relationships may be established simultaneously. 21303

U.3.1.3 Multicast, broadcast, and one-to-many messaging 21304

As shown in Figure U.18, foreign protocols may require translation of broadcast/multicast 21305
messaging relationships when using interfaces such as publish/subscribe and alert 21306
distribution. This messaging requires translation support within this standard. 21307

TL

Device-b GatewayDevice-a

TUN TUN

ASL

UAP

TUN

Tunnel
or P/S

Tunnel
or P/S

Tunnel
or P/S

62734/2CDV © IEC(E) – 823 –

 21308

Figure U.18 – Multicast, broadcast, and one-to-many messaging 21309

This standard provides one-to-many messaging support in the tunnel object in order to 21310
support translation of the foreign protocol multicast and broadcast requests. The underlying 21311
layers of the protocol suite do not provide broadcast or multicast interfaces to the AL. One-to-21312
many messaging is achieved via a series of unicast operations. Protocol translation 21313
applications cannot rely on simultaneous delivery of unicast messages. 21314

U.3.1.4 Tunnel buffered message behavior 21315

TUN object communication may be implemented to provide capabilities for buffered and non-21316
buffered behavior for publish/subscribe and tunnel-based message exchanges. TUNs are 21317
capable of cooperatively managing buffered behavior to reduce wireless transactions. 21318

NOTE 1 Some legacy protocols use buffered messaging exchanges to support energy-efficient and high-21319
performance protocol translation. 21320

NOTE 2 Some applications are unable to tolerate buffered behavior, usually due to safety and synchronization 21321
requirements. 21322

NOTE 3 Buffers are a single element deep. Nothing in this standard prevents implementation of caching and 21323
queuing enhancements. 21324

As shown in Figure U.19, each endpoint of a communication flow has a different buffering 21325
responsibility, depending on the relationship. 21326

TLs

UAPs

Foreign
protocol translation

Foreign
broadcast/multicast packet

GSAP

ASLs

Gateway process

DMAP

TUN

TLs

UAPs

Foreign
protocol translation

GSAP

ASLs

Gateway process

DMAP

TUN

Single or multiple
native wireless unicasts

Foreign
broadcast/multicast packet

Single or multiple
native wireless unicasts

Gateways
or

adapters

 – 824 – 62734/2CDV © IEC(E)

 21327

Figure U.19 – Tunnel object buffering 21328

In Figure U.19, two TUN objects are shown. The thin arrows indicate interactions from tunnel 21329
applications that use the objects. The thick arrows indicate message flows across the network 21330
between the objects. Three types of transaction are shown, a publish/subscribe transaction, a 21331
2-part tunnel transaction, and a 4-part tunnel transaction. Buffers are shown to illustrate the 21332
buffered messaging behavior between tunnel endpoints. 21333

A publisher and a subscriber are linked from TUN object to TUN object for periodic updates. 21334
Publishers use change of state (CoSt) buffer publications to avoid sending repeated 21335
information; subscribers tolerate limited intervals with missing publications. 21336

Messaging with the 2-part tunnel interface behaves in a similar manner, except that the 21337
messaging is aperiodic. 21338

Messaging with the 4-part tunnel interface distinguishes a request and a response side via 21339
the request/response bit in the tunnel interface header. The request side buffers the first 21340
request and also forwards the request. A response is generated as indicated by the double 21341
arrow on the response side in Figure U.19. The response is stored in a second linked buffer 21342
on the request side, as indicated by the double arrow in Figure U.19. Change of state 21343
processing applies to subsequent duplicate requests, wherein the response is returned from 21344
the local buffer. Where change of state indicates an altered request, the request is forwarded 21345
and the local response buffer is updated. A final buffer is shown in Figure U.19 on the 21346
response side. This buffer supports change of state behavior wherein a single request results 21347
in multiple responses over time to update the request side. 21348

U.3.1.5 Tunnel object attributes 21349

TUN object attributes are described in Clause 12, but are further described herein. 21350

The Protocol attribute is used to configure the protocol associated with the tunnel object and 21351
the associated remote tunnel objects. When the protocol is set to none, the tunnel can be 21352
configured. Once another protocol is set, the tunnel object configuration is applied and the 21353
status is updated to reflect the result. 21354

The tunnel endpoint structure describes address information pointing to a single remote 21355
tunnel object. The array of tunnel endpoints allows specification of one or more tunnel 21356
endpoints representing remote tunnel objects. This allows a single communication 21357
relationship to span multiple tunnel objects where necessary. Max_Peer_tunnels indicates the 21358
maximum number of entries in the array. Num_Peer_Tunnels indicates the actual number of 21359
entries configured in the array. 21360

TUN

Publication

Buffer BufferBuffer

Linked
pair

TUN

Subscription

2-part
tunnel

Buffer

2-part
tunnel

4-part
tunnel

4-part
tunnel

4-part
tunnel

4-part
tunnel

Buffer

62734/2CDV © IEC(E) – 825 –

One of several types of communication flow types is selected between the tunnel objects by 21361
configuration of the Flow_Type attribute. Flow types include 2-part tunnel, 4-part tunnel, 21362
publish, and subscribe. 21363

For publish and subscribe Flow_Types, the Update_Policy allows configuration of periodic 21364
publication or change of state publication. Periodic publication occurs at every opportunity. 21365
CoSt publication occurs only when fresh publication data is available. The publication 21366
frequency is based on the Period attribute. The actual timing is based on a combination of the 21367
Period and the Phase attributes. The Stale_Limit is used in the subscriber to configure 21368
behavior for detection of excessive publication loss or delay. Stale_Limit is a multiplier that 21369
configures the number of periods that a subscriber will wait before considering lost 21370
publications to indicate a problem. 21371

Foreign_Destination_Address and Foreign_Source_Address are the addresses associated 21372
with the tunnel endpoint by the foreign protocol. The format is dependent on the foreign 21373
protocol. These addresses are returned to protocol translator applications as tunnel object 21374
messages are received. They allow utilization of IPv6Addressing as defined in this standard in 21375
lieu of carrying the foreign addressing. Mapping via the tunnel object allows reconstruction of 21376
foreign PDUs containing address information. 21377

NOTE Depending on the specific foreign protocol conversion, the foreign PDU will vary. Most fieldbus protocols 21378
will form DPDUs for direct delivery on a local link. In contrast, IP-based protocols usually form NPDUs, where a 21379
final encapsulation is achieved by an address resolution protocol. 21380

Connection_Info[] and Transaction_Info[] are octet strings that are written by the protocol 21381
translator as required. Connection_Info[] is used to provide protocol specific static message 21382
content on message receipt in order to eliminate the repeated wireless message transfer of 21383
the content. Transaction_Info[] is used to provide protocol specific message content on 21384
receipt of a response, where the content would otherwise be echoed from the request in the 21385
response, eliminating the wireless transfer of the content. Further description is provided in 21386
U.3.1.9 and Annex O. 21387

It is the responsibility of the TUN object implementation to maintain a related contract for 21388
each tunnel endpoint. 21389

U.3.1.6 Tunnel object messaging 21390

U.3.1.6.1 Application sublayer interface usage 21391

TUN objects may be implemented to provide connection interfaces that include a 21392
publish/subscribe interface, a 2-part tunnel interface, and a 4-part tunnel interface. Each 21393
interface may be implemented in both a buffered and a non-buffered mode of operation. 21394

An optional external interface for invoking the gateway connection interfaces is described in 21395
U.2. 21396

The TUN object uses the ASL to deliver and receive interface content as described for the 21397
publish interface in 12.17.3.2 and the tunnel interface in 12.17.6.2. The ASL provides object-21398
to-object delivery of publish/subscribe payloads in external formats through the publish 21399
request primitive. The ASL also provides a linked tunnel request and tunnel response 21400
primitive. 21401

The header is described in 12.22.2.3. This header enables request and response 21402
specification, interface type specification (publish or tunnel), and object identifier addressing 21403
mode (4-bit, 8-bit, or 16-bit). A large number of tunnel objects will result in a larger address 21404
space and more overhead in the header. 21405

The publish interface payload format is described in 12.22.2.12 by Table 348. There is no 21406
explicit size in the header. The size of the publication is supplied with the publish request and 21407
is known to the subscriber by information supplied with the indication. 21408

 – 826 – 62734/2CDV © IEC(E)

The tunnel interface request and response payload formats are described in 12.22.2.9. The 21409
request allows 7-bit size (0..127 octet payloads) or 15-bit size (128..32 767 octet payloads). 21410
Inclusion of the size allows tunnel message to be concatenated by the ASL. 21411

NOTE Most encapsulated messages from legacy protocols referenced by this standard fall into the range of less 21412
than a 127-octet payload, resulting in a 7-bit field. 21413

U.3.1.6.2 Information classification and transfer rules 21414

From a caching and buffering viewpoint, information may be classified as constant, static, 21415
dynamic, or non-cacheable. These classifications are described in 12.6.3 for native object 21416
attributes. The same guidance applies to the selection of buffering for publish and tunnel 21417
interfaces for foreign payloads. 21418

Constant information should not be transferred more than once between TUNs, except where 21419
local copies are lost due to power cycling, reset, cache deletion, or elimination of references 21420
to the information. 21421

Static information should not be transferred more than once between TUNs, except as 21422
indicated for constant information and where the static information has been modified. 21423

Dynamic information should only be transferred between TUNs when its value has changed 21424
unless it is required more often to indicate that the source or destination is still active. 21425

Non-cacheable information may be transferred between TUNs on each request. 21426

U.3.1.6.3 Publish/subscribe interface 21427

The tunnel object may be implemented to provide facilities to accomplish buffered and non-21428
buffered publish/subscribe messaging for dynamic information update. 21429

The flowcharts of Figure U.20, Figure U.21 and Figure U.22 describe the behavior of TUN 21430
object publishers and subscribers that use buffering. The behavior describes the base 21431
message transfer agreement between a publisher and a subscriber based on the TUN object 21432
attribute configurations. 21433

NOTE The interpretation and actions for initial, stale, and repeat data are based on implementation, as is the 21434
CoSt algorithm. 21435

The publish/subscribe publisher connection operates as shown in Figure U.20 when CoSt 21436
updates are configured. 21437

62734/2CDV © IEC(E) – 827 –

 21438

Figure U.20 – publish/subscribe publisher CoSt flowchart 21439

The publish/subscribe publisher connection operates as shown in Figure U.21 when periodic 21440
updates are configured. 21441

 21442

Figure U.21 – publish/subscribe publisher periodic flowchart 21443

The publish/subscribe subscriber connection operates as shown in Figure U.22 when periodic 21444
or CoSt updates are configured. 21445

Data delivered
by application?

Data modified?

Compare against
buffer

Y

- Store in buffer
- Mark buffer as

modified

Y

N

N Period -based
timer expired?

Buffer modified?

Y

- Publish buffer
- Mark buffer as

unmodified
- Reset
Stale_Limit-based
counter

Y

N

N

Stale_Limit-based
counter
hit limit?

Increment
Stale_Limit-based

counter

Y N

Configuring?

- Set buffer to an
initial value

- Mark buffer as
modified

- Reset
Stale_Limit-based
counter

Y

N

Data delivered
by application?

Y

- Store data in buffer

N Period-based
timer expired?

Y

- Publish buffer

N
Configuring?

- Set buffer to an
initial value

Y

N

 – 828 – 62734/2CDV © IEC(E)

 21446

Figure U.22 – publish/subscribe subscriber common periodic and CoSt flowchart 21447

U.3.1.6.4 Tunnel interface 21448

The tunnel object may be implemented to provide facilities to accomplish buffered and non-21449
buffered tunnel interface messaging. Non-buffered tunnel interface messaging provides 21450
support for unconditional transfer of non-cacheable and constant information. Buffered tunnel 21451
interface messaging provides support for buffering and contingent transfer of static and 21452
dynamic information. 21453

U.3.1.7 Multiple server responses 21454

Certain client/server requests receive multiple responses. One reason is that the request 21455
requires extended processing and an immediate response is sent which indicates that the 21456
request was received and that the real response will be sent after processing is complete. 21457
This is known in some protocols as a delayed response. In other cases, the server provides 21458
additional updates over time to satisfy the initial request. Certain protocols collect process 21459
variables or historian information in this manner. 21460

The client/server buffered and unbuffered interfaces support multiple application responses 21461
for these purposes. In the case of the buffered response, the read buffer maintains the latest 21462
response. The client receives an indication on each response. 21463

U.3.1.8 Tunnel object address mapping 21464

The TUN object may be implemented to contain three address fields 21465
(Foreign_Destination_Address, Foreign_Source_Address, and the Array of Tunnel endpoints) 21466
that are used in the translation between foreign addresses and native addresses. 21467

As shown in Figure U.23, foreign multicast and foreign broadcast addresses require 21468
translation to native addresses and messaging. 21469

The first case is where the multicast or broadcast originates on the foreign network. Since 21470
multiple hosts, protocols, or applications may share a wireless network as described herein, 21471
sending a foreign broadcast to all wireless devices is inefficient. Thus, foreign broadcast into 21472
the wireless network uses simulated multicast to a limited group. The TUN object is used to 21473

Publication received?

- Store in buffer
- Mark buffer as modified

Y

N

Period-based
timer expired?

Buffer modified?

Y

- Indicate fresh data
- Mark buffer as

unmodified
- Reset
Stale_Limit-based
counter

Y

N

N

Stale_Limit -based
counter
hit limit?

Increment
Stale_Limit-based

counter

Y

N

Configuring?

- Set buffer to an initial value
- Mark buffer as unmodified
- Reset Stale_Limit-based counter

Y

N

- Indicate
unchanged
data

- Indicate
stale data

62734/2CDV © IEC(E) – 829 –

simulate multicast delivery (one-to-many messaging) by maintaining a list of unicast 21474
addresses (array of tunnel endpoints) and by using a sequence of unicast deliveries. 21475

The second case is where the multicast or broadcast originates on the wireless network and 21476
is destined for the foreign network. A single APDU is delivered from the wireless network and 21477
acted on by a protocol translator to generate a multicast or broadcast PDU on the foreign 21478
network. 21479

 21480

Figure U.23 – Network address mappings 21481

Also shown in Figure U.23 is a pair of unicast address translations. 21482

The first case translates from a foreign source/destination address pair to a native address 21483
pair. The second case translates from a native source/destination address pair to a foreign 21484
address pair. Both the Foreign_Destination_Address and the Foreign_Source_Address are 21485
used. Only the address information from a single tunnel endpoint is necessary, since the TUN 21486
object has access to its own native address for usage in source or destination fields. Foreign 21487
source and destination definition depend on the direction of the transfer. 21488

U.3.1.9 Connection and transaction information 21489

TUN objects function as initiator endpoints (publisher and tunnel request) and correspondent 21490
endpoints (subscriber and tunnel response). Protocol translation sends foreign content as 21491
TUN-DATA between the endpoints. Since most legacy protocols are not optimized for low-21492
energy wireless communication, various mechanisms are available to increase efficiency. 21493

When a protocol translator tunnels a foreign PDU, it is not efficient to repeatedly send static 21494
portions of the foreign PDU between the endpoints. Such static information includes 21495
preambles and secondary fixed addressing, such as logical unit identifiers. As shown in 21496
Figure U.24, TUN objects provide a generic mechanism (Connection_Info) for provision of 21497
static information on foreign PDU receipt without per-message wireless transfer of the static 21498
information. 21499

NOTE Depending on the specific foreign protocol conversion, the foreign PDU will vary. Most fieldbus protocols 21500
will form DPDUs for direct delivery on a local link. In contrast, IP-based protocols usually form NPDUs, where a 21501
final encapsulation is achieved by an address resolution protocol. 21502

TUN

Native
simulated
multicast

Foreign multicast
-or-

Foreign broadcast

TUN

Implied native unicast source
+

Native unicast destination

Foreign unicast source
+

Foreign unicast destination

TUN

Implied native unicast source
+

Native unicast destination

Foreign unicast source
+

Foreign unicast destination

Foreign_Destination_Address
Foreign_Source_Address

Tunnel endpoint

Foreign_Destination_Address
Foreign_Source_Address

Tunnel endpoint
Foreign_Destination_Address

Array of tunnel endpoints

 – 830 – 62734/2CDV © IEC(E)

 21503

Figure U.24 – Connection_Info usage in protocol translation 21504

When a protocol translator performs a transaction, it is not efficient to carry transaction-21505
specific information that is only used to identify the transaction at the initiator. Such 21506
information includes information to link the original request to the response, where knowledge 21507
of the endpoint can be used. As shown in Figure U.25, TUN objects provide a generic 21508
mechanism (Transaction_Info) for provision of transaction-specific information without 21509
carrying the overhead in the wireless transfer. 21510

Both Connection_Info and Transaction_Info can be used simultaneously. 21511

Initiator

+Connection_Info

Connection_Info TUN-DATA

TUN-DATACorrespondent

Actual
transmission

Implied
transmission

Reconstructed foreign PDU

Original foreign PDU

TUN

62734/2CDV © IEC(E) – 831 –

 21512

Figure U.25 – Transaction_Info usage in protocol translation 21513

U.3.1.10 Interworkable tunneling mechanism 21514

U.3.1.10.1 Overview 21515

Annex U describes a communication mechanism for foreign network nodes to communicate 21516
across a wireless network via gateways and adapters. This mechanism enables vendor- 21517
independent development of interworkable gateways and adapters by implementing a 21518
restricted subset of the communication features defined within this standard. The interworking 21519
communication is achieved by the use of a constrained tunneling mechanism. The gateways 21520
and adapters serve to interconnect two or more foreign network segments by bridging foreign 21521
protocol DPDUs through the wireless network as depicted in Figure U.26. The gateway and 21522
adapter application processes use the AL tunnel objects and interfaces for the exchange of 21523
foreign unicast DPDUs and foreign broadcast/multicast DPDUs. The mechanism by which the 21524
gateway and adapter application processes exchange these DPDUs with foreign nodes is not 21525
specified by this standard. 21526

In
iti

at
or

+

Connection_Info TUN-DATA

C
or

re
sp

on
de

nt

A
ct

ua
l t

ra
ns

m
is

si
on

Im
pl

ie
d

tr
an

sm
is

si
on

Reconstructed foreign PDU Original foreign response PDU

Original foreign request PDU

Transaction_Info

Connection_Info TUN-DATA TUN-DATA

TUN-DATATransaction_Info Connection_Info +

Connection_Info

+

Reconstructed foreign response PDU

A
ct

ua
l t

ra
ns

m
is

si
on

Im
pl

ie
d

tr
an

sm
is

si
on

Application response

TUN

TUN

 – 832 – 62734/2CDV © IEC(E)

 21527

Figure U.26 – Interworkable tunneling mechanism overview diagram 21528

U.3.1.10.2 Tunnel object placement 21529

One or more foreign network nodes, individually addressable by a unicast DPDU address, 21530
may exist behind a gateway or an adapter. A foreign network node behind a gateway or 21531
adapter may require communication with an associated foreign network node behind another 21532
gateway or adapter. 21533

For each associated gateway and adapter, a tunnel object is disposed and configured to carry 21534
foreign broadcast and multicast addressed DPDUs, one for a first associated foreign network 21535
segment and one for each additional associated foreign network segment. 21536

For each associated foreign network node pair, a pair of tunnel objects is disposed and 21537
configured to carry unicast addressed DPDUs, one in the gateway or adapter for a first 21538
associated node and one in the gateway or adapter for a second associated node. 21539

U.3.1.10.3 Tunnel object configuration 21540

Tunnel operation is controlled as described in Clause 12. Tunnel objects are configured 21541
through attribute settings. Changes to the configuration are required to be correctly 21542
sequenced by setting the Protocol attribute and monitoring the Status attribute. 21543

The unicast tunnel object pairs are configured as follows: 21544

• The Flow_Type attribute is configured for a 2-part tunnel. 21545

• The Array of Tunnel endpoints attributes are configured for a single address element, 21546
where each tunnel object in the pair addresses the other tunnel object in the pair. 21547

• The Connection_Info[] and Transaction_Info[] attributes are not used. 21548

• The Update_Policy, Phase, Period and Stale_Limit attributes are not used. 21549

Gateway

Adapter 1

Foreign
node

TUN

Foreign
node

TUN TUN

TUN TUN TUN

Foreign
node

Foreign
node

Adapter n

Foreign
node

TUN

Foreign
node

TUN TUN

TUN TUN

Adapter application
process

Adapter application
process

Gateway application
process

Foreign
network
segments

Foreign
network
segment

Simulated
broadcast
+ multicast
communication
using the
2- part tunnel
service

Unicast
communication
using the 2- part
tunnel service

DPDU
exchange

Typically
host systems

Typically
field devices

62734/2CDV © IEC(E) – 833 –

For unicast tunnel objects, the Foreign_Destination_Address attribute of each local tunnel 21550
object is set to the DPDU address of the associated foreign device behind the remote 21551
gateway or the adapter and the Foreign_Source_Address attribute of each local tunnel object 21552
are set to the DPDU address of the associated foreign device behind the local gateway or 21553
adapter. 21554

The tunnel objects in the broadcast/multicast tunnel object set are configured as follows: 21555

• The Flow_Type attribute is configured for a 2-part tunnel. 21556

• The Array of Tunnel endpoints attributes are configured for one or more address 21557
elements, where each tunnel object in the set addresses all other tunnel objects in the set. 21558

• The Connection_Info[] and Transaction_Info[] attributes are not used. 21559

• The Update_Policy, Phase, Period and Stale_Limit attributes are not used. 21560

For broadcast/multicast tunnel objects, the Foreign_Destination_Address attribute and the 21561
Foreign_Source_Address attribute are set to an equal value. 21562

The usage of the Foreign_Source_Address attribute and the Foreign_Destination_Address 21563
attribute enables gateways and adapters using the interworkable tunneling mechanism to be 21564
configured strictly by configuration of the tunnel objects. 21565

Associated gateways and adapters may send and receive foreign DPDUs from either identical 21566
versions or interworkable versions of the same foreign protocol. To enable the run state after 21567
the other attributes are configured, the Protocol attribute is configured last and is configured 21568
to the same value in all tunnel objects associated with all related foreign network segments on 21569
the D-subnet. The final Protocol attribute value is set as defined in Annex K. The gateway and 21570
adapter application processes may report tunnel object Status = 2 (configuration failed) if an 21571
attempt is made to configure a tunnel with an unsupported Protocol. 21572

A compatible foreign protocol may be able to accommodate the timing imposed by the 21573
wireless mechanisms, either inherently or by configuration. Exchange of foreign DPDUs may 21574
not be the most efficient tunnel method, but it assures that sufficient information is available 21575
to process the packet within gateway and adapter application processes. It also assures 21576
multiple vendors convey the same information between gateway and adapter application 21577
processes. It is also assures that sufficient information is available within gateway and 21578
adapter application process to link client/server requests and responses. Addressing is also 21579
carried and enables multiple foreign network devices to sit behind each gateway or adapter. 21580

U.3.1.10.4 Tunnel operation 21581

Foreign network DPDUs may be delivered to the gateway and adapter application processes 21582
in one of two ways, either through a tunnel object or from a foreign source outside of the 21583
wireless network. The outside source will usually be a wired network (and its associated 21584
protocol stack) attached directly or indirectly to the gateway or adapter. Alternatively, the 21585
PDUs may be generated by software or firmware interacting with (or embedded in) the 21586
gateway or adapter application process directly. In either case, the tunneled PDU exchange 21587
between gateways and adapters may remain identical. 21588

The gateway and adapter application processes may examine the foreign network DPDU 21589
destination address prior to forwarding the PDU over the wireless network. DPDUs without a 21590
known destination that is reachable through the tunnels are not forwarded. 21591

Gateways and adapters application processes may forward foreign protocol unicast DPDUs to 21592
DPDU address destinations that are reachable through a linked pair of unicast tunnel objects. 21593

Gateway and adapter application processes forward valid foreign protocol broadcast and 21594
multicast PDUs through the broadcast/multicast tunnel that exists within each associated 21595

 – 834 – 62734/2CDV © IEC(E)

gateway and adapter, distributing the same PDU to one or more destinations. The PDU is not 21596
echoed back to the source. 21597

The gateway and adapters application processes may use multicast group establishment 21598
PDUs from within the foreign protocol, where such PDUs exist, in order to limit the distribution 21599
scope. 21600

Since generation of multiple copies of the same message is almost certain to occur, the 21601
foreign protocol may tolerate timing skew. 21602

U.3.1.10.5 Efficient operation 21603

It is recommended that foreign protocols that are using the interworkable tunneling 21604
mechanism reduce PDU exchanges to the minimum that is acceptable to the foreign protocol 21605
and its applications. This is accomplished by extending update periods and timeouts for 21606
periodic update. This is also accomplished by elimination of redundant transfer of static 21607
information by maintaining local copies. 21608

U.3.2 Bulk transfer 21609

Large item transfer is accomplished through upload/download objects (UDOs), as shown in 21610
Figure U.27. Large item transfers are useful for firmware updates, transfer of large sample 21611
buffers such as captured waveforms, and general configuration. One UDO represents a single 21612
item that can be transferred in either direction (uploaded or downloaded) to/from another 21613
application. The item to be transferred exists at the location of the UDO. Interface objects 21614
(IFOs) act as clients to initiate transfers. The transfer protocol provides buffering, flow control, 21615
and guaranteed and in-order delivery. Protocol translators have access to the UDO through 21616
the GIAP. 21617

Items are associated with a string that can be used to encode item specific identification and 21618
revision information. Asset management systems can be constructed to monitor revisions for 21619
regulated industries and to backup and restore items generically, without knowledge of the 21620
item content. Protocol translators may also transfer large items via foreign protocols through 21621
tunneling, but this precludes protocol independent asset management. 21622

End applications are expected to understand the content of the transferred item and how to 21623
apply it. Provisions exist (depending on device capabilities) to request utilization of the item 21624
(possibly altering run-time behavior) and for storage of the item in non-volatile memory. 21625

The UDO and the upload and download bulk transfer protocol are described in 12.15.2.4. 21626

62734/2CDV © IEC(E) – 835 –

 21627

Figure U.27 – Bulk transfer model 21628

U.3.3 Alerts 21629

Alerts may be generated by many of the objects defined by this standard. Some objects 21630
reside within device UAPs, while others reside in the DMAP as management objects for each 21631
layer. 21632

Alerts within a device are consolidated within the alert reporting management object (ARMO). 21633
Each device has a single ARMO that resides within the DMAP. All alerts within a device are 21634
conveniently consolidated in this single location. 21635

The ARMO in each DMAP is responsible for reporting alerts through an AlertReport interface 21636
to an alert-receiving object (ARO). The ARO acknowledges alert receipt through the 21637
AlertAcknowledge interface. This transfer occurs independently of the actual processing of 21638
the alerts. 21639

Alerts fall into four categories: 21640

• process; 21641

• device; 21642

• network; and 21643

• security. 21644

Each category can be delivered by an ARMO to a different ARO. Thus, a single ARO might 21645
collect all process alerts across an entire network, or a set of AROs can be used, with each 21646
ARO only collecting a single category of alerts. If each ARO collects only one type of alert, 21647
then collection of all alerts requires four AROs. 21648

The gateway contains one or more AROs that allow collection, reporting, and management of 21649
alerts. 21650

Protocol translators have access to and can manage alerts through the GIAP, as shown in the 21651
alert model in Figure U.28. Subscription interfaces allow alert selection through the GIAP. 21652

TLs

UDO

UAPs

Client/server control
Bulk transfer of file

Foreign
protocol translation

foreign interface

GatewayAdapter

Native field device

Native
application

process

GSAP

ASLs

Gateway process

DMAP

UDO

DMAP

UDO UDO

Foreign
protocol translation

foreign interface

GSAP
DMAP

UDO

Adapter process
DMAP

process
DMAP

process
DMAP

process

IFO

 – 836 – 62734/2CDV © IEC(E)

 21653

Figure U.28 – Alert model 21654

Alerts fall into two classes, alarms and events. Events are informational and generate event 21655
messages through the GIAP. Alarms have states and require alarm-specific actions to clear 21656
the alarms. Usually, client/server messaging is used to perform these actions. 21657

The gateway and the adapter applications are also able to generate native alerts from IFO 21658
instances. This allows protocol translators to generate alerts within the context of a standard 21659
alert management system. 21660

In certain circumstances, the state of alerts may be lost at the ARO, such as when a gateway 21661
is reset or replaced. In such case, the original ARMOs will no longer contain information about 21662
events, but will maintain state information related to alarms. An alarm recovery procedure can 21663
be initiated in order to recover the system alarm state. 21664

This standard does not support multicast alerts. As a result, the same alerts cannot be routed 21665
to both the gateway and the system manager if they are not physically co-located. Network 21666
and security alerts are currently sent to the system manger by default. Process and device 21667
alerts may be sent to the gateway role. 21668

The alert model does not support multicast alerts. Network alerts and security alerts are 21669
potentially useful in a gateway for transformation into generic foreign protocol error 21670
messages. The system manager is the default destination for these alerts. In system 21671
configurations where the system manager is connected to the WISN via the gateway, the ARO 21672
in the gateway, when configured to collect alerts for network and security purposes, is 21673
capable of reposting the alerts through the local ARMO to the system manager. This is 21674
illustrated in Figure U.29. 21675

TLs

OBJ

UAPs

Foreign
protocol translation

foreign interface
GatewayAdapter

Native field device

Native
application

process

GSAP

ASLs

Gateway process

DMAP

ARMO

DMAP

ARMO IFO

Foreign
protocol translation

foreign interface

GSAP
DMAP

ARMO

Adapter process
DMAP

process
DMAP

process
DMAP

process

ARO IFO

62734/2CDV © IEC(E) – 837 –

 21676

Figure U.29 – Alert cascading 21677

U.3.4 Native publish/subscribe and client/server access 21678

This standard provides publish/subscribe and client/server interfaces via the ASL that is used 21679
to interact with application-specific native objects. 21680

For publish/subscribe, the concatenation (CON) and dispersion (DIS) objects are used as 21681
endpoints. 21682

For client/server interfaces, two object endpoints are required in order to use these interfaces. 21683
The IFO may act as one endpoint for these interfaces within gateways. Any other application 21684
or management object within the system can act as the other endpoint. 21685

As shown in Figure U.30, utilization of these objects allows protocol translators to integrate 21686
simple devices that do not include legacy protocols. 21687

TLs

OBJ

UAPs

Native field device

Native
application

process

ASLs

DMAP

ARMO

DMAP
process

System manager

DMAP

ARMO

System manager
process

DMAP
process

ARO

Foreign
protocol translation

foreign interface
Gateway

GSAP

Gateway process

DMAP

ARMO

DMAP
process

ARO

 – 838 – 62734/2CDV © IEC(E)

 21688

Figure U.30 – Native publish/subscribe and client/server access 21689

Within a gateway, the CON and DIS objects may provide buffered message behavior for 21690
change of state operation. 21691

Within a gateway, the IFO may provide buffered message behavior as described for the 4-part 21692
tunnel messaging between tunnel objects for client/server read interfaces. The IFO may use 21693
the attribute classification to determine buffering behavior. Non-cacheable attributes are not 21694
buffered. Constant attributes are buffered. Static and dynamic attribute buffering is 21695
determined by application requirements. 21696

The protocol translator may use native addressing (Network_Address, Transport_Port, OID, 21697
and attribute identifier) to identify native messages. 21698

NOTE Tunneling assumes that foreign protocol messages are transferred between endpoints. As such, foreign 21699
addresses are associated with the messages and used for teardown and reconstruction of the messages in order to 21700
avoid transfer. No such assumption is made for native messaging, where a one-to-one message flow is less likely 21701
to exist. 21702

U.3.5 Time management 21703

Host time may be propagated through a gateway to a wireless system, giving the host system 21704
and the field devices the same sense of time (within tolerances). This enables the host time to 21705
be used for purposes such as uniform alert timestamping and sequence of event 21706
determination that spans wireless and wired devices connected to the host. Without periodic 21707
synchronization to host time, the wireless system will drift, thus periodic adjustment capability 21708
is desirable. Both the host and wireless system may be synchronized to a common external 21709
source such as a GPS derived timesource. 21710

To propagate host time, a gateway may perform periodic synchronization of time in an 21711
attached D-subnet time to an external source by requesting time changes through a DLMO. 21712

Protocol translators within a gateway may access time management functions through the 21713
GIAP services. Protocol translators are responsible for accessing external time sources and 21714

TLs

UAPs

Foreign
protocol translation

foreign interface
Gateway

Native field device

Native
application

process

GSAP

ASLs

Gateway process

DMAP

OBJ

DMAP

OBJ

DMAP
process

DMAP
process

CON DIS OBJ CON DIS IFO

Native C/S

Native publish

Native subscribe

62734/2CDV © IEC(E) – 839 –

converting protocols and time formats. Network time is represented in TAI format, as 21715
described in 5.6. 21716

A DL configured as a clock master is used to propagate time synchronization information to 21717
an attached D-subnet, as described in 6.3.10.3. Each node contains a DMO within its DMAP. 21718
The DMO contains attributes DL_Subnet_Clock_Master_Role and 21719
DL_Subnet_Clock_Repeater_Role that control the ability of a node to be a clock master. 21720
Allocation of the clock master role is coordinated with the system manager. The device 21721
registers its ability to be a time source during the join process. 21722

The DLMO contains an attribute called TaiTime that reports the current time and another 21723
attribute called TaiAdjust for adjusting the time. The DLMO is used to adjust the time of the 21724
D-subnet. 21725

One or more DLs may be associated with a gateway. In one implementation, the DLs are 21726
integrated within the gateway. In another implementation, the DLs are within backbone 21727
routers and separated from the gateway, adding indeterminate delays. Each implementation 21728
may consider the implications of delay associated with access of DL objects to perform 21729
synchronization. 21730

U.3.6 Security 21731

Sets of wireless devices are related to a foreign host via a gateway. The gateway and the 21732
wireless devices are expected to belong to a common security group. Security for this group 21733
may be established by MAC or TL security configuration, or both as described in Clause 7. 21734
Establishment of common security settings is a prerequisite for communication between 21735
protocol translation communication endpoints. 21736

Common foreign fieldbus protocols do not have security capabilities. This does not preclude 21737
extension of secured protocols into this standard’s domain. It is the responsibility of foreign 21738
protocol translators in both gateways and adapters to act as trusted applications in the 21739
extension of foreign protocol security from end-to-end. This can be achieved by utilization of 21740
native security or through tunneled exchanges. 21741

U.3.7 Configuration 21742

For gateways which implement internal interfaces such as the example GSAP interfaces, it is 21743
recommended that the gateway entity configuration / capability be made internally available to 21744
gateway internal clients. How these gateway internal operational attributes are made 21745
available is a local matter. Examples attributes which the gateway GSAP entity may wish to 21746
present are described in Table U.41. For convenience the attribute describing conventions 21747
used are those used by other clauses of this standard. See also the 21748
G_Read_Gateway_Configuration interface example for an example of how an interface can be 21749
used to make this information available to a gateway-internal client. 21750

 – 840 – 62734/2CDV © IEC(E)

Table U.41 – Example of gateway configuration management attributes 21751

Standard object type name: not applicable

Standard object type identifier: not applicable

Attribute
name

Attribute
identifier

Attribute
description

Attribute data
information

Description of attributes
behavior

Max_Devices 11 Maximum number
of devices
supported by
gateway

Type: Unsigned16 Implementation dependent
value set by gateway
depending on resources Classification: Static

Accessibility: Read only

Default value: 0

Actual_Devices 12 Current number of
devices connected
to gateway

Type: Unsigned16 Increases and decreases based
on devices in communication
with the gateway Classification: Dynamic

Accessibility: Read only

Max_Leases 13 Maximum number
of leases
supported by the
gateway

Type: Unsigned16 Implementation dependent
value set by gateway
depending on resources Classification: Static

Accessibility: Read only

Actual_Leases 14 Current number of
leases for devices
connected to the
gateway

Type: Unsigned16 Increases and decreases based
on leases. Device complexity
will determine the number of
leases required

Classification: Dynamic

Accessibility: Read only

 21752
U.3.8 Provisioning and joining 21753

A gateway is a network device as described in this standard and is provisioned using the 21754
generic methods described in this standard. 21755

A gateway that communicates to D-subnets through backbone routers may provide a method 21756
to configure the gateway to communicate to a specific D-subnet and to specific devices within 21757
that D-subnet through a specific backbone router. 21758

NOTE 1 Nothing precludes more dynamic implementations, such as a load-sharing algorithm that assigns devices 21759
to the best BBR found, or gateways and BBRs that discover each other, or support for redundancy that is provided 21760
automatically where D-subnets overlap. 21761

A gateway that communicates to one or more D-subnets through backbone routers includes a 21762
method to configure the gateway to communicate with at least one system manager, where 21763
the system manager may reside: 21764

• in the gateway; 21765

• on a backbone that the gateway can use for communication; or 21766

• within a D-subnet that the gateway can use for communication. 21767

A gateway is a network device (containing an AL and IPv6Address) as described in this 21768
standard and joins the network following the join methods described in this standard. 21769

NOTE 2 Several variations are possible, for example: a gateway that joins by sending an internal request to a co-21770
resident system manager, or by sending a join request through a local PhL, or that uses a backbone router’s PhL 21771
indirectly, or that sends the join request across the backbone to a system manager. 21772

62734/2CDV © IEC(E) – 841 –

Annex V 21773
(informative) 21774

 21775
Country-specific and region-specific provisions 21776

V.1 General 21777

This standard is designed to support operation within a fixed geographic area that operates 21778
under uniform regulations. As such it is intended to support operation anywhere in the world, 21779
as discussed in 5.2.5 and 9.1.15.6. 21780

This standard also is designed to support wireless automation systems operating on mobile 21781
platforms, such as marine vessels (e.g., container ships and petrochemical tanker ships) and 21782
trains, that can move between geographic regions (e.g., countries) where differing, and 21783
perhaps conflicting, regulations apply. For example, a container ship usually would be subject 21784
to local regulations when in port, and thus could have different compliance requirements when 21785
in Rotterdam than when in Tokyo Bay, because the regulations that apply to wireless systems 21786
when operating under EC jurisdiction differ from those that apply when operating under 21787
Japanese jurisdiction. 21788

Radio regulations often require devices to operate at constrained power levels at all times, 21789
including during over-the-air provisioning. Some identified EIRP thresholds are: 10 mW/MHz 21790
(Japan); 10 dBm (China); 10 dBm, 10 mW/MHz and 20 dBm (EC ETSI); 36 dBm with at most 21791
6 dBi antenna gain (US FCC). 21792

In some countries, such as France, emission levels on certain channels may need to be 21793
attenuated. In other countries, such as Korea, the number and range of channels needs to be 21794
constrained. 21795

V.2 Operation within a fixed regulatory regime 21796

The dlmo.CountryCode field, described in 9.1.15.6, is used to specify the regulatory regime. 21797
It may also be used to specify some overriding regulatory constraints. 21798

This field includes a “self-locking” mechanism, so that it is possible to set the value of this 21799
field to make the entire field unchageable while the device is operational. Once set, only 21800
reprovisioning the device, such as after a repair, is able to clear that lock. 21801

This “set and forget” feature was included to support regulatory regimes, such as some within 21802
the EC, where no operational method may override the RF emission limits established under 21803
regulation. However, the feature is provided in a way that also supports device repair and 21804
resale into other regulatory jurisdictions, whose requirements might conflict with those of the 21805
jurisdiction into which the device was originally deployed. 21806

V.3 Operation on a platform that moves between regulatory regimes 21807

Some wireless automation systems may be located on a mobile platform such as a container 21808
ship or petrochemical tanker ship that moves between regulatory regimes, operating 21809
temporarily in each. That transition between regimes can occur rapidly, as when a train 21810
crosses a border, or slowly, as when a ship transits from national waters to international 21811
waters. 21812

This standard is designed to support operation of wireless systems on such mobile platforms, 21813
by providing a means by which a single equipment parameter can be changed in each device, 21814
for example by a timed action downloaded in advance to each device, to cause all affected 21815

 – 842 – 62734/2CDV © IEC(E)

devices to change regulatory regimes, after which their operations are constrained by the 21816
regulations for the more-newly-adopted regime. 21817

NOTE Such a change in wireless emission characteristics often will be accompanied by a change in link 21818
schedules, for example, to use more or fewer routers in a multi-hop path, or to have available more spare timeslots 21819
for retry of transactions that were aborted due to LBT-detected activity in the channel, to better match system 21820
operation to the more strict (or relaxed) requirements of the new regulatory regime. 21821

V.4 Compliance with EN 300 328 [INFORMATIVE] 21822

EN 300 328 is a complexly-interacting set of requirements which mandates specific 21823
declarations of operating behavior. Although only a certificate authority can determine 21824
whether conformance is actually achieved, it appears that there are seven different operating 21825
regimes under which a device conforming to this standard can meet the requirements of 21826
EN 300 328 v1.8.1, which within this annex is hereafter referred to as the “EN”. 21827

Devices conforming to the EN are permitted to change their operating regime dynamically, at 21828
least within certain limits. Presumably each of these operating regimes would need to be 21829
tested independently for conformance and there would also need to be a submitted 21830
description of the conditions under which such dynamic changes in regime occur. 21831

Under the EN, IEEE 802.15.4:2011 2,4 GHz DSSS qualifies as wideband modulation (WBM). 21832
As used in this standard it also qualifies as frequency-hopping spread-spectrum modulation 21833
(FHSSM) whenever the cyclic frequency-hopping schedule specifies at least 15 channels. 21834

NOTE 1 Even with WBM, some frequency hopping is needed to avoid commonly-encountered narrow-band fading 21835
with a duration of more than a few ms. Thus frequency hopping will occur whether it is claimed for operation under 21836
FHSSM mode relative to conformance to the EN, or not. 21837

NOTE 2 EN 4.3.1.3.2 permits blocking operation on some of the channels specified in the frequency-hopping 21838
schedule, but does not permit the number of channels in the cycle to be reduced to fewer than 15 channels. 21839
Therefore inclusion of fewer than 15 channels in a channel map that determines the frequency-hopping cycle of 21840
nominally-active channels means that the only possible remaining operating regimes are those under WBM. 21841

In this standard, D-transaction initiators that enable CSMA/CA “listen before talk” (LBT) 21842
channel activity detection before sending each Data DPDU meet the EN requirements for 21843
“adaptive modulation”. 21844

NOTE 3 These requirements are EN 4.3.1.6.1 (FHSSM) and EN 4.3.2.5.2.2.1 (WBM) and related text. 21845

Under the EN, 21846

• Tx-sequence-time is the transmitter-on time required to send a Data DPDU, which is 21847
≤ 4,256 ms. In some cases it is also the the transmitter-on time to send an ACK/NAK 21848
DPDU,which is ≤ 1 ms; 21849

• Tx-gap-time is the minimum required interval of non-transmission between the end of one 21850
transmission and the beginning of the next transmission by the same device; and 21851

• “dwell time” (DT) is the nominal time that a D-transaction initiator using FHSSM keeps its 21852
transmitter tuned to a given channel before changing to another channel. 21853

NOTE 4 Tx-sequence-time and Tx-gap-time are defined in EN 4.3.1.2 (FHSSM) and 4.3.2.3 (WBM). Dwell time, 21854
which applies to FHSSM, is defined to some extent in EN 3.1 under “frequency hopping spread spectrum” and in 21855
EN 4.3.1.3.1. Dwell time is necessarily at least as large as Tx-sequence-time. 21856

EN 4.3.2.2.2 (WBM) imposes a power spectral density limit for WBM of 10 dBm/MHz. Due to 21857
the spectrum of the IEEE 802.15.4 2,4 GHz DSSS modulation, this constraint limits equipment 21858
operating under the EN’s WBM regulations to 20 mW (+13 dBm) maximum transmit power. 21859

EN 4.3.1.1 (FHSSM) and EN 4.3.2.1 (WBM) limit maximum transmit power, after any antenna 21860
and beamforming gain, to 100 mW (+20 dBm). 21861

62734/2CDV © IEC(E) – 843 –

EN 4.3.1.1 (FHSSM) and EN 4.3.2.1 (WBM) limit average transmit power of non-adaptive 21862
equipment, and of adaptive equipment operating in a non-adaptive mode, to 10 mW 21863
(+10 dBm). Use of adaptive modulation removes this restriction on average transmit power. 21864

Equipment that always transmits at 10 mW or less has few special constraints. 21865

When WBM without adaptive modulation is claimed, under EN 4.3.2.3 each D-transaction-21866
respondent in one timeslot is not permitted to initiate a D-transaction in the immediately-21867
following timeslot unless the intervening period of non-transmission meets the minimum Tx-21868
gap-time requirement of 3,5 ms, which is inherently greater than the Tx-sequence-time for any 21869
just-sent ACK/NAK DPDU. 21870

Similarly, when FHSSM without adaptive modulation is claimed, under EN 4.3.1.2 each 21871
D-transaction-respondent in one timeslot is not permitted to initiate a D-transaction in the 21872
immediately-following timeslot unless the intervening period of non-transmission meets the 21873
minimum Tx-gap-time requirement of 5 ms, which is inherently greater than the Tx-sequence-21874
time for any just-sent DPDU. 21875

When FHSSM with adaptive modulation is claimed, the ACK/NAK DPDUs that are sent by 21876
D-transaction respondents as immediate responses (within the same slot) to the Data DPDU 21877
sent by the D-transaction initiator can be considered “short control signaling” (SCS). While 21878
LBT is not required before transmitting SCS, under EN 4.3.1.6.3.2 SCS is constrained to 21879
occupy no more than 10% of the claimed dwell time. That restriction has an inverse impact on 21880
the minimum timeslot duration for the system, requiring the timeslot duration to be increased 21881
(and aggregate system throughput correspondingly decreased) relative to that otherwise 21882
required, just so that the channel occupancy of SCS (i.e., ACK/NAK DPDUs) in devices 21883
claiming conformance to FHSSM is never greater than 10% of the claimed nominal dwell time. 21884

The recommended alternative approach to meeting EN 4.3.1.6.3.2 is to have each 21885
D-transaction-respondent dynamically mode-switch to operation in a non-adaptive mode while 21886
sending its ACK/NAK DPDU and for 5 ms thereafter (the mandated minimum Tx-gap-time), 21887
after which it reverts to the adaptive mode of operation. It appears that the only significant 21888
consequence of such a temporary non-adaptive operating mode is that the responding device 21889
is not permitted to initiate a D-transaction in the immediately-following time slot unless the 21890
intervening period of non-transmission meets the minimum Tx-gap-time requirement. 21891

EN 4.3.1.3.2 (FHSSM) requires that each cyclic channel-hopping sequence contain a 21892
minimum of 15 channels, whether idle or active. In terms of this standard, this requirement 21893
means that only dlmo.Ch entries (Table 160) whose size field has a value of 15 or greater are 21894
suitable for use in FHSSM mode under the EN. Therefore, when channel-hopping sequences 21895
with cycle lengths less than 15 are used, operation under the EN shall necessarily conform to 21896
the EN’s WBM regulations. 21897

It appears that a device conforming to this standard can comply with the requirements of the 21898
EN by being declaring to operate in any one of six categories and configuring its 21899
dlmo.CountryCode (9.1.15.6) attributes, particularly bits 10 and 12..14, appropriately: 21900

1) low-power WBM equipment, with dlmo.CountryCode.mode=0b”x0011x”; or 21901
2) non-adaptive WBM equipment, with dlmo.CountryCode.mode=0b”x0001x”; or 21902
3) adaptive WBM equipment, with dlmo.CountryCode.mode=0b”x0101x”; or 21903
4) low-power FHSSM hopping equipmen, with dlmo.CountryCode.mode=0b”x1011x”t; or 21904
5) non-adaptive FHSSM equipment, with dlmo.CountryCode.mode=0b”x1001x”; or 21905
6) adaptive FHSSM equipment that temporarily mode-switches to non-adaptive operation 21906

when operating as a D-transaction responder (i.e., to send an ACK/NAK DPDU) with 21907
dlmo.CountryCode.mode=0b”x1101x”. 21908

NOTE 5 Although adaptive FHSSM equipment that does not temporarily mode-switch is possible, which is 21909
the seventh mode mentioned earlier in V.4, the constraints induced on declared dwell time and thus 21910

 – 844 – 62734/2CDV © IEC(E)

minimum timeslot duration required to operate under that set of constraints make such a hypothetical 21911
operating category inferior to 6), due to the massively reduced system throughput that such overly-extended 21912
timeslots necessarily induce. 21913

NOTE 6 If regulators determine that equipment conforming to this standard does not meet the full regulatory 21914
intent for one or more of the above six possible categories, operation under any of the remaining categories is still 21915
possible. 21916

Each of combinations 1) to 6) imposes a different set of contraints. Some are addressed 21917
automatically by all wireless devices that conform to this standard. Other constraints depend 21918
upon the claimed operating category. Whichever category is selected and configured via the 21919
device’s dlmo.CountryCode attribute, the device shall operate in such a manner and take 21920
whatever action is required to conform to those constraints. 21921

Summarizing the above, the regulatory constraints that require self-monitoring are: 21922

a) for operation in categories 1 and 4, limiting the maximum transmitter output power, 21923
PoutMax, to less than 10 mW (+10 dBm); 21924

b) for operation in categories 2 and 3, limiting the maximum transmitter output power, 21925
PoutMax, to 20 mW (+13 dBm), which is 10 mW/MHz for the signaling of IEEE 802.15.4 21926
2.4 GHz DSSS; 21927

c) for operation in categories 5 and 6, limiting the maximum transmitter output power, 21928
PoutMax, to 100 mW (+20 dBm); 21929

d) for operation in categories 2 and 5, limiting the total number of transmissions, both of Data 21930
DPDUs and of ACK/NAK DPDUs, such that the mean transmitter output power, PoutAvg, is 21931
10 mW (+10 dBm) or less over every 0,5 s measurement interval; 21932

NOTE 7 Continuous averaging over shorter intervals is an acceptable way of meeting this requirement. 21933
e) for operation in category 6, limiting the total number of transmissions of ACK/NAK DPDUs 21934

such that the mean transmitter output power, PoutAvg, used while transmitting ACK/NAK 21935
DPDUs is 10 mW (+10 dBm) or less over every 0,5 s measurement interval; 21936

NOTE 8 The majority of channel occupancy by devices operating under category 6) occurs when sending 21937
Data DPDUs. Such transmissions qualify as adaptive modulation under EN 4.3.1.5, so constraint d) does not 21938
apply to them. However, devices operating under category 6) transmit ACK/NAK DPDUs in non-adaptive mode, 21939
to which constraint d) does apply per EN 4.3.1.5. Therefore it appears that only the totality of such ACK/NAK 21940
DPDUs transmitted by a device operating under category 6) are subject to the constraint d) power limit. If that 21941
interpretation of the EN is correct, then constraint d) will affect primarily backbone routers (BBRs), which in an 21942
automation WISN are largely receivers of process value-and-status publications and alert reports from WISN 21943
field devices. BBRs acting as transaction responders in duocast transaction may be impacted more than those 21944
not supporting duocast. 21945

f) for operation in categories 2 and 5, meeting the required Tx-transmit-gap interval of non-21946
transmission after transmission of a Data DPDU; 21947

NOTE 9 This constraint is met automatically whenever the slot duration is ≥ 8,508 ms in mode 2, or 21948
≥ 9,256 ms in mode 5. 21949

g) for operation in categories 2, 5 and 6, meeting the required Tx-transmit-gap interval of 21950
non-transmission after transmission of an ACK/NAK DPDU. 21951

For d), e), f) and g), the equipment shall dynamically monitor its recent activity to avoid 21952
transmitting whenever doing so would violate any of those three constraints. 21953

NOTE 10 While a system manager can schedule device activity pessimistically to ensure that d), e), f) and g) are 21954
always met, it is the device's own responsibility to monitor its recent activity and inhibit transmission when doing so 21955
would violate regulatory constraints. Thus the ultimate responsibility for operation of a collection of devices rests 21956
with the individual devices themselves, not some remote manager that could be subverted by a successful 21957
cyberattack on a single device. 21958

62734/2CDV © IEC(E) – 845 –

Bibliography 21959

IEC 61158 (various parts), Digital data communications for measurement and control – 21960
Fieldbus for use in industrial control systems 21961

IEC 61499-4:2005, Function blocks – Part 4: Rules for compliance profiles 21962

IEC 61512-1, Batch control – Part 1: Models and terminology 21963

IEC 61804-3, Function blocks (FB) for process control - Part 3: Electronic device description 21964
language (EDDL) 21965

IEC 62264-1:2003, Enterprise-control system integration – Part 1: Models and terminology 21966

IEC/TS 62351-2:2008, Power systems management and associated information exchange – 21967
Data and communications security – Part 2: Glossary of terms 21968

IEC/TR 62390:2005, Common automation device – Profile guideline 21969

IEC/TS 62443-1-1:2009, Industrial communication networks – Network and system security – 21970
Part 1-1: Terminology, concepts and models 21971

IEC 62591, Industrial communication networks – Wireless communication network and 21972
communication profiles – WirelessHART™ 21973

IEC 62601, Industrial communication networks – Fieldbus specifications – WIA-PA 21974
communication network and communication profile 21975

IEC/TS 62657-2, Industrial communication networks – Wireless communication networks – 21976
Part 2: Coexistence management 21977

ISO/IEC 2375, Information technology – Procedure for registration of escape sequences and 21978
coded character sets 21979

ISO/IEC 2382-14:1997, Information technology – Vocabulary – Part 14: Reliability, 21980
maintainability and availability 21981

ISO/IEC 7498-1:1994 as corrected and reprinted in 1996, Information technology – Open 21982
Systems Interconnection – Basic Reference Model: The Basic Model 21983

ISO/IEC 7498-2, Information processing systems – Open systems interconnection – Basic 21984
reference model – Part 2: Security architecture 21985

ISO/IEC 7498-3:1997, Information technology – Open Systems Interconnection – Basic 21986
Reference Model: Naming and addressing 21987

ISO/IEC 7498-4, Information processing systems – Open systems interconnection – Basic 21988
reference model – Part 4: Management framework 21989

ISO/IEC 9646-7, Information technology – Open Systems Interconnection – Conformance 21990
testing methodology and framework – Part 7: Implementation Conformance Statements 21991

ISO/IEC 9796-2:2010, Information technology – Security techniques – Digital signature 21992
schemes giving message recovery – Part 2: Integer factorization based mechanisms 21993

 – 846 – 62734/2CDV © IEC(E)

ISO/IEC 9797-1:2011, Information technology – Security techniques – Message 21994
Authentication Codes (MACs) – Part 1: Mechanisms using a block cipher 21995

ISO/IEC 9797-2:2011, Information technology – Security techniques – Message 21996
Authentication Codes (MACs) – Part 2: Mechanisms using a dedicated hash-function 21997

ISO/IEC 9798-1:2010, Information technology – Security techniques – Entity authentication – 21998
Part 1: General 21999

ISO/IEC 10116:2006, Information technology – Security techniques – Modes of operation for 22000
an n-bit block cipher 22001

ISO/IEC 10118-2, Information technology – Security techniques – Hash-functions – Part 2: 22002
Hash-functions using an n-bit block cipher 22003

ISO/IEC 10118-3, Information technology – Security techniques – Hash-functions – Part 3: 22004
Dedicated hash-functions 22005

ISO/IEC 10181-1:1996, Information technology – Open Systems Interconnection – Security 22006
frameworks for open systems: Overview 22007

ISO/IEC 11770-1:2010, Information technology – Security techniques – Key management – 22008
Part 1: Framework 22009

ISO/IEC 11770-2, Information technology – Security techniques – Key management – Part 2: 22010
Mechanisms using symmetric techniques 22011

ISO/IEC 11770-3:2008, Information technology – Security techniques – Key management – 22012
Part 3: Mechanisms using asymmetric techniques 22013

ISO/IEC 15408, Information technology – Security techniques – Evaluation criteria for IT 22014
security 22015

ISO/IEC 18028-3:2005, Information technology – Security techniques – IT network security – 22016
Part 3: Securing communications between networks using security gateways 22017

ISO/IEC 18031:2011, Information technology – Security techniques – Random bit generation 22018

ISO/IEC 18033-1:2005, Information technology – Security techniques – Encryption algorithms 22019
– Part 1: General 22020

ISO/IEC 18033-2, Information technology – Security techniques – Encryption algorithms – 22021
Part 2: Asymmetric ciphers 22022

ISO/IEC 19790:2012, Information technology – Security techniques – Security requirements 22023
for cryptographic modules 22024

ISO/IEC 26907:2009, Information technology – Telecommunications and information 22025
exchange between systems – High-rate ultra-wideband PHY and MAC standard 22026

ISO/IEC 27000:2009, Information technology – Security techniques – Information security 22027
management systems – Overview and vocabulary 22028

ISO/IEC/IEEE 60559, Binary floating-point arithmetic for microprocessor systems 22029

62734/2CDV © IEC(E) – 847 –

ISO 2382-12:1988, Information processing systems – Vocabulary – Part 12: Peripheral 22030
equipment 22031

ISO 3166-1, Codes for the representation of names of countries and their subdivisions – 22032
Part 1: Country codes 22033

ISO 11568-2:2012, Financial services – Key management (retail) – Part 2: Symmetric ciphers, 22034
their key management and life cycle 22035

ISO 11568-4:2007, Banking – Key management (retail) – Part 4: Asymmetric cryptosystems -- 22036
Key management and life cycle 22037

ISO 21188:2006, Public key infrastructure for financial services – Practices and policy 22038
framework 22039

IEEE 802.1Q, Virtual bridged local area networks 22040

IEEE 802.3, IEEE Standard for Information technology-Specific requirements – Part 3: Carrier 22041
sense multiple access with collision detection (CSMA/CD) access method and physical layer 22042
specifications 22043

NOTE 1 ISO/IEC 8802-3 is based on IEEE 802.3, usually with some delay in publication. 22044

IEEE 802.11, IEEE standards for information technology – Telecommunications and 22045
information exchange between systems – Local and metropolitan area networks – Specific 22046
requirements – Part 11: Wireless LAN medium access control (MAC) and physical layer (PhL) 22047
specifications 22048

NOTE 2 ISO/IEC 8802-11 is based on IEEE 802.11, usually with some delay in publication. 22049

IEEE 802.15.1, IEEE Standard for Information technology – Telecommunications and 22050
information exchange between systems – Local and metropolitan area networks – Specific 22051
requirements. Part 15.1: Wireless medium access control (MAC) and physical layer (PHY) 22052
specifications for wireless personal area networks (WPANs) 22053

NOTE 3 ISO/IEC 8802-15-1 is based on IEEE 802.15.1, usually with some delay in publication. 22054

IEEE Std 802.15.4e-2012, (Amendment to IEEE Std 802.15.4-2011) IEEE Standard for Local 22055
and metropolitan area networks— Part 15.4: Low-Rate Wireless Personal Area Networks (LR-22056
WPANs) Amendment 1: MAC sublayer 22057

IEEE 802.16, IEEE Standard for local and metropolitan area networks–Part 16: Air interface 22058
for fixed broadband wireless access systems 22059

IERS conventions: IERS technical note 32 22060

IETF RFC 1350, The TFTP protocol, rev. 2 22061

IETF RFC 2347, TFTP option extension 22062

IETF RFC 2348, TFTP blocksize option 22063

IETF RFC 2349, TFTP timeout interval and transfer size options 22064

IETF RFC 2525, Known TCP implementation problems 22065

 – 848 – 62734/2CDV © IEC(E)

IETF RFC 3280, Internet X.509 public key infrastructure certificate and certificate revocation 22066
list (CRL) profile, available at 22067

IETF RFC 5348, TCP-friendly rate control (TFRC): Protocol specification 22068

IETF RFC 4949, Internet security glossary, rev. 2 22069

ERC/REC 70-03, Relating to the use of short range devices (SRD), Annex 1, Band E 22070

ETSI EN 300 220-1, Electromagnetic compatibility and radio spectrum matters (ERM) – Short 22071
range devices – Technical characteristics and test methods for radio equipment to be used in 22072
the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW – Part 1: 22073
Parameters intended for regulatory purposes 22074

ETSI EN 300 328-1 v1.8.1, Radio equipment and systems (RES) – Wideband transmission 22075
systems – Technical characteristics and test conditions for data transmission equipment 22076
operating in the 2,4 GHz ISM band and using spread spectrum modulation techniques 22077

ETSI EN 300 328-2 v1.8.1, Electromagnetic compatibility and radio spectrum matters (ERM) – 22078
Wideband transmission systems – Data transmission equipment operating in the 2,4 GHz ISM 22079
band and using spread spectrum modulation techniques – Part 2: Harmonized EN covering 22080
essential requirements under article 3.2 of the R&TTE Directive 22081

ISC RSS 210, Radio standards specification 210 – Low-power license-exempt radio 22082
communication devices (all frequency bands): Category I equipment 22083

ANSI X9.82-1, Random number generation – Part 1: Overview and basic principles 22084

ANSI/ISA 100.11a:2011, Wireless Systems for Industrial Automation: Process Control and 22085
Related Applications 22086

ISA TR100.00.01-2006, The Automation Engineer's Guide to Wireless Technology Part 1 – 22087
The Physics of Radio, a Tutorial 22088

[US] FIPS 186-3, Digital Signature Standard (DSS) 22089

[US] FIPS 197, Advanced encryption standard (AES) 22090

[US] FIPS 198, The keyed-hash message authentication code (HMAC) 22091

[US] NIST SP 800-22, A statistical test suite for random and pseudorandom number 22092
generators for cryptographic applications 22093

[US] NIST SP 800-38C, Recommendation for block cipher modes of operation – The CCM 22094
mode for authentication confidentiality 22095

[US] NIST SP 800-56A, Recommendation for pair-wise key establishment schemes using 22096
discrete logarithm cryptography 22097

[US] NIST SP 800-57, Recommendation for key management – Part 1: General 22098

[US] NIST SP 800-57, Recommendation for key management – Part 2: Best practices for key 22099
management organization 22100

[US] NIST SP 800-88, rev. 1, Guidelines for media sanitization 22101

62734/2CDV © IEC(E) – 849 –

[US] Code of Federal Regulations (CFR) Title 47, Chapter I, Part 15 – Telecommunication – 22102
Part 15: Radio frequency devices 22103

NAMUR Recommendation NE105, Specifications for integrating fieldbus devices 22104

NAMUR Recommendation NE107, Self-monitoring and diagnostics of field devices 22105

Guidelines for 64-bit Global Identifier (EUI-64™), available at 22106
http://standards.ieee.org/develop/regauth/tut/eui64.pdf. 22107

HCF_SPEC-183, Common Tables Specification, available to members of the HART 22108
Communication Foundation, http://www.hartcomm.org 22109

A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of applied cryptography, 22110
ISBN 0-8493-8523-7 22111

D. R. L. Brown, R. P. Gallant, S. A. Vanstone, Provably secure implicit certificate schemes, 22112
pp. 156-165 of ISBN 3-540-44079-8 22113

F. Stajano, The resurrecting duckling: What next?, in Proceedings of the 8th international 22114
workshop on security protocols, B. Crispo, M. Roe, and B. Crispo, Eds., Lecture notes in 22115
computer science, Vol. 2133, Berlin: Springer-Verlag, April 2000. 22116

F. Stajano, R. Anderson, The resurrecting duckling: Security issues in ad-hoc wireless 22117
networks, in Proceedings of the 7th international workshop on security protocols, B. 22118
Christianson, B. Crispo, J.A. Malcolm, and M. Roe, Eds., Lecture notes in computer science, 22119
Vol. 1796, Berlin: Springer-Verlag, 1999. 22120

J. Jonsson, On the security of CTR + CBC-MAC, in Proceedings of selected areas in 22121
cryptography – SAC 2002, K. Nyberg, H. Heys, Eds. Lecture notes in computer science, Vol. 22122
2595, pp. 76-93, Berlin: Springer, 2002. 22123

J. Jonsson, On the security of CTR + CBC-MAC, NIST mode of operation – Additional CCM 22124
documentation, http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ccm/ccm-ad1.pdf 22125

PKIX, L. Bassham, R. Housley, W. Polk, Algorithms and identifiers for the internet X.509 22126
Public key infrastructure certificate and CRL profile, ftp://ftp.isi.edu/in-notes/rfc3279.txt 22127

P. Rogaway, D. Wagner, A critique of CCM, IACR ePrint Archive 2003-070, April 13, 2003 22128

R. Housley, D. Whiting, N. Ferguson, Counter with CBC-MAC (CCM), submitted to NIST., 22129
June 3, 2002 22130

_____________ 22131

http://standards.ieee.org/develop/regauth/tut/eui64.pdf
http://www.hartcomm.org/
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ccm/ccm-ad1.pdf
ftp://ftp.isi.edu/in-notes/rfc3279.txt

	65C-62734-Ed1-IS-CDV-OE-abi.pdf
	FOREWORD
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviated terms, acronyms, and conventions
	3.1 Terms and definitions
	3.1.1 (N)-layer and other terms and definitions from the open systems interconnection Basic Reference Model
	3.1.1.1
	3.1.1.2
	3.1.1.3
	3.1.1.4
	3.1.1.5
	3.1.1.6
	3.1.1.7
	3.1.1.8
	3.1.1.9
	3.1.1.10
	3.1.1.11
	3.1.1.12
	3.1.1.13
	3.1.1.14
	3.1.1.15
	3.1.1.16
	3.1.1.17
	3.1.1.18
	3.1.1.19
	3.1.1.20
	3.1.1.21
	3.1.1.22
	3.1.1.23
	3.1.1.24
	3.1.1.25
	3.1.1.26
	3.1.1.27
	3.1.1.28
	3.1.1.29
	3.1.1.30
	3.1.1.31
	3.1.1.32
	3.1.1.33
	3.1.1.34
	3.1.1.35
	3.1.1.36
	3.1.1.37
	3.1.1.38
	3.1.1.39
	3.1.1.40
	3.1.1.41
	3.1.1.42
	3.1.1.43
	3.1.1.44
	3.1.1.45
	3.1.1.46
	3.1.1.47
	3.1.1.48
	3.1.1.49
	3.1.1.50
	3.1.1.51
	3.1.1.52
	3.1.1.53
	3.1.1.54
	3.1.1.55
	3.1.1.56
	3.1.1.57
	3.1.1.58
	3.1.1.59
	3.1.1.60
	3.1.1.61
	3.1.1.62
	3.1.1.63
	3.1.1.64
	3.1.1.65
	3.1.1.66
	3.1.1.67
	3.1.1.68
	3.1.1.69
	3.1.1.70

	3.1.2 Other terms and definitions
	3.1.2.1
	3.1.2.2
	3.1.2.3
	3.1.2.4
	3.1.2.5
	3.1.2.6
	3.1.2.7
	3.1.2.8
	3.1.2.9
	3.1.2.10
	3.1.2.11
	3.1.2.12
	3.1.2.13
	3.1.2.14
	3.1.2.15
	3.1.2.16
	3.1.2.17
	3.1.2.18
	3.1.2.19
	3.1.2.20
	3.1.2.21
	3.1.2.22
	3.1.2.23
	3.1.2.24
	3.1.2.25
	3.1.2.26
	3.1.2.27
	3.1.2.28
	3.1.2.29
	3.1.2.30
	3.1.2.31
	3.1.2.32
	3.1.2.33
	3.1.2.34
	3.1.2.35
	3.1.2.36
	3.1.2.37
	3.1.2.38
	3.1.2.39
	3.1.2.40
	3.1.2.41
	3.1.2.42
	3.1.2.43
	3.1.2.44
	3.1.2.45
	3.1.2.46
	3.1.2.47
	3.1.2.48
	3.1.2.49 gateway
	3.1.2.50
	3.1.2.51
	3.1.2.52
	3.1.2.53
	3.1.2.54
	3.1.2.55
	3.1.2.56
	3.1.2.57
	3.1.2.58
	3.1.2.59
	3.1.2.60
	3.1.2.61
	3.1.2.62
	3.1.2.63
	3.1.2.64
	3.1.2.65
	3.1.2.66
	3.1.2.67
	3.1.2.68
	3.1.2.69
	3.1.2.70
	3.1.2.71
	3.1.2.72
	3.1.2.73
	3.1.2.74
	3.1.2.75
	3.1.2.76
	3.1.2.77
	3.1.2.78
	3.1.2.79
	3.1.2.80
	3.1.2.81
	3.1.2.82
	3.1.2.83
	3.1.2.84
	3.1.2.85
	3.1.2.86
	3.1.2.87
	3.1.2.88
	3.1.2.89
	3.1.2.90
	3.1.2.91
	3.1.2.92
	3.1.2.93
	3.1.2.94
	3.1.2.95
	3.1.2.96
	3.1.2.97
	3.1.2.98
	3.1.2.99
	3.1.2.100
	3.1.2.101
	3.1.2.102
	3.1.2.103
	3.1.2.104
	3.1.2.105
	3.1.2.106
	3.1.2.107
	3.1.2.108
	3.1.2.109
	3.1.2.110
	3.1.2.111
	3.1.2.112
	3.1.2.113
	3.1.2.114
	3.1.2.115
	3.1.2.116
	3.1.2.117
	3.1.2.118
	3.1.2.119
	3.1.2.120
	3.1.2.121
	3.1.2.122
	3.1.2.123
	3.1.2.124
	3.1.2.125
	3.1.2.126
	3.1.2.127
	3.1.2.128
	3.1.2.129
	3.1.2.130
	3.1.2.131
	3.1.2.132
	3.1.2.133
	3.1.2.134
	3.1.2.135
	3.1.2.136
	3.1.2.137
	3.1.2.138
	3.1.2.139
	3.1.2.140
	3.1.2.141
	3.1.2.142
	3.1.2.143
	3.1.2.144
	3.1.2.145
	3.1.2.146
	3.1.2.147

	3.1.3 Symbols for symmetric keys, and for asymmetric keys and certificates
	3.1.3.1
	3.1.3.2
	3.1.3.3
	3.1.3.4
	3.1.3.5
	3.1.3.6
	3.1.3.7
	3.1.3.8
	3.1.3.9

	3.1.4 Terms used to describe device behavior
	3.1.4.1
	3.1.4.2
	3.1.4.3
	3.1.4.4
	3.1.4.5
	3.1.4.6

	3.2 Abbreviated terms and acronyms
	3.3 Conventions
	3.3.1 Service interfaces
	3.3.2 Table cells
	3.3.3 Italics
	3.3.4 Bold face
	3.3.5 Informal declarations of named constants

	4 Overview
	4.1 General
	4.2 Interoperability and related issues
	4.3 Quality of service
	4.4 Worldwide applicability
	4.5 Network architecture
	4.5.1 Interfaces
	4.5.1.1 Defined interfaces
	4.5.1.2 Interfaces that are not defined

	4.5.2 Data structures
	4.5.2.1 Defined PDUs
	4.5.2.2 Defined management data structures

	4.5.3 Network description
	4.5.4 Generic protocol data unit construction
	4.5.5 Abstract data and concrete representations
	4.5.5.1 Abstract data types
	4.5.5.2 Declarations of abstract data elements and their concrete representations
	4.5.5.2.1 Simple declarations
	4.5.5.2.2 Declarations of compound objects, and of methods and their arguments

	4.6 Network characteristics
	4.6.1 General
	4.6.2 Scalability
	4.6.3 Extensibility
	4.6.4 Simple operation
	4.6.5 Site-license-exempt operation
	4.6.6 Robustness in the presence of interference, including from other wireless systems
	4.6.7 Determinism and contention-free media access
	4.6.8 Self-organizing networking with support for redundancy
	4.6.9 Internet-protocol-compatible NL
	4.6.10 Coexistence with other radio frequency systems
	4.6.10.1 Coexistence overview
	4.6.10.2 Coexistence strategies
	4.6.10.2.1 General
	4.6.10.2.2 Leverage infrastructure for high data rate communication links
	4.6.10.2.3 Time-slotted operation
	4.6.10.2.4 Radio type selection
	4.6.10.2.5 Low-duty cycle
	4.6.10.2.6 Staccato transmissions
	4.6.10.2.7 Time diversity
	4.6.10.2.8 Channel diversity
	4.6.10.2.9 Spectrum management
	4.6.10.2.10 Selective channel utilization
	4.6.10.2.11 Collision avoidance
	4.6.10.2.12 Varying PhPDUs

	4.6.11 Time-slotted assigned-channel D-transactions as the basis for communication
	4.6.11.1 Overview
	4.6.11.2 Channel acquisition phase
	4.6.11.3 Communication phase

	4.6.12 Robust and flexible security
	4.6.13 System management
	4.6.14 Application process using standard objects
	4.6.15 Tunneling

	Figure 1 – Standard-compliant network
	Figure 2 – Typical single-layer PDU without fragmenting or blocking
	Figure 3 – Full multi-layer PDU structure used by this standard
	5 Systems
	5.1 General
	5.2 Devices
	5.2.1 General
	5.2.2 Device interworkability
	5.2.3 Profiles
	5.2.4 Quality of service
	5.2.5 Device worldwide applicability
	5.2.6 Device description
	5.2.6.1 General
	5.2.6.2 Field medium
	5.2.6.3 General
	5.2.6.4 Type A
	5.2.6.5 Role definitions
	5.2.6.6 Input/output
	5.2.6.7 Router
	5.2.6.8 Provisioning
	5.2.6.9 Backbone router
	5.2.6.10 Gateway
	5.2.6.11 System manager
	5.2.6.12 Security manager
	5.2.6.13 System time source

	5.2.7 Device addressing
	5.2.8 Device phases
	5.2.8.1 General
	5.2.8.2 Factory default
	5.2.8.3 Configured for application
	5.2.8.4 Provisioned to join the network
	5.2.8.5 Accessible device
	5.2.8.6 Joined to application

	5.2.9 Device energy sources

	5.3 Networks
	5.3.1 General
	5.3.2 Minimal network
	5.3.3 Basic network topologies supported
	5.3.3.1 General
	5.3.3.2 Star topology
	5.3.3.3 Hub-and-spoke topology
	5.3.3.4 Mesh topology
	5.3.3.5 Star-mesh topology
	5.3.3.6 Combinations of topologies

	5.3.4 Network configurations
	5.3.4.1 General
	5.3.4.2 Multiple gateways – redundancy and additional functions
	5.3.4.3 Multiple gateways - designating a gateway as a backup
	5.3.4.4 Adding backbone routers

	5.3.5 Gateway, system manager, and security manager

	5.4 Protocol suite structure
	5.5 Data flow
	5.5.1 General
	5.5.2 Native communications
	5.5.3 Basic data flow
	5.5.4 Data flow between I/O devices
	5.5.5 Data flow with legacy I/O device
	5.5.6 Data flow with backbone
	5.5.7 Data flow between I/O devices via backbone
	5.5.8 Data flow to a standard-aware control system or device

	5.6 Time reference
	5.6.1 General
	5.6.2 Time synchronization

	5.7 Firmware upgrades
	5.8 Wireless backbones and other infrastructures

	Figure 4 – Physical devices versus roles
	Figure 5 – Notional representation of device phases
	Figure 6 – Simple star topology
	Figure 7 – Simple hub-and-spoke topology
	Figure 8 – Mesh topology
	Figure 9 – Simple star-mesh topology
	Figure 10 – Example where network and Dsubnet overlap
	Figure 11 – Example where network and Dsubnet differ
	Figure 12 – Network with multiple gateways
	Figure 13 – Basic network with backup gateway
	Figure 14 – Network with backbone
	Figure 15 – Network with backbone – device roles
	Figure 16 – Reference model used by this standard
	Figure 17 – Basic data flow
	Figure 18 – Data flow between I/O devices
	Figure 19 – Data flow with legacy I/O device
	Figure 20 – Data flow with backbone-resident device
	Figure 21 – Data flow between I/O devices via backbone subnet
	Figure 22 – Data flow to standard-aware control system
	6 System management role
	6.1 General
	6.1.1 Overview
	6.1.2 Components and architecture
	6.1.3 Management functions

	6.2 DMAP
	6.2.1 General
	6.2.2 Architecture of device management
	6.2.3 Definition of management objects
	6.2.4 Management objects in DMAP
	6.2.5 Communications services provided to device management objects
	6.2.6 Attributes of management objects
	6.2.6.1 General
	6.2.6.2 Structured attribute index field
	6.2.6.3 Metadata of structured attribute

	6.2.7 Definitions of management objects in DMAP
	6.2.7.1 Device management object
	6.2.7.2 Alert reporting management object
	6.2.7.2.1 General
	6.2.7.2.2 Alert types
	6.2.7.2.3 Alert master
	6.2.7.2.4 Alert queue
	6.2.7.2.5 Alert state models
	6.2.7.2.6 Alarm recovery
	6.2.7.2.7 Alert reporting management object attributes, alerts and methods

	6.2.7.3 Upload/download object
	6.2.7.4 Layer management objects
	6.2.7.5 Device security management object
	6.2.7.6 Device provisioning object
	6.2.7.7 Health reports concentrator object

	6.2.8 Functions of device management and layer management
	6.2.8.1 Device management functions
	6.2.8.1.1 General
	6.2.8.1.2 Device management object alerts
	6.2.8.1.3 Device management object methods

	6.2.8.2 Layer management
	6.2.8.2.1 General
	6.2.8.2.2 DL management object
	6.2.8.2.2.1 General
	6.2.8.2.2.2 Physical layer management
	6.2.8.2.2.3 Media access control sublayer management
	6.2.8.2.2.4 DL management
	6.2.8.2.2.5 NL management
	6.2.8.2.2.6 TL management
	6.2.8.2.2.7 Security management
	6.2.8.2.2.8 Application sublayer management

	6.3 System manager
	6.3.1 General
	6.3.2 System management architecture
	6.3.3 Standard system management object types
	6.3.4 Security management
	6.3.5 Addresses and address allocation
	6.3.5.1 General
	6.3.5.2 Address types
	6.3.5.3 Address allocation
	6.3.5.4 Directory service
	6.3.5.5 Multicast DL16Address management

	6.3.6 Firmware upgrade
	6.3.7 System performance monitoring
	6.3.7.1 General
	6.3.7.2 System management alerts
	6.3.7.3 System monitoring object
	6.3.7.4 System monitoring configuration

	6.3.8 Device provisioning service
	6.3.9 Device management services
	6.3.9.1 General
	6.3.9.2 Join process
	6.3.9.2.1 General
	6.3.9.2.2 Device management object methods for advertising router
	6.3.9.2.3 Capabilities of new device

	6.3.9.3 Device configuration
	6.3.9.4 Leave process
	6.3.9.4.1 General
	6.3.9.4.2 Device restart
	6.3.9.4.3 Device reset to factory defaults
	6.3.9.4.4 Device replacement

	6.3.9.5 Device management service object

	6.3.10 System time services
	6.3.10.1 General
	6.3.10.2 Device clock accuracy capabilities
	6.3.10.3 System time source selection
	6.3.10.4 Time distribution topology
	6.3.10.5 Monitoring of time synchronization accuracy
	6.3.10.6 System time service object

	6.3.11 System communication configuration
	6.3.11.1 General
	6.3.11.2 Contract services
	6.3.11.2.1 Definition of contract
	6.3.11.2.2 Directionality of contract
	6.3.11.2.3 Definition of contract identifier
	6.3.11.2.4 Architecture supporting contract related messaging
	6.3.11.2.4.1 General
	6.3.11.2.4.2 Handling contract-related services within device
	6.3.11.2.4.3 Handling contract related services in the network
	6.3.11.2.4.4 System communication configuration object
	6.3.11.2.4.5 Contract-related messages

	6.3.11.2.5 Contract establishment
	6.3.11.2.5.1 General
	6.3.11.2.5.2 Relation between contracts and sessions
	6.3.11.2.5.3 Devices that can request contracts
	6.3.11.2.5.4 Contract request and response arguments

	6.3.11.2.6 Protocol suite configuration
	6.3.11.2.6.1 General
	6.3.11.2.6.2 Configuration of intermediate field routers
	6.3.11.2.6.3 Configuration of intermediate backbone routers
	6.3.11.2.6.4 Configuration of destination
	6.3.11.2.6.5 Configuration of source
	6.3.11.2.6.6 Contract information in device management object
	6.3.11.2.6.7 Configuration of new device

	6.3.11.2.7 Quality of service
	6.3.11.2.7.1 General
	6.3.11.2.7.2 Contract negotiability
	6.3.11.2.7.3 Contract priorities and message priorities
	6.3.11.2.7.4 Arguments related to phase

	6.3.11.2.8 Contract establishment message sequence diagram
	6.3.11.2.9 Use of contract identifier
	6.3.11.2.9.1 General
	6.3.11.2.9.2 Use of contract identifier in intermediate backbone routers
	6.3.11.2.9.3 Relation between contracts and alerts

	6.3.11.2.10 Contract termination, deactivation and reactivation
	6.3.11.2.10.1 General
	6.3.11.2.10.2 Contract termination when a device leaves the network or is no longer available
	6.3.11.2.10.3 Contract termination when the T-key is terminated
	6.3.11.2.10.4 Devices that can terminate, deactivate and reactivate contracts
	6.3.11.2.10.5 Contract termination, deactivation, and reactivation request and response arguments
	6.3.11.2.10.6 Protocol suite configuration
	6.3.11.2.10.7 Contract termination message sequence diagram

	6.3.11.2.11 Contract maintenance and modification
	6.3.11.2.11.1 General
	6.3.11.2.11.2 Devices that can modify contracts
	6.3.11.2.11.3 Contract modification request and response arguments
	6.3.11.2.11.4 Contract renewal
	6.3.11.2.11.5 Protocol suite configuration
	6.3.11.2.11.6 Contract modification message sequence diagram
	6.3.11.2.11.7 Contract modification and T-key updates

	6.3.11.2.12 Contract failure scenarios

	6.3.12 Redundancy management
	6.3.13 System management protocols
	6.3.14 Management policies and policy administration
	6.3.15 Operational interaction with plant operations or maintenance personnel

	Figure 23 – Management architecture
	Figure 24 – DMAP
	Figure 25 – Example of management SAP flow through standard protocol suite
	Figure 26 – System manager architecture concept
	Figure 27 – UAP-system manager interaction during contract establishment
	Figure 28 – Contract-related interaction between DMO and SCO
	Figure 29 – Contract source, destination, and intermediate devices
	Figure 30 – Contract establishment example
	Figure 31 – Contract ID usage in source
	Figure 32 – Contract termination
	Figure 33 – Contract modification with immediate effect
	7 Security
	7.1 General
	7.2 Security services
	7.2.1 Overview
	7.2.2 Keys
	7.2.2.1 General
	7.2.2.2 Symmetric keys
	7.2.2.3 Asymmetric keys and certificates
	7.2.2.4 Key lifetime
	7.2.2.4.1 General
	7.2.2.4.2 Key lifetime expiration
	7.2.2.4.2.1 SoftExpirationTime
	7.2.2.4.2.2 ValidNotAfter

	7.3 PDU security
	7.3.1 General
	7.3.1.1 Security level
	7.3.1.2 Security control field

	7.3.2 DPDU security
	7.3.2.1 General
	7.3.2.2 DPDU structure
	7.3.2.3 DPDU headers
	7.3.2.3.1 IEEE 802.15.4:2011 MAC header
	7.3.2.3.2 DL MAC extension header

	7.3.2.4 Interface between the DLE and DSC
	7.3.2.4.1 General
	7.3.2.4.2 Sec.DpduPrep.Request
	7.3.2.4.2.1 General
	7.3.2.4.2.2 Semantics of the service primitive
	7.3.2.4.2.3 Appropriate usage
	7.3.2.4.2.4 Effect on receipt

	7.3.2.4.3 Sec.DpduPrep.Response
	7.3.2.4.3.1 General
	7.3.2.4.3.2 Semantics
	7.3.2.4.3.3 When generated
	7.3.2.4.3.4 Appropriate usage

	7.3.2.4.4 Sec.DAckCheck.Request
	7.3.2.4.4.1 General
	7.3.2.4.4.2 Semantics of the service primitive
	7.3.2.4.4.3 Appropriate usage
	7.3.2.4.4.4 Effect on receipt

	7.3.2.4.5 Sec.DAckCheck.Response
	7.3.2.4.5.1 General
	7.3.2.4.5.2 Semantics
	7.3.2.4.5.3 When generated
	7.3.2.4.5.4 Appropriate usage

	7.3.2.4.6 Sec.DInitialCheck.Request
	7.3.2.4.6.1 General
	7.3.2.4.6.2 Semantics of the service primitive
	7.3.2.4.6.3 Appropriate usage
	7.3.2.4.6.4 Effect on receipt

	7.3.2.4.7 Sec.DInitialCheck.Response
	7.3.2.4.7.1 General
	7.3.2.4.7.2 Semantics
	7.3.2.4.7.3 When generated
	7.3.2.4.7.4 Appropriate usage

	7.3.2.4.8 Sec.DAckPrep.Request
	7.3.2.4.8.1 General
	7.3.2.4.8.2 Semantics of the service primitive
	7.3.2.4.8.3 Appropriate usage
	7.3.2.4.8.4 Effect on receipt

	7.3.2.4.9 Sec.DAckPrep.Response
	7.3.2.4.9.1 General
	7.3.2.4.9.2 Semantics
	7.3.2.4.9.3 When generated
	7.3.2.4.9.4 Appropriate usage

	7.3.2.4.10 Nonce construction for DPDUs

	7.3.2.5 Processing of a DPDU to be transmitted
	7.3.2.6 Processing of received DPDUs
	7.3.2.7 Detection and discard of duplicated or replayed protocol data units

	7.3.3 TL security functionality
	7.3.3.1 General
	7.3.3.2 TPDU structure
	7.3.3.2.1 General
	7.3.3.2.2 TPDU Protection

	7.3.3.3 Interface with the TL for a TPDU being formed for transmission
	7.3.3.4 Processing overview for received TPDUs
	7.3.3.5 TL interface to the TSC
	7.3.3.5.1 General
	7.3.3.5.2 Sec.TpduOutCheck.Request
	7.3.3.5.2.1 General
	7.3.3.5.2.2 Semantics of the service primitive
	7.3.3.5.2.3 Appropriate usage
	7.3.3.5.2.4 Effect on receipt

	7.3.3.5.3 Sec.TpduOutCheck.Response
	7.3.3.5.3.1 General
	7.3.3.5.3.2 Semantics
	7.3.3.5.3.3 When generated
	7.3.3.5.3.4 Appropriate usage

	7.3.3.5.4 Sec.TpduSecure.Request
	7.3.3.5.4.1 General
	7.3.3.5.4.2 Semantics of the service primitive
	7.3.3.5.4.3 Appropriate usage
	7.3.3.5.4.4 Effect on receipt

	7.3.3.5.5 Sec.TpduSecure.Response
	7.3.3.5.5.1 General
	7.3.3.5.5.2 Semantics
	7.3.3.5.5.3 When generated
	7.3.3.5.5.4 Appropriate usage

	7.3.3.5.6 Sec.TpduInCheck.Request
	7.3.3.5.6.1 General
	7.3.3.5.6.2 Semantics of the service primitive
	7.3.3.5.6.3 Appropriate usage
	7.3.3.5.6.4 Effect on receipt

	7.3.3.5.7 Sec. TpduInCheck.Response
	7.3.3.5.7.1 General
	7.3.3.5.7.2 Semantics
	7.3.3.5.7.3 When generated
	7.3.3.5.7.4 Appropriate usage

	7.3.3.5.8 Sec.TpduVerify.Request
	7.3.3.5.8.1 General
	7.3.3.5.8.2 Semantics of the service primitive
	7.3.3.5.8.3 Appropriate usage
	7.3.3.5.8.4 Effect on receipt

	7.3.3.5.9 Sec.TpduVerify.Response
	7.3.3.5.9.1 General
	7.3.3.5.9.2 Semantics
	7.3.3.5.9.3 When generated
	7.3.3.5.9.4 Appropriate usage

	7.3.3.6 TPDU security header structure
	7.3.3.7 Nonce construction for TPDUs
	7.3.3.8 Processing for TPDUs to be transmitted
	7.3.3.9 Processing for received TPDUs
	7.3.3.10 Detection and discard of duplicated or replayed TPDUs

	7.4 Join process
	7.4.1 General
	7.4.2 Prerequisites
	7.4.3 Desired device end state and properties
	7.4.4 Join process steps common for symmetric-key and asymmetric-key approaches
	7.4.4.1 General
	7.4.4.2 Construction of join process PDUs
	7.4.4.3 Protection of join process messages
	7.4.4.3.1 General
	7.4.4.3.2 Protection against join PDU replay attacks
	7.4.4.3.3 Protecting non-security message in the join process
	7.4.4.3.3.1 General
	7.4.4.3.3.2 MIC generation for System_Manager_Join response
	7.4.4.3.3.3 MIC generation for System_Manager_Contract response
	7.4.4.3.3.1 Confirmation

	7.4.4.4 Join timers
	7.4.4.5 Join process of backbone device
	7.4.4.6 TMIC size constraints for session between join node and system manager

	7.4.5 Symmetric-key join process
	7.4.5.1 General
	7.4.5.2 Device management object and proxy service management object methods related to the symmetric-key join process
	7.4.5.2.1 General
	7.4.5.2.2 Symmetric-key join request
	7.4.5.2.3 Symmetric-key join response
	7.4.5.2.4 Symmetric-key security confirmation

	7.4.6 Asymmetric-key join process
	7.4.6.1 Overview
	7.4.6.2 Asymmetric-key key agreement scheme
	7.4.6.2.1 Overview
	7.4.6.2.1.1 General
	7.4.6.2.1.2 Format of implicit certificate

	7.4.6.2.2 Description of the scheme
	7.4.6.2.3 Security properties of the scheme

	7.4.6.3 Key distribution scheme
	7.4.6.3.1 Overview
	7.4.6.3.2 Description of the scheme
	7.4.6.3.3 Security properties of the scheme
	7.4.6.3.4 Formats of protocol messaging
	7.4.6.3.5 Asymmetric-key-based join protocol

	7.4.6.4 Asymmetric-key join process messages
	7.4.6.4.1 General
	7.4.6.4.2 Device management object and proxy security management object methods related to the asymmetric-key join process
	7.4.6.4.3 Formats of protocol messaging
	7.4.6.4.3.1 Format of the join request internal structure (PK-join-1)
	7.4.6.4.3.2 Format of the asymmetric join response internal structure (PK-join-2)
	7.4.6.4.3.3 Format of the first join confirmation internal structure (PK-join-3)
	7.4.6.4.3.4 Format of the second join confirmation internal structure

	7.4.7 Join process and device lifetime failure recovery
	7.4.7.1 General
	7.4.7.2 Device states during the join process and device lifetime
	7.4.7.3 State transitions

	7.5 Session establishment
	7.5.1 General
	7.5.2 Description
	7.5.3 Application protocol data unit protection using the master key
	7.5.3.1 General
	7.5.3.2 Replay protection for application protocol data unit protected with the master key

	7.5.4 Proxy security management object methods related to the session establishment

	7.6 Key update
	7.6.1 General
	7.6.2 Description
	7.6.3 Device security management object methods related to T-key update
	7.6.4 Failure recovery
	7.6.4.1 General
	7.6.4.2 T-key and D-key states
	7.6.4.3 T-key and D-key state transition

	7.7 Functionality of the security manager role
	7.7.1 Proxy security management object
	7.7.2 Authorization of network devices and generation or derivation of initial master keys
	7.7.3 Interaction with device security management objects
	7.7.4 Management of operational keys
	7.7.4.1 General
	7.7.4.2 Key archiving
	7.7.4.3 Key recovery
	7.7.4.4 Security policy administration

	7.8 Security policies
	7.8.1 Definition of security policy
	7.8.2 Policy extent
	7.8.3 Unconstrained security policy choices
	7.8.4 Policy structures

	7.9 Security functions available to the AL
	7.9.1 Parameters on transport service requests that relate to security
	7.9.2 Direct access to cryptographic primitives
	7.9.2.1 General
	7.9.2.2 Unkeyed hash functions
	7.9.2.3 Random bits

	7.9.3 Symmetric-key cryptography
	7.9.3.1 Keyed hash functions
	7.9.3.2 Block cipher encryption and decryption functions
	7.9.3.3 Stream cipher functions for encryption, decryption, authentication, extended authentication with encryption, and decryption with extended authentication
	7.9.3.4 Secret key generation primitive

	7.10 Security statistics collection, threat detection, and reporting
	7.11 DSMO functionality
	7.11.1 General
	7.11.2 DSMO attributes
	7.11.3 KeyDescriptor
	7.11.3.1 General
	7.11.3.2 Additional device security management object methods to support key management

	7.11.4 DSMO alerts

	Figure 34 – Examples of DPDU and TPDU scope
	Figure 35 – Keys and associated lifetimes
	Figure 36 – Key lifetimes
	Figure 37 – DPDU structure
	Figure 38 – DLE and DLS processing for a Dtransaction initiator
	Figure 39 – Received DPDUs – DLE and DSC
	Figure 40 – TPDU structure and protected coverage
	Figure 41 – TMIC parameters
	Figure 42 – TL and TSC interaction, outgoing TPDU
	Figure 43 – TL and TSC interaction, incoming TPDU
	Figure 44 – Example: Overview of the symmetric-key join process
	Figure 45 – Example: Overview of the symmetric-key join process of a backbone device
	Figure 46 – Asymmetric-key-authenticated key agreement scheme
	Figure 47 – Example: Overview of the asymmetric-key join process for a device with a DL
	Figure 48 – Example: Overview of the asymmetric-key join process of a backbone device
	Figure 49 – Device state transitions for join process and device lifetime
	Figure 50 – High-level example of session establishment
	Figure 51 – Key update protocol overview
	Figure 52 – Device key establishment and key update state transition
	8 Physical layer
	8.1 General
	8.2 Default physical layer
	8.2.1 General requirements
	8.2.2 Additional requirements of IEEE 802.15.4:2011
	8.2.2.1 Over-the-air data rate
	8.2.2.2 Timing requirements
	8.2.2.3 Carrier sense mode selection
	8.2.2.4 Number of channels
	8.2.2.5 Transmit power limits

	8.2.3 Exceptions to the IEEE 802.15.4:2011 physical layer
	8.2.3.1 General
	8.2.3.2 Limitation of frequency bands and modulation classes

	9 Data-link layer
	9.1 General
	9.1.1 Overview
	9.1.2 Coexistence strategies in the DL
	9.1.3 Allocation of digital bandwidth
	9.1.4 Structure of the DPDU
	9.1.5 The DL and the IEEE 802.15.4:2011 MAC
	9.1.6 Routes and graphs
	9.1.6.1 General
	9.1.6.2 Graph routing
	9.1.6.3 Graph extensions
	9.1.6.4 Source routing
	9.1.6.5 Route selection

	9.1.7 Slotted-channel-hopping, slow-channel-hopping, and timeslots
	9.1.7.1 General
	9.1.7.2 Channel-hopping
	9.1.7.2.1 General
	9.1.7.2.2 Radio spectrum considerations
	9.1.7.2.3 Channel 26 and other blocked channels
	9.1.7.2.4 Spectrum management and selective channel utilization
	9.1.7.2.5 Repeating channel-hopping-patterns
	9.1.7.2.6 Timeslot and channel use

	9.1.8 Superframes
	9.1.8.1 General
	9.1.8.2 Exponential backoff
	9.1.8.3 Superframe channel use
	9.1.8.4 Organizing superframes
	9.1.8.4.1 General
	9.1.8.4.2 Superframe scope
	9.1.8.4.3 Blocks of contention-based capacity
	9.1.8.4.4 Slotted-channel-hopping
	9.1.8.4.5 Slow-channel-hopping
	9.1.8.4.6 Hybrid channel-hopping configurations
	9.1.8.4.7 Superframes and spectrum management

	9.1.8.5 DLE message queue operation

	9.1.9 DL time keeping
	9.1.9.1 Timing
	9.1.9.1.1 General
	9.1.9.1.2 International atomic time
	9.1.9.1.3 Alignment intervals
	9.1.9.1.4 Timeslot duration, timeslot alignment, and idle periods
	9.1.9.1.5 Scheduled timeslot time

	9.1.9.2 DL time propagation
	9.1.9.2.1 General
	9.1.9.2.2 DLE clock stability
	9.1.9.2.3 Preferred and secondary clock sources
	9.1.9.2.4 Shared time sense during D-subnet operation

	9.1.9.3 Pairwise time synchronization
	9.1.9.3.1 General
	9.1.9.3.2 Clock source acknowledges receipt of a Data DPDU within a timeslot
	9.1.9.3.3 Clock source originates a Data DPDU that includes an advertisement
	9.1.9.3.4 Clock source acknowledges a Data DPDU within a slow-channel-hopping period
	9.1.9.3.5 Auditing the quality of a neighbor’s clock
	9.1.9.3.6 Discontinuous clock adjustments

	9.1.9.4 Transactions within timeslot templates
	9.1.9.4.1 General
	9.1.9.4.2 D-transaction overview
	9.1.9.4.3 Unicast transaction
	9.1.9.4.4 Negative acknowledgments
	9.1.9.4.5 Explicit congestion notification
	9.1.9.4.6 Data DPDU wait times
	9.1.9.4.7 Duocast/N-cast transactions
	9.1.9.4.8 Shared timeslots with CSMA/CA
	9.1.9.4.9 Transactions during slow-channel-hopping periods

	9.1.10 D-subnet addressing
	9.1.10.1 Address types
	9.1.10.2 Subnet identifier and uniqueness of DL16Addresses

	9.1.11 DL management service
	9.1.11.1 General
	9.1.11.2 Management attributes and indexed attributes
	9.1.11.3 Management messages from immediate neighbors
	9.1.11.4 Multiple D-subnets
	9.1.11.5 Multiple PhLEs (radios)

	9.1.12 Relationship between DLE and DSC
	9.1.13 DLE neighbor discovery
	9.1.13.1 General
	9.1.13.2 Auxiliary subheader and advertisements
	9.1.13.3 Active scanning solicitation and response
	9.1.13.4 Continuous scanning

	9.1.14 Neighbor discovery and joining – DL considerations
	9.1.14.1 General
	9.1.14.2 DLE states
	9.1.14.3 Consolidated DL configuration information
	9.1.14.4 Scanning for neighbors in the unprovisioned state
	9.1.14.5 Scanning for neighbors in the provisioned state
	9.1.14.6 Scanning for neighbors after joining the D-subnet

	9.1.15 Radio link control and quality measurement
	9.1.15.1 General
	9.1.15.2 Performance metrics
	9.1.15.3 Accumulating and reporting diagnostic information
	9.1.15.4 Radio silence
	9.1.15.5 Radio transmit power
	9.1.15.6 Country code

	9.1.16 DLE roles and options
	9.1.17 DLE energy considerations

	9.2 DDSAP
	9.2.1 General
	9.2.2 DD-Data.request
	9.2.3 DD-Data.confirm
	9.2.4 DD-Data.indication

	9.3 Data DPDUs and ACK/NAK DPDUs
	9.3.1 General
	9.3.2 Octet and bit ordering
	9.3.2.1 General
	9.3.2.2 Extensible DL unsigned integers

	9.3.3 Media access control headers
	9.3.3.1 General
	9.3.3.2 Media access control header
	9.3.3.3 Data DPDU subheader
	9.3.3.4 DPDU MAC extension subheader
	9.3.3.5 DPDU auxiliary subheader
	9.3.3.6 DPDU Routing subheader
	9.3.3.7 Addressing subheader

	9.3.4 MAC acknowledgment DPDUs
	9.3.5 DL auxiliary subheader
	9.3.5.1 General
	9.3.5.2 Advertisement auxiliary subheader
	9.3.5.2.1 General
	9.3.5.2.2 Advertisement selections
	9.3.5.2.3 Advertisement time synchronization
	9.3.5.2.4 Advertisement join superframe and links
	9.3.5.2.4.1 Advertisement join superframe
	9.3.5.2.4.2 Advertisement join links
	9.3.5.2.4.3 Slotted-hopping, slow-hopping and the join process
	9.3.5.2.4.4 Integrity check

	9.3.5.2.5 Configuring advertisements

	9.3.5.3 Solicitation auxiliary subheader
	9.3.5.3.1 General
	9.3.5.3.2 Solicitation fields
	9.3.5.3.3 Configuring solicitations

	9.3.5.4 Activate link auxiliary subheader
	9.3.5.4.1 General
	9.3.5.4.2 Fields

	9.3.5.5 Signal quality auxiliary subheader
	9.3.5.5.1 General
	9.3.5.5.2 Fields

	9.4 DL management information base
	9.4.1 General
	9.4.2 DL management object attributes
	9.4.2.1 General
	9.4.2.2 dlmo.ActScanHostFract
	9.4.2.3 dlmo.AdvJoinInfo and dlmo.AdvSuperframe
	9.4.2.4 dlmo.SubnetID
	9.4.2.5 dlmo.SolicTemplate
	9.4.2.6 dlmo.TaiTime
	9.4.2.7 dlmo.MaxBackoffExp
	9.4.2.8 dlmo.MaxDsduSize
	9.4.2.9 dlmo.MaxLifetime
	9.4.2.10 dlmo.NackBackoffDur
	9.4.2.11 dlmo.LinkPriorityXmit and dlmo.LinkPriorityRcv
	9.4.2.12 dlmo.IdleChannels
	9.4.2.13 dlmo.ClockExpire
	9.4.2.14 dlmo.ClockStale
	9.4.2.15 dlmo.ClockTimeout
	9.4.2.16 dlmo.RadioSilence
	9.4.2.17 dlmo.RadioSleep
	9.4.2.18 dlmo.RadioTransmitPower
	9.4.2.19 dlmo.CountryCode
	9.4.2.20 Subnet filters
	9.4.2.21 Time adjustments
	9.4.2.22 DLE energy capacity
	9.4.2.23 DLMO device capabilities
	9.4.2.24 Candidate neighbors
	9.4.2.25 Smoothing factors
	9.4.2.26 dlmo.QueuePriority
	9.4.2.26.1 General
	9.4.2.26.2 Semantics

	9.4.2.27 dlmo.ChannelDiag
	9.4.2.27.1 General
	9.4.2.27.2 Semantics

	9.4.3 DLMO attributes (indexed OctetStrings)
	9.4.3.1 General
	9.4.3.2 dlmo.Ch
	9.4.3.2.1 General
	9.4.3.2.2 Semantics

	9.4.3.3 dlmo.TsTemplate
	9.4.3.3.1 General
	9.4.3.3.2 Semantics
	9.4.3.3.3 Default template timings
	9.4.3.3.4 Considerations for required minimum inter-transmission gap

	9.4.3.4 dlmo.Neighbor
	9.4.3.4.1 General
	9.4.3.4.2 Semantics
	9.4.3.4.3 dlmo.NeighborDiagReset

	9.4.3.5 dlmo.Superframe
	9.4.3.5.1 General
	9.4.3.5.2 Semantics
	9.4.3.5.3 Superframe current timeslot state
	9.4.3.5.4 Slow-channel-hopping
	9.4.3.5.5 dlmo.SuperframeIdle

	9.4.3.6 dlmo.Graph
	9.4.3.6.1 General
	9.4.3.6.2 Semantics

	9.4.3.7 dlmo.Link
	9.4.3.7.1 General
	9.4.3.7.2 Semantics

	9.4.3.8 dlmo.Route
	9.4.3.8.1 General
	9.4.3.8.2 Semantics

	9.4.3.9 dlmo.NeighborDiag
	9.4.3.9.1 General
	9.4.3.9.2 Semantics

	9.5 DLE methods
	9.5.1 Method for synchronized cutover of DLE attributes
	9.5.2 Methods to access indexed OctetString attributes

	9.6 DL alerts
	9.6.1 DL_Connectivity alert
	9.6.2 NeighborDiscovery alert

	Figure 53 – DL protocol suite and PhPDU/DPDU structure
	Figure 54 – Graph routing example
	Figure 55 – Inbound and outbound graphs
	Figure 56 – Slotted-channel-hopping
	Figure 57 – Slow-channel-hopping
	Figure 58 – Hybrid operation
	Figure 59 – Radio spectrum usage
	Figure 60 – Predefined channel-hopping-pattern1
	Figure 61 – Two groups of DLEs with different channel-hopping-pattern-offsets
	Figure 62 – Interleaved channel-hopping-pattern1with sixteen different channel-hopping-pattern-offsets
	Figure 63 – Example timeslot allocation for slotted-channel-hopping
	Figure 64 – Example timeslot allocation for slow-channel-hopping
	Figure 65 – Hybrid mode with slotted-channel-hopping and slow-channel-hopping
	Figure 66 – Combining slow-channel-hopping and slotted-channel-hopping
	Figure 67 – Example of a three-timeslot superframe and how it repeats
	Figure 68 – Superframes and links
	Figure 69 – Multiple superframes with aligned timeslots
	Figure 70 – Example superframe for slotted-channel-hopping
	Figure 71 – Example superframe for slow-channel-hopping
	Figure 72 – Components of a slow-channel-hopping superframe
	Figure 73 – Example configuration for avoiding collisions among routers
	Figure 74 – Hybrid configuration
	Figure 75 – Timeslot allocation and message queue
	Figure 76 – 250 ms alignment intervals
	Figure 77 – Timeslot durations and timing
	Figure 78 – Clock source acknowledges receipt of a Data DPDU
	Figure 79 – Transaction timing attributes
	Figure 80 – Dedicated and shared transaction timeslots
	Figure 81 – Unicast transaction
	Figure 82 – PDU wait time (PWT)
	Figure 83 – Duocast support in the standard
	Figure 84 – Duocast transaction
	Figure 85 – Shared timeslots with active CSMA/CA
	Figure 86 – Transaction during slow-channel-hopping periods
	Figure 87 – DL management SAP flow through standard protocol suite
	Figure 88 – PhPDU and DPDU structure
	Figure 89 – Typical ACK/NAK DPDU layout
	Figure 90 – Relationship among DLMO indexed attributes
	10 Network layer
	10.1 General
	10.2 NL functionality overview
	10.2.1 General
	10.2.2 Addressing
	10.2.3 Address translation
	10.2.4 Network protocol data unit headers
	10.2.5 Fragmentation and reassembly
	10.2.6 Routing
	10.2.6.1 General
	10.2.6.2 Routing tables
	10.2.6.3 Processing of a network service data unit received from a TLE
	10.2.6.4 Processing of a received NPDU

	10.2.7 Routing examples
	10.2.7.1 Routing from a field device direct to a field-connected gateway
	10.2.7.2 Routing from a field device to a gateway via a backbone router
	10.2.7.3 Routing from a field device to another field device on a different D-subnet
	10.2.7.4 Example of routing over an Ethernet backbone network
	10.2.7.5 Example of routing over a backbone network

	10.3 NLE data services
	10.3.1 General
	10.3.2 N-Data.request
	10.3.2.1 General
	10.3.2.2 Semantics
	10.3.2.3 Appropriate usage
	10.3.2.4 Effect on receipt

	10.3.3 N-Data.confirm
	10.3.3.1 General
	10.3.3.2 Semantics
	10.3.3.3 When generated
	10.3.3.4 Appropriate usage

	10.3.4 N-Data.indication
	10.3.4.1 General
	10.3.4.2 Semantics
	10.3.4.3 Appropriate usage
	10.3.4.4 Effect on receipt

	10.4 NL management object
	10.4.1 NL management information base
	10.4.2 Structured management information bases
	10.4.3 NL management object methods

	10.5 NPDU formats
	10.5.1 General
	10.5.2 Basic header format for NL
	10.5.2.1 Intended usage
	10.5.2.2 Format
	10.5.2.3 Relation to 6LoWPAN

	10.5.3 Contract-enabled network header format
	10.5.3.1 Intended usage
	10.5.3.2 Format
	10.5.3.3 Relation to 6LoWPAN

	10.5.4 Full header (IPv6) format
	10.5.4.1 Intended usage
	10.5.4.2 Format
	10.5.4.3 Relation to 6LoWPAN

	10.5.5 Fragmentation header format
	10.5.5.1 Intended usage
	10.5.5.2 Format
	10.5.5.3 Relation to 6LoWPAN

	Figure 91 – Address translation process
	Figure 92 – Fragmentation process
	Figure 93 – Reassembly process
	Figure 94 – Processing of a NSDU received from a TLE
	Figure 95 – Processing of a received NPDU
	Figure 96 – Processing of a NPDU received by a NLE from the backbone
	Figure 97 – Delivery of a received NPDU at its final destination NLE
	Figure 98 – Routing from a field device direct to a field-connected gatewaywithout backbone routing
	Figure 99 – Protocol suite diagram for routing from a field devicedirect to a field-connected gateway without backbone routing
	Figure 100 – Routing a NPDU from a field device to a gateway via a backbone router
	Figure 101 – Protocol suite diagram for routing an APDU from a field device to a gateway via a backbone router
	Figure 102 – Routing from a field device on one Dsubnet to another field device on a different Dsubnet
	Figure 103 – Protocol suite diagram for routing from an I/O device on one Dsubnet to another I/O device on a different Dsubnet
	Figure 104 – Example of routing over an Ethernet backbone network
	Figure 105 – Example of routing over a fieldbus backbone network
	Figure 106 – Distinguishing between NPDU header formats
	11 Transport layer
	11.1 General
	11.2 TLE reference model
	11.3 Transport security entity
	11.3.1 General
	11.3.2 Securing the TL

	11.4 Transport data entity
	11.4.1 General
	11.4.2 UDP over IPv6
	11.4.3 UDP header transmission and compression
	11.4.3.1 General
	11.4.3.2 Compressing and restoring UDP port numbers
	11.4.3.3 Eliding and restoring the UDP Length field
	11.4.3.4 Eliding and restoring the UDP checksum

	11.4.4 TSAPs and UDP ports
	11.4.5 Good network citizenship

	11.5 TPDU encoding
	11.5.1 General
	11.5.2 Header compression – User datagram protocol encoding
	11.5.3 TPDU security header

	11.6 TL model
	11.6.1 General
	11.6.2 Data services
	11.6.2.1 General
	11.6.2.2 T-Data.request
	11.6.2.2.1 General
	11.6.2.2.2 Semantics of the service primitive
	11.6.2.2.3 Appropriate usage
	11.6.2.2.4 Effect on receipt

	11.6.2.3 T-Data.confirm
	11.6.2.3.1 General
	11.6.2.3.2 Semantics of the service primitive
	11.6.2.3.3 When generated
	11.6.2.3.4 Appropriate usage

	11.6.2.4 T-Data.indication
	11.6.2.4.1 General
	11.6.2.4.2 Semantics of the service primitive
	11.6.2.4.3 Appropriate usage
	11.6.2.4.4 Effect on receipt

	11.6.2.5 Management services
	11.6.2.5.1 General
	11.6.2.5.2 Attributes
	11.6.2.5.3 Methods
	11.6.2.5.4 Alerts

	Figure 107 – TLE reference model
	Figure 108 – UDP pseudo-header for IPv6
	Figure 109 – TPDU structure
	12 Application layer
	12.1 General
	12.2 Energy considerations
	12.3 Legacy control system considerations
	12.4 Introduction to object-oriented modeling
	12.4.1 General
	12.4.2 Object-to-object communication concept
	12.4.3 AL structure
	12.4.4 UAP structure

	12.5 Object model
	12.6 Object attribute model
	12.6.1 General
	12.6.2 Attributes of standard objects
	12.6.3 Attribute classification
	12.6.4 Attribute accessibility

	12.7 Method model
	12.8 Alert model
	12.9 Alarm state model
	12.10 Event state model
	12.10.1 General
	12.10.2 State table and transitions

	12.11 Alert reporting
	12.11.1 General
	12.11.2 Alert types
	12.11.3 Alert report information
	12.11.4 Alarm state recovery

	12.12 Communication interaction model
	12.12.1 General
	12.12.2 Buffered unidirectional publication communication
	12.12.2.1 General
	12.12.2.2 Buffer content always transmitted
	12.12.2.3 Buffer content transmitted on change only

	12.12.3 Queued unidirectional communication
	12.12.4 Queued bidirectional communication
	12.12.4.1 General
	12.12.4.2 Retries and flow control
	12.12.4.2.1 General
	12.12.4.2.2 Retries and timeout intervals
	12.12.4.2.2.1 General
	12.12.4.2.2.2 Retries for unordered messages
	12.12.4.2.2.3 Retries for ordered messages

	12.12.4.2.3 Flow control
	12.12.4.2.4 Probing for congestion

	12.12.5 Communication service contract

	12.13 AL addressing
	12.13.1 General
	12.13.2 Object addressing
	12.13.3 Object attribute addressing
	12.13.4 Object attribute addressing
	12.13.4.1 General
	12.13.4.2 Scalars
	12.13.4.3 Structured protocol addresses treated as scalars
	12.13.4.4 Singly-dimensioned arrays and standard data structures
	12.13.4.5 Singly-dimensioned arrays
	12.13.4.6 Doubly-dimensioned arrays

	12.13.5 Object method addressing

	12.14 Management objects
	12.15 User objects
	12.15.1 General
	12.15.2 Industry-independent objects
	12.15.2.1 General
	12.15.2.2 UAP management object
	12.15.2.2.1 General
	12.15.2.2.2 Object attributes
	12.15.2.2.3 State table for UAP management object
	12.15.2.2.4 Standard object methods

	12.15.2.3 Alert-receiving object
	12.15.2.3.1 General
	12.15.2.3.2 Object attributes
	12.15.2.3.3 State table for AlertReport handling
	12.15.2.3.4 Standard object methods

	12.15.2.4 UploadDownload object
	12.15.2.4.1 General
	12.15.2.4.2 Object attributes
	12.15.2.4.3 Standard object methods
	12.15.2.4.4 StartDownload method
	12.15.2.4.4.1 Method description
	12.15.2.4.4.2 Input arguments
	12.15.2.4.4.3 Output arguments
	12.15.2.4.4.4 Response codes

	12.15.2.4.5 DownloadData method
	12.15.2.4.5.1 General
	12.15.2.4.5.2 Method description
	12.15.2.4.5.3 Input arguments
	12.15.2.4.5.4 Output arguments
	12.15.2.4.5.5 Response codes

	12.15.2.4.6 EndDownload method
	12.15.2.4.6.1 General
	12.15.2.4.6.2 Method description
	12.15.2.4.6.3 Input arguments
	12.15.2.4.6.4 Output arguments
	12.15.2.4.6.5 Response codes

	12.15.2.4.7 StartUpload method
	12.15.2.4.7.1 General
	12.15.2.4.7.2 Method description
	12.15.2.4.7.3 Input arguments
	12.15.2.4.7.4 Output arguments
	12.15.2.4.7.5 Response codes

	12.15.2.4.8 UploadData method
	12.15.2.4.8.1 General
	12.15.2.4.8.2 Method description
	12.15.2.4.8.3 Input arguments
	12.15.2.4.8.4 Output arguments
	12.15.2.4.8.5 Service feedback codes

	12.15.2.4.9 EndUpload method
	12.15.2.4.9.1 General
	12.15.2.4.9.2 Method description
	12.15.2.4.9.3 Input arguments
	12.15.2.4.9.4 Output arguments
	12.15.2.4.9.5 Service feedback codes

	12.15.2.4.10 State table for download
	12.15.2.4.11 State table for upload
	12.15.2.4.12 Client responsibilities for upload/download operations

	12.15.2.5 Concentrator object
	12.15.2.5.1 General
	12.15.2.5.2 Object attributes
	12.15.2.5.3 Standard object methods

	12.15.2.6 Dispersion object
	12.15.2.6.1 General
	12.15.2.6.2 Object attributes
	12.15.2.6.3 Standard object methods

	12.15.2.7 Tunnel object
	12.15.2.7.1 General
	12.15.2.7.2 Object attributes
	12.15.2.7.3 Standard object methods

	12.15.2.8 Interface object
	12.15.2.8.1 General
	12.15.2.8.2 Object attributes
	12.15.2.8.3 Standard object methods

	12.16 Data types
	12.16.1 Basic data types
	12.16.2 Derived atomic data types
	12.16.3 Industry-independent standard data structures
	12.16.3.1 General
	12.16.3.2 Object, attribute, index, and size
	12.16.3.3 Communication association endpoint
	12.16.3.4 Communication contract data
	12.16.3.5 Alert communication endpoint
	12.16.3.6 Tunnel endpoint
	12.16.3.7 Alert report descriptor
	12.16.3.8 Analog alarm descriptor
	12.16.3.9 Binary alarm descriptor
	12.16.3.10 ObjectIDandType
	12.16.3.11 Unscheduled correspondent

	12.17 Application services provided by application sublayer
	12.17.1 General
	12.17.2 Publish/subscribe application communication model
	12.17.3 Scheduled periodic buffered communication
	12.17.3.1 General
	12.17.3.2 Publish
	12.17.3.2.1 General
	12.17.3.2.2 Arguments
	12.17.3.2.2.1 Service contract identifier
	12.17.3.2.2.2 Priority
	12.17.3.2.2.3 Discard eligible
	12.17.3.2.2.4 End-to-end transmission time
	12.17.3.2.2.5 Published data size
	12.17.3.2.2.6 Subscriber T-port
	12.17.3.2.2.7 Subscriber TDSAP
	12.17.3.2.2.8 Subscribing object identifier
	12.17.3.2.2.9 Publisher IPv6Address
	12.17.3.2.2.10 Publisher TDSAP
	12.17.3.2.2.11 Publisher T-port
	12.17.3.2.2.12 Publisher object identifier
	12.17.3.2.2.13 Data structure information

	12.17.4 Client/server interactions
	12.17.4.1 General
	12.17.4.2 Client/server services
	12.17.4.2.1 General
	12.17.4.2.2 Service feedback codes

	12.17.4.3 Read
	12.17.4.3.1 General
	12.17.4.3.2 Arguments
	12.17.4.3.2.1 Service contract identifier
	12.17.4.3.2.2 Priority
	12.17.4.3.2.3 Discard eligible
	12.17.4.3.2.4 End-to-end transmission time
	12.17.4.3.2.5 Forward congestion notification
	12.17.4.3.2.6 Server T-port
	12.17.4.3.2.7 Server TDSAP
	12.17.4.3.2.8 Server object identifier
	12.17.4.3.2.9 Client/source address
	12.17.4.3.2.10 Client/source TDSAP
	12.17.4.3.2.11 Client T-port
	12.17.4.3.2.12 Client object identifier
	12.17.4.3.2.13 Application request identifier
	12.17.4.3.2.14 Data to be read
	12.17.4.3.2.15 Attribute identifier
	12.17.4.3.2.16 Attribute index/indices

	12.17.4.3.3 Results
	12.17.4.3.3.1 Service contract identifier
	12.17.4.3.3.2 Priority
	12.17.4.3.3.3 Discard eligible
	12.17.4.3.3.4 End-to-end transmission time
	12.17.4.3.3.5 Forward congestion notification
	12.17.4.3.3.6 Forward congestion notification echo
	12.17.4.3.3.7 Server IPv6Address
	12.17.4.3.3.8 Server TDSAP
	12.17.4.3.3.9 Server T-port
	12.17.4.3.3.10 Server object identifier
	12.17.4.3.3.11 Client T-port
	12.17.4.3.3.12 Client TDSAP
	12.17.4.3.3.13 Client object identifier
	12.17.4.3.3.14 Application request identifier
	12.17.4.3.3.15 Value read
	12.17.4.3.3.16 Service feedback code
	12.17.4.3.3.17 Value size
	12.17.4.3.3.18 Data value

	12.17.4.4 Write
	12.17.4.4.1 General
	12.17.4.4.2 Arguments
	12.17.4.4.2.1 Service contract identifier
	12.17.4.4.2.2 Priority
	12.17.4.4.2.3 Discard eligible
	12.17.4.4.2.4 End-to-end transmission time
	12.17.4.4.2.5 Forward congestion notification
	12.17.4.4.2.6 Server T-port
	12.17.4.4.2.7 Server TDSAP
	12.17.4.4.2.8 Server object identifier
	12.17.4.4.2.9 Client/source address
	12.17.4.4.2.10 Client/source TDSAP
	12.17.4.4.2.11 Client T-port
	12.17.4.4.2.12 Client object identifier
	12.17.4.4.2.13 Application request identifier
	12.17.4.4.2.14 Data to write
	12.17.4.4.2.15 Attribute identifier
	12.17.4.4.2.16 Attribute index/indices
	12.17.4.4.2.17 Value size
	12.17.4.4.2.18 Data value

	12.17.4.4.3 Results
	12.17.4.4.3.1 Service contract identifier
	12.17.4.4.3.2 Priority
	12.17.4.4.3.3 Discard eligible
	12.17.4.4.3.4 End-to-end transmission time
	12.17.4.4.3.5 Forward congestion notification
	12.17.4.4.3.6 Forward congestion notification echo
	12.17.4.4.3.7 Server IPv6Address
	12.17.4.4.3.8 Server TDSAP
	12.17.4.4.3.9 Server T-port
	12.17.4.4.3.10 Server object identifier
	12.17.4.4.3.11 Client/source T-port
	12.17.4.4.3.12 Client TDSAP
	12.17.4.4.3.13 Client object identifier
	12.17.4.4.3.14 Application request identifier
	12.17.4.4.3.15 Service feedback code

	12.17.4.5 Execute
	12.17.4.5.1 General
	12.17.4.5.2 Argument
	12.17.4.5.2.1 Service contract identifier
	12.17.4.5.2.2 Priority
	12.17.4.5.2.3 Discard eligible
	12.17.4.5.2.4 End-to-end transmission time
	12.17.4.5.2.5 Forward congestion notification
	12.17.4.5.2.6 Server T-port
	12.17.4.5.2.7 Server TDSAP
	12.17.4.5.2.8 Server object identifier
	12.17.4.5.2.9 Client/source address
	12.17.4.5.2.10 Client/source TDSAP
	12.17.4.5.2.11 Client T-port
	12.17.4.5.2.12 Client object identifier
	12.17.4.5.2.13 Application request identifier
	12.17.4.5.2.14 Method identifier
	12.17.4.5.2.15 Size of input parameters
	12.17.4.5.2.16 Input parameters

	12.17.4.5.3 Result
	12.17.4.5.3.1 Service contract identifier
	12.17.4.5.3.2 Priority
	12.17.4.5.3.3 Discard eligible
	12.17.4.5.3.4 End-to-end transmission time
	12.17.4.5.3.5 Forward congestion notification
	12.17.4.5.3.6 Forward congestion notification echo
	12.17.4.5.3.7 Server IPv6Address
	12.17.4.5.3.8 Server TDSAP
	12.17.4.5.3.9 Server T-port
	12.17.4.5.3.10 Server object identifier
	12.17.4.5.3.11 Client/source T-port
	12.17.4.5.3.12 Client TDSAP
	12.17.4.5.3.13 Client object identifier
	12.17.4.5.3.14 Application request identifier
	12.17.4.5.3.15 Execution result
	12.17.4.5.3.16 Service feedback code
	12.17.4.5.3.17 Size of output parameters
	12.17.4.5.3.18 Output parameters

	12.17.5 Unscheduled acyclic queued unidirectional messages (source/sink)
	12.17.5.1 General
	12.17.5.2 AlertReport service
	12.17.5.2.1 General
	12.17.5.2.2 Arguments
	12.17.5.2.2.1 Service contract identifier
	12.17.5.2.2.2 Priority
	12.17.5.2.2.3 Discard eligible
	12.17.5.2.2.4 End-to-end transmission time
	12.17.5.2.2.5 Alert reporting management object TDSAP
	12.17.5.2.2.6 Alert reporting management object T-port
	12.17.5.2.2.7 Alert reporting management object
	12.17.5.2.2.8 Sink T-port
	12.17.5.2.2.9 Sink TL data service access point
	12.17.5.2.2.10 Sink object identifier
	12.17.5.2.2.11 Alert source IPv6Address
	12.17.5.2.2.12 Alert source TDSAP
	12.17.5.2.2.13 Source T-port
	12.17.5.2.2.14 Individual alert report
	12.17.5.2.2.15 Individual alert identifier
	12.17.5.2.2.16 Alert source transport port
	12.17.5.2.2.17 Alert source object
	12.17.5.2.2.18 Detection time
	12.17.5.2.2.19 Alert class
	12.17.5.2.2.20 Alarm direction
	12.17.5.2.2.21 Alert category
	12.17.5.2.2.22 Alert priority
	12.17.5.2.2.23 Alert type
	12.17.5.2.2.24 Associated-data size
	12.17.5.2.2.25 Associated data

	12.17.5.3 AlertAcknowledge service
	12.17.5.3.1 General
	12.17.5.3.2 Arguments
	12.17.5.3.2.1 Service contract identifier
	12.17.5.3.2.2 Priority
	12.17.5.3.2.3 Discard eligible
	12.17.5.3.2.4 End-to-end transmission time
	12.17.5.3.2.5 Source IPv6Address
	12.17.5.3.2.6 Source TDSAP
	12.17.5.3.2.7 Source T-port
	12.17.5.3.2.8 Source object identifier
	12.17.5.3.2.9 Destination T-port
	12.17.5.3.2.10 Destination TDSAP
	12.17.5.3.2.11 Destination object identifier
	12.17.5.3.2.12 Individual alert identifier

	12.17.6 Client/server and source/sink commonalities
	12.17.6.1 Individual or concatenated messaging for client/server and/or source/sink
	12.17.6.2 Application sublayer common services for client/server and source/sink messaging – Tunnel
	12.17.6.2.1 General
	12.17.6.2.2 Arguments
	12.17.6.2.2.1 Service contract identifier
	12.17.6.2.2.2 Priority
	12.17.6.2.2.3 Discard eligible
	12.17.6.2.2.4 End-to-end transmission time
	12.17.6.2.2.5 Forward congestion notification
	12.17.6.2.2.6 Application destination T-port
	12.17.6.2.2.7 Application destination TDSAP
	12.17.6.2.2.8 Application destination object identifier
	12.17.6.2.2.9 Application source IPv6Address
	12.17.6.2.2.10 Application source TDSAP
	12.17.6.2.2.11 Application source T-port
	12.17.6.2.2.12 Application source object identifier
	12.17.6.2.2.13 Payload size
	12.17.6.2.2.14 Tunnel payload data

	12.17.6.2.3 Results
	12.17.6.2.3.1 Service contract identifier
	12.17.6.2.3.2 Priority
	12.17.6.2.3.3 Discard eligible
	12.17.6.2.3.4 End-to-end transmission time
	12.17.6.2.3.5 Forward congestion notification
	12.17.6.2.3.6 Forward congestion notification echo
	12.17.6.2.3.7 Application destination T-port
	12.17.6.2.3.8 Application destination TDSAP
	12.17.6.2.3.9 Application destination object identifier
	12.17.6.2.3.10 Application source IPv6Address
	12.17.6.2.3.11 Application source TDSAP
	12.17.6.2.3.12 Application source T-port
	12.17.6.2.3.13 Application source object identifier
	12.17.6.2.3.14 Payload size
	12.17.6.2.3.15 Tunnel payload data

	12.18 AL flow use of lower layer services
	12.18.1 General
	12.18.2 AL use of TDSAPs
	12.18.3 Mapping AL service primitives to TL service primitives

	12.19 AL management
	12.19.1 General
	12.19.2 Application sublayer handling of malformed application protocol data units
	12.19.3 Application sublayer management object attributes
	12.19.4 Application sublayer management object methods
	12.19.4.1 Standard object methods
	12.19.4.2 Reset method
	12.19.4.3 Input arguments
	12.19.4.4 Output arguments
	12.19.4.5 Response codes

	12.19.5 Application sublayer management object alerts
	12.19.6 DMAP services invoked by application sublayer
	12.19.7 Process industries standard objects
	12.19.7.1 General
	12.19.7.2 Process industries user application objects
	12.19.7.3 Analog input user object
	12.19.7.3.1 General
	12.19.7.3.2 Object attributes
	12.19.7.3.3 Standard object methods
	12.19.7.3.4 Alerts

	12.19.7.4 Analog output user object
	12.19.7.4.1 General
	12.19.7.4.2 Object attributes
	12.19.7.4.3 Standard object methods
	12.19.7.4.4 Alerts

	12.19.7.5 Binary input user object
	12.19.7.5.1 General
	12.19.7.5.2 Object attributes
	12.19.7.5.3 Standard object methods
	12.19.7.5.4 Alerts

	12.19.7.6 Binary output user object
	12.19.7.6.1 General
	12.19.7.6.2 Object attributes
	12.19.7.6.3 Standard object methods
	12.19.7.6.4 Alerts

	12.19.8 Factory automation industries profile
	12.19.8.1 General
	12.19.8.2 Manufacturer specific objects

	12.20 Process control industry standard data structures
	12.20.1 General
	12.20.2 Status for analog information
	12.20.3 Value and status for analog information
	12.20.4 Value and status for binary information
	12.20.5 Process control mode
	12.20.6 Scaling

	12.21 Additional tables
	12.21.1 Process control profile standard objects
	12.21.2 Services

	12.22 Coding
	12.22.1 General
	12.22.2 Coding rules for application protocol data units
	12.22.2.1 General
	12.22.2.2 Concatenation
	12.22.2.3 AL header
	12.22.2.4 Object identifier coding
	12.22.2.4.1 General
	12.22.2.4.2 Four-bit object identifier addressing mode
	12.22.2.4.3 Eight-bit object identifier addressing mode
	12.22.2.4.4 Sixteen-bit object identifier addressing mode
	12.22.2.4.5 Inferred object identifier addressing mode for optimized concatenations

	12.22.2.5 Object attribute coding
	12.22.2.5.1 General
	12.22.2.5.2 Six-bit attribute identifier, not indexed
	12.22.2.5.3 Six-bit attribute identifier, singly indexed forms
	12.22.2.5.4 Six-bit attribute identifier, doubly indexed forms
	12.22.2.5.5 Twelve-bit attribute identifier, not indexed
	12.22.2.5.6 Twelve-bit attribute identifier, singly indexed coding forms
	12.22.2.5.7 Twelve-bit attribute identifier, doubly indexed coding forms
	12.22.2.5.8 Reserved for future use

	12.22.2.6 Read
	12.22.2.7 Write
	12.22.2.8 Execute
	12.22.2.9 Tunnel
	12.22.2.10 AlertReport
	12.22.2.11 AlertAcknowledge
	12.22.2.12 Publish
	12.22.2.13 Concatenation

	12.22.3 Coding of application data
	12.22.3.1 General
	12.22.3.2 Boolean values
	12.22.3.2.1 Coding of Boolean values
	12.22.3.2.2 Boolean8
	12.22.3.2.3 Boolean1

	12.22.3.3 Integer values
	12.22.3.3.1 Coding of signed integer values
	12.22.3.3.1.1 General
	12.22.3.3.1.2 Integer8
	12.22.3.3.1.3 Integer16
	12.22.3.3.1.4 Integer32
	12.22.3.3.1.5 IntegerN

	12.22.3.3.2 Coding of unsigned integer values
	12.22.3.3.2.1 Unsigned8
	12.22.3.3.2.2 Unsigned16
	12.22.3.3.2.3 Unsigned32
	12.22.3.3.2.4 Unsigned64
	12.22.3.3.2.5 Unsigned128
	12.22.3.3.2.6 UnsignedN

	12.22.3.4 Floating point values
	12.22.3.4.1 Coding of floating-point values
	12.22.3.4.2 Single-precision float

	12.22.3.5 Double-precision float
	12.22.3.6 VisibleString
	12.22.3.7 OctetString
	12.22.3.8 BitString
	12.22.3.9 SymmetricKey

	12.22.4 Time-related data types
	12.22.4.1 General
	12.22.4.2 TAINetworkTime
	12.22.4.3 TAITimeDifference
	12.22.4.4 TAITimeRounded
	12.22.4.5 Standard data structures
	12.22.4.6 Null
	12.22.4.7 Packed
	12.22.4.8 Structured data
	12.22.4.8.1 SEQUENCE
	12.22.4.8.2 SEQUENCE OF
	12.22.4.8.3 CHOICE
	12.22.4.8.4 OPTIONAL
	12.22.4.8.5 IMPLICIT

	12.23 Syntax
	12.23.1 Application protocol data unit
	12.23.1.1 Start of containing module
	12.23.1.2 Top level definitions
	12.23.1.3 Common substitutions
	12.23.1.4 Application sublayer header
	12.23.1.5 Individual APDUs
	12.23.1.6 Periodic APDUs
	12.23.1.7 Aperiodic APDUs

	12.23.2 Alert reports and acknowledgments
	12.23.3 Service feedback code
	12.23.4 Read, write, and execute
	12.23.5 Tunnel
	12.23.6 End of contained module

	12.24 Detailed coding examples (INFORMATIVE)
	12.24.1 Read
	12.24.2 Tunnel

	Figure 110 – User application objects in a UAP
	Figure 111 – Alarm state model
	Figure 112 – Event model
	Figure 113 – A successful example of multiple outstanding requests, with response concatenation
	Figure 114 – An example of multiple outstanding unordered requests, with second write request initially unsuccessful
	Figure 115 – An example of multiple outstanding ordered requests, with second write request initially unsuccessful
	Figure 116 – Send window example 1, with current send window smaller than maximum send window
	Figure 117 – Send window example 2, with current send window the same size as maximum send window, and non-zero usable send window width
	Figure 118 – Send window example 3, with current send window the same size as maximum send window, and usable send window width of zero
	Figure 119 – General addressing model
	Figure 120 – UAP management object state diagram
	Figure 121 – Alert report reception state diagram
	Figure 122 – Alert-reporting example
	Figure 123 – Upload/Download object download state diagram
	Figure 124 – Upload/Download object upload state diagram
	Figure 125 – Publish sequence of service primitives
	Figure 126 – client/server model two-part interactions
	Figure 127 – client/server model four-part interactions: Successful delivery
	Figure 128 – client/server model four-part interactions: Request delivery failure
	Figure 129 – client/server model four-part interactions: Response delivery failure
	Figure 130 – AlertReport and AlertAcknowledge, delivery success
	Figure 131 – AlertReport, delivery failure
	Figure 132 – AlertReport, acknowledgment failure
	Figure 133 – Concatenated response for multiple outstanding write requests(no message loss)
	Figure 134 – Management and handling of malformed APDUs received from device X
	13 Provisioning
	13.1 General
	13.2 Terms and definitions for devices with various roles or states
	13.3 Provisioning procedures
	13.4 Pre-installed symmetric keys
	13.5 Provisioning using out-of-band mechanisms
	13.6 Provisioning networks
	13.6.1 General
	13.6.2 Provisioning over the air using asymmetric cryptography
	13.6.3 Provisioning over the air using an open symmetric join key

	13.7 State transition diagrams
	13.8 Device management application protocol objects used during provisioning
	13.9 Management objects
	13.9.1 Device provisioning object
	13.9.2 Device provisioning object methods and alerts

	13.10 Device provisioning service object
	13.10.1 Device provisioning service object attributes
	13.10.2 Device provisioning service object structured attributes
	13.10.3 Device provisioning service object methods
	13.10.4 Device provisioning service object alerts
	13.10.5 Summary of attributes that can be provisioned

	13.11 Provisioning functions [INFORMATIVE]
	13.11.1 General
	13.11.2 Examples of provisioning methods
	13.11.2.1 General
	13.11.2.2 Provisioning over-the-air using pre-installed join keys
	13.11.2.3 Provisioning using out-of-band mechanisms
	13.11.2.4 Provisioning over-the-air using asymmetric key infrastructure certificates
	13.11.2.5 Provisioning over-the-air using dual role advertisement routers
	13.11.2.6 Provisioning backbone devices

	 Figure 135 – The provisioning network
	Figure 136 – State transition diagrams outliningprovisioning steps during a device lifecycle
	Figure 137 – State transition diagram showing various paths to joining a secured network
	Figure 138 – Provisioning objects and interactions
	Annex A (informative) User layer / application profiles
	A.1 Overview
	A.2 User layer
	A.3 Application profile

	Annex B (normative) Role profiles
	B.1 Introduction
	B.1.1 General
	B.1.2 Purpose
	B.1.3 System size
	B.1.4 Abbreviations and special symbols
	B.1.5 Role profiles

	B.2 System
	B.3 System manager
	B.4 Security manager
	B.5 Physical layer
	B.6 Data-link layer
	B.6.1 General
	B.6.2 Role profiles
	B.6.2.1 General
	B.6.2.2 DL management object attributes

	B.7 Network layer
	B.7.1 Transport layer

	B.8 Application layer
	B.9 Provisioning
	B.10 Gateway (informative)

	Annex C (informative) Background information
	C.1 Industrial needs
	C.2 Usage classes
	C.2.1 General
	C.2.2 Class examples
	C.2.3 Other uploading and downloading alarms (human or automated action)

	C.3 The Open Systems Interconnection Basic Reference Model
	C.3.1 Overview
	C.3.2 Application layer
	C.3.3 Transport layer
	C.3.4 Network layer
	C.3.5 Data-link layer
	C.3.6 Physical layer

	Figure C.1 – OSI Basic Reference Model
	Annex D (normative) Configuration defaults
	D.1 General
	D.2 System management
	D.3 Security
	D.4 Data-link layer
	D.5 Network layer
	D.6 Transport layer
	D.7 Application layer
	D.8 Provisioning
	D.9 Gateway (informative)

	Annex E (informative) Use of backbone networks
	E.1 General
	E.2 Recommended characteristics
	E.3 Internet protocol backbones
	E.3.1 Methods of IPv6 protocol data unit transmission
	E.3.2 Backbone router peer device discovery
	E.3.3 Security
	E.3.3.1 Security of transport protocol data units
	E.3.3.2 Security of the backbone

	Annex F (normative) Basic security concepts – Notation and representation
	F.1 Strings and string operations
	F.2 Integers, octets, and their representation
	F.3 Entities

	Annex G (informative) Using certificate chains for over-the-air provisioning
	Annex H (normative) Security building blocks
	H.1 Symmetric key cryptographic building blocks
	H.1.1 Overview
	H.1.2 Symmetric key domain parameters
	H.1.3 Block cipher
	H.1.4 Mode of operation
	H.1.5 Cryptographic hash function
	H.1.6 Keyed hash function for message authentication
	H.1.7 Specialized keyed hash function for message authentication
	H.1.8 Challenge domain parameters

	H.2 Asymmetric-key cryptographic building blocks
	H.2.1 General
	H.2.2 Elliptic curve domain parameters
	H.2.3 Elliptic curve point representation
	H.2.4 Elliptic curve public-key pair

	H.3 Keying information
	H.3.1 General
	H.3.2 Elliptic curve cryptography implicit certificates
	H.3.3 Elliptic curve cryptography manual certificates
	H.3.4 Additional information

	H.4 Key agreement schemes
	H.4.1 Symmetric-key key agreement scheme
	H.4.2 Asymmetric-key key agreement scheme

	H.5 Keying information schemes
	H.5.1 Implicit certificate scheme
	H.5.2 Manual certificate scheme

	H.6 Challenge domain parameter generation and validation
	H.6.1 Overview
	H.6.2 Challenge domain parameter generation
	H.6.3 Challenge domain parameter verification

	H.7 Challenge validation primitive
	H.8 Secret key generation (SKG) primitive
	H.9 Block-cipher-based cryptographic hash function
	H.10 Elliptic curve cryptography manual certificate scheme
	H.10.1 Overview
	H.10.2 Elliptic curve cryptography manual certificate generation transformation
	H.10.3 Elliptic curve cryptography manual certificate processing transformation

	Annex I (informative) Definition templates
	I.1 Object type template
	I.2 Standard object attributes template
	I.3 Standard object methods
	I.4 Standard object alert reporting template
	I.5 Data structure definition

	Annex J (informative) Operations on attributes
	J.1 Operations on attributes
	J.1.1 General
	J.1.2 Attribute classification
	J.1.3 Retrieving, setting, and resetting attributes
	J.1.3.1 General
	J.1.3.2 Scheduled operations to enable synchronized cutover

	J.1.4 Retrieving and setting structured attributes
	J.1.5 Resetting structured attribute values
	J.1.6 Deleting structured attribute values

	J.2 Synchronized cutover

	Annex K (normative) Standard object types
	Annex L (informative) Standard data types
	Annex M (normative) Identification of tunneled legacy fieldbus protocols
	Annex N (informative) Tunneling and native object mapping
	N.1 Overview
	N.2 Tunneling
	N.3 Foreign protocol application communication
	N.4 Native object mapping
	N.5 Tunneling and native object mapping tradeoffs

	Annex O (informative) Generic protocol translation
	O.1 Overview
	O.2 Publish
	O.3 Subscribe
	O.4 Client
	O.5 Server

	Figure O.1 – Generic protocol translation publish diagram
	Figure O.2 – Generic protocol translation subscribe diagram
	Figure O.3 – Generic protocol translation client/server transmission diagram
	Figure O.4 – Generic protocol translation client/server reception diagram
	Annex P (informative) Exemplary GIAP adaptations for this standard
	P.1 General
	P.2 Parameters
	P.3 Session
	P.4 Lease
	P.5 Device list report
	P.6 Topology report
	P.7 Schedule report
	P.8 Device health report
	P.9 Neighbor health report
	P.10 Network health report
	P.11 Time
	P.12 Client/server
	P.12.1 General
	P.12.2 Native access
	P.12.3 Foreign access

	P.13 Publish/subscribe
	P.13.1 General
	P.13.2 Native access
	P.13.3 Foreign access

	P.14 Bulk transfer
	P.15 Alert
	P.16 Gateway configuration
	P.17 Device configuration

	Annex Q (informative) Exemplary GIAP adaptations for IEC 62591
	Q.1 General
	Q.1.1 Overview
	Q.1.2 Reference
	Q.1.3 Addressing
	Q.1.4 Stack Interface
	Q.1.5 Tunneling
	Q.1.6 Entities
	Q.1.7 Delayed response

	Q.2 Parameters
	Q.3 Session
	Q.4 Lease
	Q.5 Device list report
	Q.6 Topology report
	Q.7 Schedule report
	Q.8 Device health report
	Q.9 Neighbor health report
	Q.10 Network health report
	Q.11 Time
	Q.12 Client/server
	Q.13 Publish/subscribe
	Q.13.1 General
	Q.13.2 Lease establishment
	Q.13.3 Buffering

	Q.14 Bulk transfer
	Q.15 Alert
	Q.16 Gateway configuration
	Q.17 Device configuration

	Annex R (informative) Host system interface to standard-compliant devices via a gateway
	R.1 Background
	R.1.1 Host system integration reference model
	R.1.2 Asset management tools
	R.1.3 Configuration tools
	R.1.4 Distributed control system
	R.1.5 Gateway

	R.2 Device application data integration with host systems
	R.2.1 General
	R.2.2 Native protocol integration via mapping
	R.2.3 Legacy device protocol integration via tunneling

	R.3 Host system configuration tool
	R.3.1 General
	R.3.2 Host configuration using electronic device description language
	R.3.3 Host configuration using field device tool/device type manager

	R.4 Field device / distributed control systems integration
	R.4.1 General
	R.4.2 Foundation Fieldbus High Speed Ethernet
	R.4.3 Modbus
	R.4.4 Open connectivity for industrial automation

	R.5 Gateway
	R.5.1 General
	R.5.2 Devices supported
	R.5.3 Data subscription
	R.5.4 Data publication
	R.5.5 Client/server access
	R.5.6 Alerts reception

	R.6 Asset management application support
	R.6.1 General
	R.6.2 Field device tool / device type manager
	R.6.3 HART
	R.6.4 OPC

	Figure R.1 – Host integration reference model
	Figure R.2 – Configuration using an electronic device definition
	Figure R.3 – Configuration using FDT/DTM approach
	Annex S (informative) Symmetric-key operation test vectors
	S.1 DPDU samples
	S.1.1 General
	S.1.2 DPDU with expected DMIC32
	S.1.3 DPDU with expected ENC-DMIC32

	S.2 TPDU samples
	S.2.1 General
	S.2.2 TPDU with expected ENC-TMIC-32:
	S.2.3 TPDU with expected TMIC-32:

	Annex T (informative) Data-link and network headers for join requests
	T.1 Overview
	T.2 MAC header (MHR)
	T.3 DL header (DHR)
	T.4 NL header

	Annex U (informative) Gateway role
	U.1 General
	U.1.1 Overview
	U.1.2 Notional gateway protocol suite diagrams for native devices and adapters
	U.1.3 Gateway scenarios
	U.1.4 Basic gateway model

	U.2 Notional GIAP
	U.2.1 Summary of interfaces and primitives
	U.2.2 Sequence of primitives
	U.2.3 Detailed description of parameters
	U.2.3.1 General
	U.2.3.2 Parameter GS_Session_ID
	U.2.3.3 Parameter GS_Transaction_ID
	U.2.3.4 Parameter GS_Lease_ID
	U.2.3.5 Parameter GS_Status
	U.2.3.6 Parameter GS_Network_Address
	U.2.3.7 Parameter GS_Unique_Device_ID
	U.2.3.8 Parameter GS_Network_ID
	U.2.3.9 Parameter GS_Time
	U.2.3.10 Parameter GS_Transfer_Mode

	U.2.4 Detailed description of interfaces
	U.2.4.1 Session management interface
	U.2.4.1.1 General
	U.2.4.1.2 G_Session primitive
	U.2.4.1.3 Primitives and their parameters
	U.2.4.1.4 Use of G_Session request
	U.2.4.1.5 Use of G_Session confirm

	U.2.4.2 Lease management interface
	U.2.4.2.1 General
	U.2.4.2.2 Use of the interface
	U.2.4.2.3 G_Lease primitive
	U.2.4.2.4 Primitives and their parameters
	U.2.4.2.5 Use of G_Lease request
	U.2.4.2.6 Use of G_Lease confirm

	U.2.4.3 Device list report interface
	U.2.4.3.1 General
	U.2.4.3.2 G_Device_List_Report primitive
	U.2.4.3.3 Primitives and their parameters
	U.2.4.3.4 Use of G_Device_List_Report confirm

	U.2.4.4 Topology report interface
	U.2.4.4.1 General
	U.2.4.4.2 G_Topology_Report primitive
	U.2.4.4.3 Primitives and their parameters
	U.2.4.4.4 Use of G_Topology_Report request
	U.2.4.4.5 Use of G_Topology_Report confirm

	U.2.4.5 Schedule report interface
	U.2.4.5.1 General
	U.2.4.5.2 G_Schedule_Report primitive
	U.2.4.5.3 Primitives and their parameters
	U.2.4.5.4 Use of G_Schedule_Report request
	U.2.4.5.5 Use of G_Schedule_Report confirm

	U.2.4.6 Device health report interface
	U.2.4.6.1 General
	U.2.4.6.2 G_Device_Health_Report primitive
	U.2.4.6.3 Primitives and their parameters
	U.2.4.6.4 Use of G_Device_Health_Report request
	U.2.4.6.5 Use of G_Device_Health_Report confirm

	U.2.4.7 Neighbor health report interface
	U.2.4.7.1 General
	U.2.4.7.2 G_Neighbor_Health_Report primitive
	U.2.4.7.3 Primitives and their parameters
	U.2.4.7.4 Use of G_Neighbor_Health_Report request
	U.2.4.7.5 Use of G_Neighbor_Health_Report confirm

	U.2.4.8 Network health report interface
	U.2.4.8.1 General
	U.2.4.8.2 G_Network_Health_Report primitive
	U.2.4.8.3 Primitives and their parameters
	U.2.4.8.4 Use of G_Network_Health_Report request
	U.2.4.8.5 Use of G_Network_Health_Report confirm

	U.2.4.9 Time interface
	U.2.4.9.1 General
	U.2.4.9.2 G_Time primitive
	U.2.4.9.3 Primitives and their parameters
	U.2.4.9.4 Use of G_Time request
	U.2.4.9.5 Use of G_Time confirm

	U.2.4.10 Client/server interface
	U.2.4.10.1 General
	U.2.4.10.2 G_Client_Server primitive
	U.2.4.10.3 Primitives and their parameters
	U.2.4.10.4 Use of G_Client_Server request
	U.2.4.10.5 Use of G_Client_Server indication
	U.2.4.10.6 Use of G_Client_Server response
	U.2.4.10.7 Use of G_Client_Server confirm

	U.2.4.11 Publish/subscribe interface
	U.2.4.11.1 General
	U.2.4.11.2 Lease establishment
	U.2.4.11.3 Publication
	U.2.4.11.4 Subscription
	U.2.4.11.5 Types of primitives and parameters
	U.2.4.11.6 G_Publish primitive and its parameters
	U.2.4.11.7 Use of G_Publish request
	U.2.4.11.8 Use of G_Publish indication
	U.2.4.11.9 Use of G_Publish confirm
	U.2.4.11.10 G_Subscribe primitive and its parameters
	U.2.4.11.11 Use of G_Subscribe request
	U.2.4.11.12 Use of G_Subscribe confirm
	U.2.4.11.13 G_Publish_Timer primitive and its parameters
	U.2.4.11.14 Use of G_Publish_Timer indication
	U.2.4.11.15 G_Subscribe_Timer primitive and its parameters
	U.2.4.11.16 Use of G_Subscribe_Timer indication
	U.2.4.11.17 G_Publish_Watchdog primitive and its parameters
	U.2.4.11.18 Use of G_Publish_Watchdog indication

	U.2.4.12 Bulk transfer interface
	U.2.4.12.1 General
	U.2.4.12.2 Types of primitives and parameters
	U.2.4.12.3 G_Bulk_Open primitive and its parameters
	U.2.4.12.4 Use of G_Bulk_Open request
	U.2.4.12.5 Use of G_Bulk_Open confirm
	U.2.4.12.6 G_Bulk_Transfer primitive and its parameters
	U.2.4.12.7 Use of G_Bulk_Transfer request
	U.2.4.12.8 Use of G_Bulk_Transfer confirm
	U.2.4.12.9 G_Bulk_Close primitive and its parameters
	U.2.4.12.10 Use of G_Bulk_Close request
	U.2.4.12.11 Use of G_Bulk_Close confirm

	U.2.4.13 Alert interface
	U.2.4.13.1 General
	U.2.4.13.2 Types of primitives and parameters
	U.2.4.13.3 G_Alert_Subscription primitive and its parameters
	U.2.4.13.4 Use of G_Alert_Subscription request
	U.2.4.13.5 Use of G_Alert_Subscription confirm
	U.2.4.13.6 G_Alert_Notification primitive and its parameters
	U.2.4.13.7 Use of G_Alert_Notification indication

	U.2.4.14 Gateway configuration interface
	U.2.4.14.1 General
	U.2.4.14.2 Types of primitives and parameters
	U.2.4.14.3 G_Read_Gateway_Configuration primitive and its parameters
	U.2.4.14.4 Use of G_Read_Gateway_Configuration request
	U.2.4.14.5 Use of G_Read_Gateway_Configuration confirm
	U.2.4.14.6 G_Write_Gateway_Configuration primitive and its parameters
	U.2.4.14.7 Use of G_Write_Gateway_Configuration request
	U.2.4.14.8 Use of G_Write_Gateway_Configuration confirm

	U.2.4.15 Device configuration interface
	U.2.4.15.1 General
	U.2.4.15.2 Types of primitives and parameters
	U.2.4.15.3 G_Write_Device_Configuration primitive and its parameters
	U.2.4.15.4 Use of G_Write_Device_Configuration request
	U.2.4.15.5 Use of G_Write_Device_Configuration confirm
	U.2.4.15.6 G_Read_Device_Configuration primitive and its parameters
	U.2.4.15.7 Use of G_Read_Device_Configuration request
	U.2.4.15.8 Use of G_Read_Device_Configuration confirm

	U.3 Example uses of WISN standard services and objects
	U.3.1 Tunneling
	U.3.1.1 General
	U.3.1.2 Distributing tunnel objects
	U.3.1.3 Multicast, broadcast, and one-to-many messaging
	U.3.1.4 Tunnel buffered message behavior
	U.3.1.5 Tunnel object attributes
	U.3.1.6 Tunnel object messaging
	U.3.1.6.1 Application sublayer interface usage
	U.3.1.6.2 Information classification and transfer rules
	U.3.1.6.3 Publish/subscribe interface
	U.3.1.6.4 Tunnel interface

	U.3.1.7 Multiple server responses
	U.3.1.8 Tunnel object address mapping
	U.3.1.9 Connection and transaction information
	U.3.1.10 Interworkable tunneling mechanism
	U.3.1.10.1 Overview
	U.3.1.10.2 Tunnel object placement
	U.3.1.10.3 Tunnel object configuration
	U.3.1.10.4 Tunnel operation
	U.3.1.10.5 Efficient operation

	U.3.2 Bulk transfer
	U.3.3 Alerts
	U.3.4 Native publish/subscribe and client/server access
	U.3.5 Time management
	U.3.6 Security
	U.3.7 Configuration
	U.3.8 Provisioning and joining

	Figure U.1 – Gateway scenarios
	Figure U.2 – Basic gateway model
	Figure U.3 – Internal sequence of primitives for session interface
	Figure U.4 – Internal sequence of primitives for lease management interface
	Figure U.5 – Internal sequence of primitives for system report interfaces
	Figure U.6 – Internal sequence of primitives for time interface
	Figure U.7 – Internal sequence of primitives forClient/server interface initiated from gateway to an adapter device
	Figure U.8 – Internal sequence of primitives forpublish interface initiated from gateway to an adapter device
	Figure U.9 – Internal sequence of primitives for subscribe interface initiated from an adapter device
	Figure U.10 – Internal sequence of primitives forpublisher timer initiated from gateway to an adapter device
	Figure U.11 – Internal sequence of primitives forsubscriber timers initiated from an adapter device
	Figure U.12 – Internal sequence of primitives for the bulk transfer interface
	Figure U.13 – Internal sequence of primitives for the alert subscription interface
	Figure U.14 – Internal sequence of primitives for the alert notification interface
	Figure U.15 – Internal sequence of primitives for gateway management interfaces
	Figure U.16 – Tunnel object model
	Figure U.17 – Distributed tunnel endpoints
	Figure U.18 – Multicast, broadcast, and one-to-many messaging
	Figure U.19 – Tunnel object buffering
	Figure U.20 – publish/subscribe publisher CoSt flowchart
	Figure U.21 – publish/subscribe publisher periodic flowchart
	Figure U.22 – publish/subscribe subscriber common periodic and CoSt flowchart
	Figure U.23 – Network address mappings
	Figure U.24 – Connection_Info usage in protocol translation
	Figure U.25 – Transaction_Info usage in protocol translation
	Figure U.26 – Interworkable tunneling mechanism overview diagram
	Figure U.27 – Bulk transfer model
	Figure U.28 – Alert model
	Figure U.29 – Alert cascading
	Figure U.30 – Native publish/subscribe and client/server access
	Annex V (informative) Country-specific and region-specific provisions
	V.1 General
	V.2 Operation within a fixed regulatory regime
	V.3 Operation on a platform that moves between regulatory regimes
	V.4 Compliance with EN 300 328 [INFORMATIVE]

	Bibliography

