
Copyright OIC © 2015. All rights Reserved. 0

 1
 2

OIC REMOCE ACCESS
SPECIFICATION

V1.0.0

Open Interconnect Consortium (OIC)
admin@openinterconnect.org

Copyright OIC © 2015. All rights Reserved. 1

Legal Disclaimer 3
 4
NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY 5
KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY 6
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR 7
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS 8
PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY 9
APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION 10
HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR 11
IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED 12
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN 13
INTERCONNECT CONSORTIUM, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF 14
NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 15
 16
The OIC logo is a trademark of Open Interconnect Consortium, Inc. in the United States or other 17
countries. *Other names and brands may be claimed as the property of others. 18
 19
Copyright © 2015 Open Interconnect Consortium, Inc. All rights reserved. 20
 21
Copying or other form of reproduction and/or distribution of these works are strictly prohibited 22
 23

Copyright OIC © 2015. All rights Reserved. 2

CONTENTS 24

1 Scope ... 3 25

1.1 Rationale for limitations/phasing ... 3 26

2 Normative references .. 3 27

3 Terms, definitions, symbols and abbreviations ... 4 28

3.1 Terms and definitions .. 4 29

3.2 Symbols and abbreviations ... 5 30

4 Document conventions and organization .. 5 31

4.1 Notation ... 5 32

5 High Level Overview .. 6 33

5.1 Rationale (Informative) .. 6 34

5.2 Philosophy/Approach (Informative) .. 6 35

5.3 Architecture .. 7 36

6 Remote Access Components and Accounts ... 10 37

6.1 XMPP Server ..10 38

6.2 XMPP login ..10 39

6.2.1 Remote Access Call Flow for RAE .. 10 40
6.2.2 OIC defined Resources for Remote access .. 11 41

7 Discovery & Presence .. 12 42

7.1 Registration ...12 43

7.1.1 Connection identification ... 13 44

7.2 Connection Authentication ..14 45

7.3 Roster and Presence ...14 46

7.3.1 CRUDN messaging over XMPP .. 14 47

7.4 Ungraceful Disconnect ..16 48

 49

FIGURES: 50

Figure 1 Remote Access High-Level Architecture ... 8 51

Figure 2 RAE Server depicted as an OIC Server with the XMPP Client. 9 52

Figure 3 XMPP and OIC Resource addressing levels. .. 9 53

Figure 4 CRUDN call flow for RAE setup.. 11 54

 55

TABLES: 56

Table 1 - Symbols, terminology and abbreviations .. 5 57

Table 2. oic.ra.xmpp resource type definition .. 12 58

Table 3. oic.ra.user resource type definition .. 12 59

Table 4. XMPP presence (status type) mapping .. 14 60
 61

Copyright OIC © 2015. All rights Reserved. 3

1 Scope 62

1.1 Rationale for limitations/phasing 63

Many of the specific details for a final commercially-viable implementation of a general Remote-64
Access solution are dependent on concepts presently being defined in other parts of the OIC 65
Standards Working Group: 66

• Device on-boarding/ownership-transfer/local provisioning – Both the state an OIC device 67
will be in once it has been successfully provisioned to an owner in the local domain (such 68
as the user’s ‘home’), as well as the process and tools (the On-Boarding Tool, or OBT) 69
used to get the device into that state are being defined in the Security TG and Core 70
Framework. The Remote Access approach will be an extension of the above, and will rely 71
on the approved Security and Core Framework standards. 72
HOWEVER: While the specific Remote Access final specification must depend on the 73
specific approved Specifications above, the core concepts for Remote Access 74
functionality are described and can be implemented to verify the assumptions and vet 75
fundamental implementation details/assumptions. Near-term modification of the Remote-76
Access Specification following this initial version will include the specifics as the other 77
upstream-dependencies are formalized/approved. Implementation of basic Remote-78
Access functionality (XMPP client implementation, XMPP Server deployment, etc.) can 79
proceed, and the security provisions will be added later. 80

• Inter-server federation requirements – The initial phase is intended to support the 81
simplest single-vendor Remote-Access use case(s), and interoperable, multi-vendor use-82
cases will be specified in a later (soon) phase. This initial phase is intended to vet the 83
basic design and implementation parameters proposed, and the multi-vendor, multi-84
server requirements will build on the foundation vetted here. 85

• ICE/STUN/TURN implementation – Initial Remote-access requirements are being driven 86
by the need to facilitate secure remote (outside of the local domain) communication of the 87
basic OIC CoAP/JSON/CBOR CRUDN messages. Adding media streaming, bulk-file, and 88
other similar requirements that potentially prefer peer-to-peer communication paths will 89
build on the infrastructure provided here via XMPP (via Jingle), 90

2 Normative references 91

Normative references follow RFC 2119 conventions. OIC Resource definition tables with a 92
‘Mandatory’ column identify OIC Resource properties that MUST be implemented by all OIC 93
devices that instantiates the resource if Mandatory is YES. All OIC devices MAY implement oic 94
resource properties unless otherwise specified in the table. 95

The following documents, in whole or in part, are normatively referenced in this document and 96
are indispensable for its application. For dated references, only the edition cited applies. For 97
undated references, the latest edition of the referenced document (including any amendments) 98
applies. 99

IETF RFC 6120, (XMPP CORE) Extensible Messaging and Presence Protocol (XMPP): Core 100
http://xmpp.org/rfcs/rfc6120.html 101

IETF RFC 6121, (XMPP IM) Extensible Messaging and Presence Protocol (XMPP): Instant 102
Messaging and Presence 103
http://xmpp.org/rfcs/rfc6121.html 104

IETF RFC 6122, (XMPP ADDR) Extensible Messaging and Presence Protocol (XMPP): Address 105
Format 106
http://xmpp.org/rfcs/rfc6122.html 107

http://xmpp.org/rfcs/rfc6120.html
http://xmpp.org/rfcs/rfc6121.html
http://xmpp.org/rfcs/rfc6122.html

Copyright OIC © 2015. All rights Reserved. 4

IETF RFC 3923, (XMPP E2E) End-to-End Signing and Object Encryption for the Extensible 108
Messaging and Presence Protocol (XMPP) 109
http://xmpp.org/rfcs/rfc3923.html 110

IETF RFC 4854, (XMPP URN) A Uniform Resource Name (URN) Namespace for Extensions to 111
the Extensible Messaging and Presence Protocol (XMPP) 112
http://xmpp.org/rfcs/rfc4854.html 113

IETF RFC 4979, (XMPP ENUM) IANA Registration for Enumservice 'XMPP' 114
http://tools.ietf.org/html/rfc4979 115

IETF RFC 5122, (XMPP URI) Internationalized Resource Identifiers (IRIs) and Uniform Resource 116
Identifiers (URIs) for the Extensible Messaging and Presence Protocol (XMPP) 117
http://xmpp.org/rfcs/rfc5122.html 118

IETF RFC 7590, Use of Transport Layer Security (TLS) in the Extensible Messaging and 119
Presence Protocol (XMPP) 120
https://tools.ietf.org/html/rfc7590 121

IETF RFC 4648, The Base16. Base32, and Base64 Data Encodings 122
https://tools.ietf.org/html/rfc4648 123

XEP-0047, In-Band Bytestreams 124
http://xmpp.org/extensions/xep-0047.html 125

XEP-0199, XMPP Ping 126
http://xmpp.org/extensions/xep-0199.html 127

OIC Security, Open Interconnect Consortium Security Capabilities, Version 1.0 128

OIC Core, Open Interconnect Consortium Core Specification, Version 1.0 129

 130

 131

3 Terms, definitions, symbols and abbreviations 132

Terms, definitions, symbols and abbreviations used in this specification are defined by the OIC 133
Core specification. Additional terms specific to normative Remote Access mechanisms are 134
defined in this document in context. 135

This section restates terminology that is defined elsewhere, in this document or in other OIC 136
specifications as a convenience for the reader. It is considered non-normative. 137

3.1 Terms and definitions 138

The definitions from the Core Specification apply. In addition, the following terminologies are 139
used in this specification: 140

Remote access 141
Interaction between an OIC Client and OIC Server where each OIC Devices is on a different 142
network 143

Remote Access Endpoint (RAE) Server 144
An OIC Server which supports an XMPP client and it can publish its (oic) resource(s) to the 145
XMPP server, thus becoming remotely addressable and accessible 146
It also supports ICE/STUN/TURN if the application on the OIC server requires it 147
 148

http://xmpp.org/rfcs/rfc3923.html
http://xmpp.org/rfcs/rfc4854.html
http://tools.ietf.org/html/rfc4979
http://xmpp.org/rfcs/rfc5122.html
https://tools.ietf.org/html/rfc7590
https://tools.ietf.org/html/rfc4648
http://xmpp.org/extensions/xep-0047.html
http://xmpp.org/extensions/xep-0199.html

Copyright OIC © 2015. All rights Reserved. 5

RAE Client 149
An OIC Client which supports an XMPP client functionality. 150

XC-Proxy 151
Acts as a (OIC) Resource Directory for RA-Constrained OIC Devices and performs bidirectional 152
protocol mapping between XMPP and OIC Devices. 153

RA-Constrained OIC Device: 154
An OIC Device without any XMPP client functionality. 155

OIC Resource 156
an Resource described by OIC that has CRUDN actions and represent functionality. 157

XMPP Resource 158
the extension part of the full JID that makes an full JID of an bare JID. 159

 160

3.2 Symbols and abbreviations 161

 162
Table 1 - Symbols, terminology and abbreviations 163
 164

4 Document conventions and organization 165

4.1 Notation 166

In this document, features are described as required, recommended, allowed or DEPRECATED 167
as follows: 168

Required (or shall or mandatory). 169

These basic features shall be implemented to comply with the Remote Access Architecture. 170
The phrases “shall not”, and “PROHIBITED” indicate behavior that is prohibited, i.e. that if 171
performed means the implementation is not in compliance. 172

Recommended (or should). 173

These features add functionality supported by Remote Access Architecture and should be 174
implemented. Recommended features take advantage of the capabilities Remote Access 175
Architecture, usually without imposing major increase of complexity. Notice that for 176
compliance testing, if a recommended feature is implemented, it shall meet the specified 177
requirements to be in compliance with these guidelines. Some recommended features could 178
become requirements in the future. The phrase “should not” indicates behavior that is 179
permitted but not recommended. 180

Allowed (or allowed). 181

These features are neither required nor recommended by the Remote Access Architecture, 182
but if the feature is implemented, it shall meet the specified requirements to be in compliance 183
with these guidelines. These features are not likely to become requirements in the future. 184

Symbol Description
RA Remote access
RAE Remote Access Endpoint
RA-Constrained Device An OIC Device which is not capable (by itself) of supporting RA

capabilities
RA-Capable Device Any OIC Device which is capable of providing RA-services. This

includes RAE and XC-Proxy Devices

Copyright OIC © 2015. All rights Reserved. 6

DEPRECATED. 185

Although these features are still described in this specification, they should not be 186
implemented except for backward compatibility. The occurrence of a deprecated feature 187
during operation of an implementation compliant with the current specification has no effect 188
on the implementation’s operation and does not produce any error conditions. Backward 189
compatibility may require that a feature is implemented and functions as specified but it shall 190
never be used by implementations compliant with this specification. 191

Strings that are to be taken literally are enclosed in “double quotes”. 192

Words that are emphasized are printed in italic. 193

5 High Level Overview 194

5.1 Rationale (Informative) 195

Most IoT initiatives describe methods/protocols for devices to interact with one another. These 196
IoT technologies are often by themselves incapable of supporting general, bidirectional Internet 197
connectivity, either owing to limitations in connectivity and/or incompatibility between the 198
specified protocols and those used on the Internet. Often these limitations are a result of the 199
constraints imposed on IoT devices: Cost, power, etc., or additionally the presence of NATs 200
(Network Address Translation devices) or other network topologies that inhibit general 201
connectivity. 202

The Remote Access specification describes the use of XMPP and ICE (with STUN & TURN) to 203
securely and scalably add Internet connectivity both to so-called constrained device networks 204
and additionally for network topologies that obfuscate or otherwise inhibit general connectivity. 205

There are two operational models to accomplish Remote Access: 206

1. Some devices will possess adequate resources (CPU power, memory…) to be able to 207
employ the techniques and protocols described here to successfully accomplish 208
generalized Remote Access ‘by themselves’ (without the assistance of additional devices 209
within their local network /subnet). Owing to the impact of Moore’s Law, it is expected 210
there will be an increasing number of devices of this type over time. 211

2. For so-called Remote-Access-constrained devices (devices not capable of directly 212
supporting/hosting general Internet connectivity and the protocols described here): The 213
infrastructure and mechanisms by which adequately-capable devices may provide 214
services to (to proxy on behalf of) networks of these constrained devices will be 215
described in a next version of this specification. 216

5.2 Philosophy/Approach (Informative) 217

Remote access is accomplished by leveraging the XMPP and ICE(/STUN/TURN) standards. The 218
Remote Access feature is optional to implement and can be included when the OIC Device has 219
the resources (CPU, Memory, etc.) to implement this feature. Many external references are 220
available for XMPP and ICE standards/protocols for those who are unfamiliar with these 221
standards/protocols. 222

In general: 223

• Each Remote Access capable device must have first been ‘on-boarded’ and provisioned 224
such that it is uniquely and securely associated with a single owner. 225

• Each OIC Remote-Access capable device will connect through a XMPP account on a 226
XMPP server, and this XMPP server must be accessible via the public internet. 227

Copyright OIC © 2015. All rights Reserved. 7

• All devices on the same XMPP account can talk to each other. The devices on the same 228
account are automatically placed in the account Roster. The Roster determines to whom 229
the account can talk too. One of the implicit mechanism of the Roster is that all 230
connections made by the same user account will establish an instance of that connection 231
in the Roster. The identification mechanism of the different connections is established by 232
the XMPP resource part of the full JID. 233

• By default in the XMPP world, XMPP stanza are exchanged between XMPP clients (end 234
points). In OIC specifications, the messaging between the OIC Devices is achieved by 235
the Restful paradigm by defining CRUDN payloads. This means that the CRUDN 236
message is placed in the payload of an XMPP stanza, transmitted via XMPP, and 237
decoded on the receiving end. 238

5.3 Architecture 239

The Remote Access (RA) architecture of OIC is based on the support of the OIC defined CRUDN 240
message protocol [OIC CORE], XMPP and ICE/STUN/TURN (when the application on the OIC 241
Device requires it). Figure 1 shows the high level RA Architecture of OIC for Remote Access with 242
one XMPP Server. 243

Copyright OIC © 2015. All rights Reserved. 8

 244

 245

Figure 1 Remote Access High-Level Architecture 246

The RAE Server is an OIC Server with XMPP client functionality. This configuration is depicted in 247
Figure 2. The RAE Server is configured with an address and account of the (known) XMPP 248
server in the cloud. The RAE Client also contains an XMPP Client and connects to the same 249
XMPP server using the same account information. 250

The RAE shall contact the XMPP server and establish a secure XMPP connection after power up. 251

When the OIC devices are connected to the same XMPP server and are using the same account 252
information XMPP allows communication between those devices. The connection can be used to 253
send XMPP stanzas from an RAE to another RAE. 254

XMPP server

RAE Server

XMPP connections

RAE Client

“home network”

“internet”

Copyright OIC © 2015. All rights Reserved. 9

Core Resources

OIC RAE Server

Vertical Required Resources

vertical Core Profiles

XMPP
Client

 255

Figure 2 RAE Server depicted as an OIC Server with the XMPP Client. 256

 257

The full JID of the connection address of the RAE will be used to as the XMPP address for 258
sending the XMPP stanzas (the “to” address in the XMPP messaging scheme). The OIC CRUDN 259
messaging is directed from and OIC Client to an OIC Resource in an OIC server. To have 260
equivalent mechanism available over XMPP, the stanza will contain the CRUDN message 261
including the addressing of the OIC Resource implemented in the OIC server. 262

 263

 264

Figure 3 XMPP and OIC Resource addressing levels. 265

Hence this means that 2 levels of addressing are needed: 266

• Addressing the XMPP stanza towards the OIC Device 267

o This is achieved by XMPP addressing, using the full JID 268

• Addressing of the OIC Resource in the OIC Device 269

o This is achieved in the XMPP stanza payload mimicking CRUDN actions including 270
the addressing 271

Copyright OIC © 2015. All rights Reserved. 10

How to use the different XMPP and OIC addresses is depicted in 272

 273

Figure 3. 274

 275

6 Remote Access Components and Accounts 276

6.1 XMPP Server 277

An OIC XMPP server is deployed on the public internet and is used for following purposes: 278

a) Announcing the presence of OIC devices from outside the proximal network. 279

b) Exchanging low-bandwidth OIC messages (data packets) for accessing/managing remote 280
communication between OIC Clients and OIC Servers connected through XMPP 281

The OIC XMPP Server operational model does not mandate the specific location (domain or URL) 282
for an XMPP Server infrastructure, and it is expected that a manufacturer will either operate their 283
own XMPP servers or will contract with a service-provider for XMPP Server services for the RA-284
capable devices they sell. Account creation on XMPP Servers 285

Before an XMPP Server can be used, at minimum the end-user has to have an account on the 286
XMPP server. This procedure is expected to be done out-of-band. The user’s bare-JID (XMPP 287
user-account/server) and credentials will be communicated to the user separately (out-of-band). 288

6.2 XMPP login 289

The XC Proxy will have an OIC resource identifier that will allow it to be identified as an RAE. It 290
will log into the relevant XMPP Server(s) on behalf of the RA-Constrained Devices which have 291
published themselves to the bridge. Included in the account credentials, etc. for a device will be 292
(some implicit): 293

• Its bare-JID (XMPP username/account and server) 294

• The account credentials 295

• The relevant XMPP server address and port 296

6.2.1 Remote Access Call Flow for RAE 297

An OIC Client shall have an out of bound mechanism (a.k.a. a user interface) to enter the 298
account information and XMPP connection information to establish a connection to the XMPP 299
server. 300

The OIC server (without the same mechanisms of an OIC Client) shall have a Remote Access 301
OIC resource to set the account and XMPP server information. An OIC Client (with the already 302
supplied account and XMPP server information will provide the information to the OIC Server. 303
When an OIC server is not properly initialized, an OIC Client will have to provide the correct 304
information to the OIC Server. When these are set, the OIC Server will try to (re-)establish the 305
connection. It will be possible to detect the result by looking at the connection status property 306
returned via XMPP. 307

 308

Copyright OIC © 2015. All rights Reserved. 11

 309

 310

Figure 4 CRUDN call flow for RAE setup. 311

 312
Figure 4 depicts the steps to enable the RAE so that it can contact the XMPP server. 313
The communications to create a JID (userid@domain) on an XMPP server are out of bounds. 314
The data to connect to a server is supplied out of bounds. This is that any XMPP server can be 315
used to create an OIC remote access connection. The communication between the OIC Client to 316
pass the JID and password together with the XMPP connection data is done by OIC commands. 317
This means that the communication of all the XMPP credentials are either out of bounds or are 318
exchanged under the established security mechanisms defined by OIC. 319
 320

6.2.2 OIC defined Resources for Remote access 321

The OIC server that supports Remote Access shall implement 2 resources, namely: 322

The oic.ra.xmpp resource indicates the XMPP server address and connection status. 323

The oic.ra.user resource indicates the user credential on the XMPP server. 324

The resources shall comply with the core specification and shall implement all mandatory 325
properties. Note that only the additional (remote access relevant) properties are listed in this 326
document. 327

6.2.2.1 OIC define Resource for XMPP connection (oic.ra.xmpp) 328

The resource to set the xmpp connection data is identified with rt = “oic.ra.xmpp”. 329

The resource properties for this resource are listed in Table 2. 330

Copyright OIC © 2015. All rights Reserved. 12

Table 2. oic.ra.xmpp resource type definition 331

Property title Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

XMPP Server
Address

address s R, W Yes XMPP server
address

XMPP Server
Port

port number R, W Yes XMPP server
port

Status status enum R Yes Status of the
Connection to
the XMPP
server

Error reason error string Vendor defined
appropriate
error message
when status is
“Error”

Status will have the enum values: “Connected”, “Error”, “NotInitialized”. 332

6.2.2.2 OIC defined Resource for XMPP user data (oic.ra.user) 333

The resource to set the XMPP connection data is identified with rt = “oic.ra.user”. 334

The resource properties for this resource are listed in Table 3 335

It is highly recommended that this resource will be access restricted for reading during normal 336
operation (e.g. when being used by a normal end user), hence only the user that is allowed to do 337
onboarding should be allowed to read/write this resource. 338

Table 3. oic.ra.user resource type definition 339

Property title Property
name

Value
type

Value rule Unit Access
mode

Mandatory Description

UserID jid string R, W Yes Bare JID

credential port string R, W Yes Base64
encoded
credential

 340

7 Discovery & Presence 341

7.1 Registration 342

Before an OIC Device can connect to its XMPP server it needs to be provisioned with a 343
username (JID – Jabber ID) and a passphrase or other security model (such as SAML) – the 344
specific requirements for user- and device-account credentials/security can be found in [OIC 345
Security]. 346
 347
The XMPP account is created based on the identity of the user. Each device will be logged in 348
under a (XMPP) resource for the specific end user; e.g.: 349
 350

 <user>@<domain.com>/<resource>, where 351
 352
“user” (a.k.a.: ‘username’, ‘local’ or ‘node’ in XMPP parlance) is the Jabber ID (or JID) unique to that 353
user for the specific IdP (example: john@facebook.com) 354
domain.com is the “domain” (a.k.a: ‘server’ or ‘host’ in XMPP parlance) for the XMPP “user”, above 355
‘resource’ is the device name/id the user is logging into 356

mailto:john@facebook.com

Copyright OIC © 2015. All rights Reserved. 13

 357
Note: In XMPP parlance, ‘user@domain.com’ is referred to as a “bare-JID” while 358
‘user@domain.com/resource’ is referred to as a “full-JID”. 359
 360
Note: As defined by the XMPP RFCs, the username, domain and resource-parts of a JID can contain 361
nearly any Unicode character, and the case-sensitivity model (actually referred to as ‘case-folding’ in 362
XMPP, whose rules are defined by a technology called stringprep, specified in RFC 3454) which 363
applies to the Resource portion of a full-JID are described in RFCs 5122, 6122).The bare-JID is case-364
IN-sensitive. 365

 366

7.1.1 Connection identification 367

The connection of an OIC Device to the XMPP server is identified by the (XMPP) resource. 368
Hence OIC mandates that an XMPP client supplies the full-JID when establishing the connection. 369
The full JID can be used to distinguish: 370

- OIC devices from other connections 371

- Whether an OIC Device is an OIC Client or OIC Server 372

- Which device type (rt) the device is. 373

The following scheme full-JID scheme shall be supplied by an OIC Client: 374

Client RAE: {user}@{domain.com}/OIC/1.0/Client/{UUID} 375

The UUID shall be maintained over the lifecycle of the OIC Client. That is, when an OIC Client 376
re-establish a connection after a reboot it shall use the same UUID. 377

The following scheme full-JID scheme shall be supplied by an OIC Server: 378

RAE Server: {user}@{domain.com}/OIC/1.0/{OIC-device type}/{UUID} 379

The UUID shall be maintained over the lifecycle of the OIC Server and is the same UUID as 380
defined in property “di” of resource /oic/d. The OIC-device-type shall be the same value as the 381
property “rt” in /oic/d. 382

 383
When an RAE Device implements an OIC Client and an OIC Server then the full-JID of the RAE 384
Server shall be used. Note that an XMPP Client allows to send and receive commands, hence 385
the established XMPP connection can be used by both the OIC Client and the OIC Server. 386

These full-JID formats (above) allow for: 387

• Discovery of the device-type (resource-type) directly from the full-JID on the Roster 388
supplied by the XMPP server — without having to query the device(s) 389

• Elimination of full-JID-collision via use of the UUIDs 390
• A non-multi-cast-type mechanism to do device discovery. 391
• Upgradability of the protocol mechanism by the changing version number (1.0). 392

Example of an OIC Server full-JID, denoting a light device: 393

me@mydomain.com/OIC/1.0/oic.d.light/FFFFB960-BABE-46F7-BEC0-9E6234671ADC0 394

Example of an OIC Client full-JID: 395

me@mydomain.com/OIC/1.0/Client/FXFFB960-FFFF-46F7-BABE-9E6234671ADC1 396

https://www.ietf.org/rfc/rfc3454.txt
https://tools.ietf.org/html/rfc5122
https://tools.ietf.org/html/rfc6122
http://domain.com/
http://domain.com/

Copyright OIC © 2015. All rights Reserved. 14

7.2 Connection Authentication 397

 398
The RAE will establish a connection to the XMPP server using the bare JID. The connection is 399
regarded established when the initial login occurs and it completes the preconditions described 400
in [RFC-6120] (also known as XMPP-CORE). The stream establishment shall include security 401
negotiation (TLS, SASL) as described in section 5 and 6 of [RFC-6120]. 402

SASL authentication in XMPP allows for multiple mechanism to be used. OIC RAE shall use as 403
minimum mechanism “SCRAM-SHA-1”. 404

In the binding step (as described in section 7.4 (Advertising Support)) the OIC RAE shall offer 405
the XMPP resource with the format as described in 7.1.1. When the XMPP server changes the 406
offered full JID in the binding process the RAE shall disconnect the stream. Upon a successful 407
bind the RAE is reachable over XMPP by its own globally unique full JID. 408
 409

7.3 Roster and Presence 410

When the client has connected to the XMPP server, it shall retrieve the Roster and signal its 411
presence status. The retrieval of the Roster on login is described in section 2.2 of [RFC-6121]. 412
The Roster is the list JIDs of other XMPP users (referred to as Roster ‘members’) it can 413
communicate with and get presence indications from other entries in the Roster. 414
The presence is announced as described in section 4.2 of [RFC-6121]. 415
The presence mapping for OIC devices is as described in Table 4. 416

Table 4. XMPP presence (status type) mapping 417

XMPP status type OIC interpretation

available (no @type attribute) OIC is reachable and working

unavailable OIC device is not reachable

 418
The XMPP messages can have priority. When priorities are used, the priority mappings to XMPP 419
for OIC devices are: 420
OIC Servers with no additional XMPP features: priority range of [-100 to -33]. 421
OIC Servers with additional XMPP features: priority range of [1 to 66]. 422
OIC Clients with no additional XMPP features: priority range of [-66 to -1]. 423
OIC Clients with additional XMPP feature: priority range of [33 to 100]. 424
 425
The Roster is not the decision point when it comes to authorization. It merely gives the 426
connecting user/device the ability to: 427

- Discover other the online status of users (read: OIC Devices) in their Roster (a.k.a: 428
‘presence’). 429

- Send and receive data to JIDs in their Roster. 430
This can serve as the first enforcement point of access control to avoid unnecessary or malicious 431
traffic to the smart device or gateway in the home the represents the in-home devices. After a 432
client has connected and discovered all of the online entities it can communicate with it can now 433
start communicating with the end device. 434
 435

7.3.1 CRUDN messaging over XMPP 436

 437
RAE connected over the XMPP server can directly exchange data between each other by using 438
the In-band Bytestreams [XEP-0047]. In-band Bytestreams establishes a session to exchange 439
binary data. This session shall be set up in a bi-directional way. The used stanza type for the 440
connection shall be “message”. The block size of the stanza size shall be maximum 65535 bytes. 441
To set up the byte stream the full JID of the RAE shall be used. 442
 443

Copyright OIC © 2015. All rights Reserved. 15

Each individual stanza over the connection will correspond with either a CRUDN request or 444
respond message. 445
 446
The payload of the IQ stanza is comprised of: 447

- URL to the OIC Resource 448
o Method as attribute 449

- Headers (as being used to convey extra information for negotiation purposes) 450
- Body (optional) 451

o Payload of the body in JSON 452
The payload must be base64-encoding before added as a payload. 453
Methods are defined as the CRUDN messages as described in the Core specification. 454
Note that the Notification mechanism Observe is an extended Retrieve message based on CoAP 455
Get. The header names and payloads are defined as HTTP headers (they are ASCII instead of 456
binary). 457
 458
The payload of a binary message is defined as (before base64-encoding): 459
 460
<rest xmlns="rest.oic.org"> 461
 <url method="methodname">fully qualified url</url> 462
 <headers> 463
 <!—optional headers if needed 464
 <header name="header name">header value</header> 465
 <!—additional headers 466
 </headers> 467
 <!—optional body if needed 468
 <body> 469
 <json xmlns="urn:xmpp:json:0"> 470
 json payload as described in the core and/or vertical 471
 </json> 472
 </body> 473
</rest> 474
 475
Method defined as HTTP (see core mappings): GET, POST, PUT, DELETE, RESPONSE 476
Note that the response in HTTP is formatted as a number and status. The full response line will 477
be placed in the payload of url tag. 478
 479
Example of a Get and response message (before base64-encoding): 480
Request: 481
<rest xmlns="rest.oic.org"> 482
 <url method="Get">coap://mydevice/mybinaryswitch</url> 483
 <headers> 484
 <header name="Accept">application/json</header> 485
 <header name="Accept-Charset">UTF-8</header> 486
 <header name="Date">Fri, 14 Aug 2015 08:49:37 GMT</header> 487
 488
 </headers> 489
</rest> 490
 491
Response: 492
<rest xmlns="rest.oic.org"> 493
 <url method="Response">200 OK</url> 494
 <headers> 495
 <header name="Content-Encoding">Application/JSON</header> 496
 <header name="Accept-Charset">UTF-8</header> 497
 <header name="Date"> Fri, 14 Aug 2015 08:49:38 GMT</header> 498
 </headers> 499

Copyright OIC © 2015. All rights Reserved. 16

 <body> 500
 <json xmlns="urn:xmpp:json:0"> 501
 { 502
 "rt": "oic.r.switch.binary", 503
 "id": "unique_example_id", 504
 "value": false 505
 } 506
 </json> 507
 </body> 508
</rest> 509
 510
 511

7.4 Ungraceful Disconnect 512

The XMPP server may enforce client-side heartbeats to ‘quickly’ detect when a client goes offline 513
ungracefully instead of relying solely on the TCP retransmission timeout (which is OS/platform 514
dependent and could be large – on the order of 15 minutes). This can be accomplished with, 515
XMPP Ping [XEP-0199]. This XEP describes how an XMPP client can send an XMPP ping 516
periodically. The ping can be used by the XMPP server to disconnect clients that did not send a 517
ping within a certain interval. Selecting the interval for disconnecting the client should be chosen 518
carefully, since the interval will impose resource requirements (CPU, memory, etc.) of the XMPP 519
Server infrastructure. The ping interval is vendor specific. 520

 521

http://xmpp.org/extensions/xep-0199.html

Copyright OIC © 2015. All rights Reserved. 17

Annex A 522

Resource Types definitions used in Remote Access 523

 524

 525

A.1 Remote Access XMPP 526

A.1.1 Introduction 527

This resource specifies the XMPP server access. 528

A.1.2 Wellknown URI 529

/XMPPResURI 530

A.1.3 Resource Type 531

The resource type (rt) is defined as: oic.ra.xmpp. 532

A.1.4 RAML Definition 533

#%RAML 0.8 534

title: OICRemoteAccessXMPP 535
version: v1.0-20150819 536

traits: 537
 - interface 538
 queryParameters: 539

 if: 540
 enum: ["oic.if.s"] 541

 542

/XMPPResURI: 543

 description: | 544
 This resource specifies the xmpp server access. 545
 546

 is : ['interface'] 547

 get: 548

 description: | 549
 Retrieves the xmpp access. 550
 551

 responses: 552

 200: 553

 body: 554
 application/json: 555

 schema: | 556

 { 557
 "id": "http://openinterconnect.org/schemas/oic.ra.xmpp#", 558
 "$schema": "http://json-schema.org/draft-04/schema#", 559
 "title": "XMPP server connection information", 560
 "definitions": { 561
 "oic.ra.xmpp": { 562
 "type": "object", 563
 "properties": { 564
 "address": { 565
 "type": "string", 566
 "description": "address of the XMPP server" 567
 }, 568
 "port": { 569
 "type": "number", 570
 "description": "port number of the XMPP server" 571
 }, 572

Copyright OIC © 2015. All rights Reserved. 18

 "status": { 573
 "enum": ["Connected", "Error", "NotInitialized"], 574
 "description": "ReadOnly, connection status" 575
 }, 576
 "ErrorReason": { 577
 "type": "string", 578
 "description": "ReadOnly, The error reason if the status is in error" 579
 } 580
 } 581
 } 582
 }, 583
 "type": "object", 584
 "allOf": [585
 {"$ref": 586
"http://openinterconnect.org/schemas/oic.core.json#/definitions/oic.core"}, 587
 {"$ref": "#/definitions/oic.ra.xmpp"} 588
], 589
 "required": ["address","port","status","ErrorReason"] 590
 } 591
 592

 example: | 593

 { 594
 "rt": "oic.ra.xmpp", 595
 "address": "www.cisco.oic.xmpp.com", 596
 "port": 8080, 597
 "status": "Connected", 598
 "ErrorReason": "" 599
 } 600
 601

 post: 602

 description: | 603
 Sets the new jid and credential 604
 605

 body: 606
 application/json : 607

 schema: | 608

 { 609
 "id": "http://openinterconnect.org/schemas/oic.ra.xmpp-Update#", 610
 "$schema": "http://json-schema.org/draft-04/schema#", 611
 "title": "XMPP server connection information for updating", 612
 "definitions": { 613
 "oic.ra.xmpp-Update": { 614
 "type": "object", 615
 "properties": { 616
 "address": { 617
 "type": "string", 618
 "description": "address of the XMPP server" 619
 }, 620
 "port": { 621
 "type": "number", 622
 "description": "port number of the XMPP server" 623
 }, 624
 "status": { 625
 "enum": ["Connected, Error, NotInitialized"], 626
 "description": "ReadOnly, connection status" 627
 }, 628
 "ErrorReason": { 629
 "type": "string", 630
 "description": "ReadOnly, The error reason if the status is in error" 631
 } 632
 } 633
 } 634
 }, 635
 "type": "object", 636
 "allOf": [637
 {"$ref": "http://openinterconnect.org/schemas/oic.core.json#/definitions/oic.core"}, 638
 {"$ref": "#/definitions/oic.ra.xmpp-Update"} 639

Copyright OIC © 2015. All rights Reserved. 19

], 640
 "required": ["address","port"] 641
 } 642
 643

 example: | 644

 { 645
 "rt": "oic.ra.xmpp", 646
 "address": "www.new.cisco.oic.xmpp.com", 647
 "port": 8081 648
 } 649
 650

 responses: 651

 200: 652

 body: 653
 application/json: 654

 schema: | 655

 { 656
 "id": "http://openinterconnect.org/schemas/oic.ra.xmpp-Update#", 657
 "$schema": "http://json-schema.org/draft-04/schema#", 658
 "title": "XMPP server connection information for updating", 659
 "definitions": { 660
 "oic.ra.xmpp-Update": { 661
 "type": "object", 662
 "properties": { 663
 "address": { 664
 "type": "string", 665
 "description": "address of the XMPP server" 666
 }, 667
 "port": { 668
 "type": "number", 669
 "description": "port number of the xmpp server" 670
 }, 671
 "status": { 672
 "enum": ["Connected, Error, NotInitialized"], 673
 "description": "ReadOnly, connection status" 674
 }, 675
 "ErrorReason": { 676
 "type": "string", 677
 "description": "ReadOnly, The error reason if the status is in error" 678
 } 679
 } 680
 } 681
 }, 682
 "type": "object", 683
 "allOf": [684
 {"$ref": 685
"http://openinterconnect.org/schemas/oic.core.json#/definitions/oic.core"}, 686
 {"$ref": "#/definitions/oic.ra.xmpp-Update"} 687
], 688
 "required": ["address","port"] 689
 } 690
 691

 example: | 692

 { 693
 "rt": "oic.ra.xmpp", 694
 "address": "www.new.cisco.oic.xmpp.com", 695
 "port": 8081 696
 } 697
 698

A.1.5 Property Definition 699

Property
name

Value
type

Mandatory Access
mode

Description

address string yes Read Write address of the XMPP server

Copyright OIC © 2015. All rights Reserved. 20

port number yes Read Write port number of the XMPP server
status enum yes Read Only Connection Status
ErrorReason string yes Read Only The Error Reason if the Status is in

Error

A.1.6 CRUDN behavior 700

Resource Create Read Update Delete Notify
/XMPPResURI get post

A.2 Remote Access User data 701

A.2.1 Introduction 702

This resource specifies the XMPP user id and credentials. 703

A.2.2 Wellknown URI 704

/XMPPUserResURI 705

A.2.3 Resource Type 706

The resource type (rt) is defined as: oic.ra.user. 707

A.2.4 RAML Definition 708

#%RAML 0.8 709

title: OICRemoteAccessUser 710
version: v1.0-20150819 711

traits: 712
 - interface 713
 queryParameters: 714

 if: 715
 enum: ["oic.if.s"] 716

 717

/XMPPUserResURI: 718

 description: | 719
 This resource specifies the XMPP user id and credentials. 720
 721

 is : ['interface'] 722

 get: 723

 description: | 724
 Retrieves the XMPP user data. 725
 726

 responses: 727

 200: 728

 body: 729
 application/json: 730

 schema: | 731

 { 732
 "id": "http://openinterconnect.org/schemas/oic.ra.user#", 733
 "$schema": "http://json-schema.org/draft-04/schema#", 734
 "title": "XMPP server user information", 735
 "definitions": { 736
 "oic.ra.user": { 737
 "type": "object", 738
 "properties": { 739
 "jid": { 740
 "type": "string", 741
 "description": "the bare jid" 742
 }, 743
 "credential": { 744

Copyright OIC © 2015. All rights Reserved. 21

 "type": "string", 745
 "description": "base64 encoded string, the credential" 746
 } 747
 } 748
 } 749
 }, 750
 "type": "object", 751
 "allOf": [752
 {"$ref": 753
"http://openinterconnect.org/schemas/oic.core.json#/definitions/oic.core"}, 754
 {"$ref": "#/definitions/oic.ra.user"} 755
], 756
 "required": ["jid","credential"] 757
 } 758
 759

 example: | 760

 { 761
 "rt": "oic.ra.user", 762
 "jid": "user@mydomain.com", 763
 "credential": "AADRRRDSDSSDFERVVDESDFSDFSFSFDSSDF" 764
 } 765
 766

 post: 767

 description: | 768
 Sets the new user data 769
 770

 body: 771
 application/json : 772

 schema: | 773

 { 774
 "id": "http://openinterconnect.org/schemas/oic.ra.user#", 775
 "$schema": "http://json-schema.org/draft-04/schema#", 776
 "title": "XMPP server user information", 777
 "definitions": { 778
 "oic.ra.user": { 779
 "type": "object", 780
 "properties": { 781
 "jid": { 782
 "type": "string", 783
 "description": "the bare jid" 784
 }, 785
 "credential": { 786
 "type": "string", 787
 "description": "base64 encoded string, the credential" 788
 } 789
 } 790
 } 791
 }, 792
 "type": "object", 793
 "allOf": [794
 {"$ref": "http://openinterconnect.org/schemas/oic.core.json#/definitions/oic.core"}, 795
 {"$ref": "#/definitions/oic.ra.user"} 796
], 797
 "required": ["jid","credential"] 798
 } 799
 800

 example: | 801

 { 802
 "rt": "oic.ra.user", 803
 "jid": "newuser@mydomain.com", 804
 "credential": "NNAADRRRDSDSSDFERVVDESDFSDFSFSFDSSDF" 805
 } 806
 807

 responses: 808

 200: 809

Copyright OIC © 2015. All rights Reserved. 22

 body: 810
 application/json: 811

 schema: | 812

 { 813
 "id": "http://openinterconnect.org/schemas/oic.ra.user#", 814
 "$schema": "http://json-schema.org/draft-04/schema#", 815
 "title": "XMPP server user information", 816
 "definitions": { 817
 "oic.ra.user": { 818
 "type": "object", 819
 "properties": { 820
 "jid": { 821
 "type": "string", 822
 "description": "the bare jid" 823
 }, 824
 "credential": { 825
 "type": "string", 826
 "description": "base64 encoded string, the credential" 827
 } 828
 } 829
 } 830
 }, 831
 "type": "object", 832
 "allOf": [833
 {"$ref": 834
"http://openinterconnect.org/schemas/oic.core.json#/definitions/oic.core"}, 835
 {"$ref": "#/definitions/oic.ra.user"} 836
], 837
 "required": ["jid","credential"] 838
 } 839
 840

 example: | 841

 { 842
 "rt": "oic.ra.user", 843
 "jid": "newuser@mydomain.com", 844
 "credential": "NNAADRRRDSDSSDFERVVDESDFSDFSFSFDSSDF" 845
 } 846
 847

A.2.5 Property Definition 848

Property
name

Value
type

Mandatory Access
mode

Description

jid string yes Read Write the bare-JID
credential string yes Read Write base64 encoded string, the

credential

A.2.6 CRUDN behaviour 849

Resource Create Read Update Delete Notify
/XMPPUserResURI get post
 850

	1 Scope
	1.1 Rationale for limitations/phasing

	2 Normative references
	3 Terms, definitions, symbols and abbreviations
	3.1 Terms and definitions
	3.2 Symbols and abbreviations

	4 Document conventions and organization
	4.1 Notation

	5 High Level Overview
	5.1 Rationale (Informative)
	5.2 Philosophy/Approach (Informative)
	5.3 Architecture

	6 Remote Access Components and Accounts
	6.1 XMPP Server
	6.2 XMPP login
	6.2.1 Remote Access Call Flow for RAE
	6.2.2 OIC defined Resources for Remote access
	6.2.2.1 OIC define Resource for XMPP connection (oic.ra.xmpp)
	6.2.2.2 OIC defined Resource for XMPP user data (oic.ra.user)

	7 Discovery & Presence
	7.1 Registration
	7.1.1 Connection identification

	7.2 Connection Authentication
	7.3 Roster and Presence
	7.3.1 CRUDN messaging over XMPP

	7.4 Ungraceful Disconnect

	Annex A Resource Types definitions used in Remote Access
	A.1 Remote Access XMPP
	A.1.1 Introduction
	A.1.2 Wellknown URI
	A.1.3 Resource Type
	A.1.4 RAML Definition
	A.1.5 Property Definition
	A.1.6 CRUDN behavior

	A.2 Remote Access User data
	A.2.1 Introduction
	A.2.2 Wellknown URI
	A.2.3 Resource Type
	A.2.4 RAML Definition
	A.2.5 Property Definition
	A.2.6 CRUDN behaviour

