
Copyright OIC © 2015. All rights Reserved. 0

 1
 2

OIC SECURITY
SPECIFICATION

V1.0.0

Open Interconnect Consortium (OIC)
admin@openinterconnect.org

Copyright OIC © 2015. All rights Reserved. 1

Legal Disclaimer 3
 4

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY 5
KIND OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY 6
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR 7
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS 8
PROVIDED ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY 9
APPLICABLE LAW, THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY 10
DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, 11
STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED 12
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN 13
INTERCONNECT CONSORTIUM, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF 14
NON-INFRINGEMENT, ACCURACY OR LACK OF VIRUSES. 15

 16

The OIC logo is a trademark of Open Interconnect Consortium, Inc. in the United States or other 17
countries. *Other names and brands may be claimed as the property of others. 18

 19

Copyright © 2015 Open Interconnect Consortium, Inc. All rights reserved. 20

 21

Copying or other form of reproduction and/or distribution of these works are strictly prohibited 22

 23

Copyright OIC © 2015. All rights Reserved. 2

 24

CONTENTS 25

 26

1 Scope ... 5 27

2 Normative References .. 5 28

3 Terms, Definitions, Symbols and Abbreviations .. 5 29

3.1 Terms and definitions .. 5 30

3.2 Symbols and Abbreviations ... 7 31

3.3 Conventions .. 7 32

4 Document Conventions and Organization ... 8 33

4.1 Notation .. 8 34

4.2 Data types ... 9 35

4.3 Document structure ... 9 36

4.4 Document Sections ... 9 37

5 Security Overview (Informative) .. 9 38

5.1 Access control (Informative) .. 11 39

5.1.1 ACL Architecture (Informative) ... 12 40

5.1.2 Access control scoping levels (Informative) ... 15 41

5.2 Onboarding and provisioning Overview ... 17 42

5.2.1 On-Boarding .. 17 43

5.2.2 Establishing a Device Owner ... 17 44

5.3 Bootstrap process and Security bootstrapping ... 19 45

5.3.1 Provisioning a bootstrap service .. 19 46

5.3.2 Provisioning other services .. 20 47

5.3.3 Credential provisioning .. 20 48

5.3.4 Role assignment and provisioning ... 20 49

5.3.5 ACL provisioning ... 21 50

5.4 Secure Resource Manager .. 21 51

5.5 Credential Overview .. 22 52

6 Security for the Discovery Process ... 22 53

6.1 Security Considerations for Discovery ... 22 54

6.2 Discoverability of security resources ... 25 55

7 Security Provisioning .. 25 56

7.1 Device Identity (Normative) ... 25 57

7.1.1 Device Identity for Devices with UAID .. 26 58

7.2 Device Ownership (Informative) .. 28 59

7.3 Device Ownership Transfer Methods (Informative) .. 28 60

7.3.1 OTM implementation requirements (Normative) ... 28 61

7.3.2 Just-Works Owner Transfer Method (Normative).. 29 62

7.3.3 Random PIN Based Owner Transfer Method .. 32 63

7.3.4 Manufacturer Certificate Based Owner Transfer Method 35 64

7.3.5 OIC Decentralized Public Key (DECAP) Owner Transfer Method 41 65

Copyright OIC © 2015. All rights Reserved. 3

7.3.6 Vendor Specific Owner Transfer Methods (Normative) 43 66

7.4 Provisioning .. 46 67

7.4.1 Provisioning Flows... 46 68

7.5 Bootstrap Example .. 52 69

8 Security Credential Management .. 52 70

8.1 Overview ... 52 71

8.2 Credential Lifecycle ... 52 72

8.2.1 Creation .. 52 73

8.2.2 Deletion ... 52 74

8.2.3 Refresh ... 52 75

8.2.4 Revocation .. 53 76

8.3 Credential Types ... 53 77

8.3.1 Pair-wise Symmetric Key Credentials .. 53 78

8.3.2 Group Symmetric Key Credentials ... 53 79

8.3.3 Asymmetric Authentication Key Credentials ... 54 80

8.3.4 Asymmetric Key Encryption Key Credentials .. 54 81

8.3.5 Certificate Credentials ... 55 82

8.3.6 Password Credentials .. 55 83

8.4 Certificate Based Key Management ... 55 84

8.4.1 Overview ... 55 85

8.4.2 Certificate Format .. 56 86

8.4.3 CRL Format ... 59 87

8.4.4 Resource Model .. 60 88

8.4.5 Certificate Provisioning .. 60 89

8.4.6 CRL Provisioning ... 61 90

9 Device Authentication ... 63 91

9.1 Device Authentication with Symmetric Key Credentials ... 63 92

9.2 Device Authentication with Raw Asymmetric Key Credentials 63 93

9.3 Device Authentication with Certificates .. 63 94

10 Message Integrity and Confidentiality .. 64 95

10.1 Session Protection with DTLS ... 64 96

10.1.1 Unicast Session Semantics .. 64 97

10.1.2 Considerations on Export Licensing with Crypto .. 64 98

10.2 Cipher Suites .. 64 99

10.2.1 Cipher Suites for Device Ownership Transfer... 64 100

10.2.2 Cipher Suites for Symmetric Keys .. 65 101

10.2.3 Cipher Suites for Asymmetric Credentials .. 66 102

11 Access Control .. 66 103

11.1 ACL Generation and Management ... 66 104

11.2 ACL Evaluation and Enforcement (Normative) ... 66 105

12 Security Resources (Normative) .. 67 106

12.1 Device Owner Transfer Resource .. 67 107

12.2 Credential Resource .. 70 108

12.2.1 Properties of the Credential Resource ... 73 109

Copyright OIC © 2015. All rights Reserved. 4

12.2.2 Key Formatting .. 75 110

12.2.3 Credential Refresh Method Details .. 76 111

12.3 Certificate Revocation List ... 77 112

12.3.1 CRL Resource Definition ... 77 113

12.3.2 CRL Resource ... 78 114

12.4 Security Services Resource ... 78 115

12.5 ACL Resources ... 80 116

12.5.1 OIC Access Control List (ACL) BNF defines ACL structures............................. 80 117

12.5.2 ACL Resource ... 81 118

12.5.3 Access Manager ACL Resource ... 82 119

12.5.4 Signed ACL Resource ... 82 120

12.5.5 Extended ACL Resource .. 83 121

12.6 Provisioning Status Resource .. 83 122

13 Core Interaction Patterns Security ... 86 123

13.1 Observer ... 86 124

13.2 Subscription/Notification .. 86 125

13.3 Groups .. 86 126

13.4 Publish-subscribe Patterns and Notification ... 86 127

14 Security Hardening Guidelines/ Execution Environment Security 86 128

14.1 Execution environment elements ... 86 129

14.1.1 Secure Storage (Informative) ... 87 130

14.1.2 Secure execution engine ... 89 131

14.1.3 Trusted input/output paths ... 89 132

14.1.4 Secure clock .. 89 133

14.1.5 Approved algorithms .. 89 134

14.1.6 Hardware tamper protection ... 90 135

14.2 Execution Environment security profiles (for discussion) 90 136

14.3 Secure Boot .. 91 137

14.3.1 Concept of software module authentication. ... 91 138

14.3.2 Secure Boot process ... 92 139

14.3.3 Robustness requirements .. 93 140

14.4 Attestation ... 93 141

14.5 Software Update ... 93 142

14.6 Non-OIC Endpoint interoperability ... 93 143

15 Appendix A: Access Control Examples .. 93 144

15.1 Example OIC ACL Resource ... 93 145

15.2 Example Access Manager Service ... 93 146

 147

Copyright OIC © 2015. All rights Reserved. 5

 148

1 Scope 149

This specification defines security objectives, philosophy, resources and mechanism that impacts 150
OIC base layers of the OIC Core specification. The OIC Core specification contains informative 151
security content. The OIC Security specification contains security normative content and may 152
contain informative content related to the OIC base or other OIC specifications. 153

2 Normative References 154

The following documents, in whole or in part, are normatively referenced in this document and 155
are indispensable for its application. For dated references, only the edition cited applies. For 156
undated references, the latest edition of the referenced document (including any amendments) 157
applies. 158

OIC Core Specification, version 1.0, Open Interconnect Consortium, June 13, 2015. Available at: 159
<link to be added>. Latest version available at: <link to be added>. 160

OIC Smart Home Resource Specification, version 1.0, Open Interconnect Consortium, June 13, 161
2015. Available at: <link to be added>. Latest version available at: <link to be added>. 162

JSON SCHEMA, draft version 4, JSON Schema defines the media type 163
"application/schema+json", a JSON based format for defining the structure of JSON data. JSON 164
Schema provides a contract for what JSON data is required for a given application and how to 165
interact with it. JSON Schema is intended to define validation, documentation, hyperlink 166
navigation, and interaction control of JSON Available at: http://json-schema.org/latest/json-167
schema-core.html. 168

RAML, Restful API modelling language version 0.8. Available at: http://raml.org/spec.html. 169

 170

3 Terms, Definitions, Symbols and Abbreviations 171

Terms, definitions, symbols and abbreviations used in this specification are defined by the OIC 172
Core specification. Terms specific to normative security mechanism are defined in this document 173
in context. 174

This section restates terminology that is defined elsewhere, in this document or in other OIC 175
specifications as a convenience for the reader. It is considered non-normative. 176

 177

3.1 Terms and definitions 178

Term Description

Access Manager
Service

The Access Manager Service dynamically constructs ACL
resources in response to a device resource request. An Access
Manager Service can evaluate access policies remotely and
supply the result to an OIC Server which allows or denies a
pending access request.

ACL Provisioning
Service

A name and resource type (oic.sec.aps) given to an OIC device
that is authorized to provision ACL resources.

http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
http://raml.org/spec.html

Copyright OIC © 2015. All rights Reserved. 6

Action A sequence of commands intended for OIC servers
Bootstrap Service An OIC device that implements a service of type oic.sec.bss
Bootstrap and
provisioning tool

A logical entity handling initial provisioning of security (e.g.
credentials) into a newly introduced device.

OIC Client OIC stack instance and application. Typically, the OIC Client
performs actions involving resources hosted by OIC Servers.

Credential
Management
Service

A name and resource type (oic.sec.cms) given to an OIC device
that is authorized to provision credential resources.

OIC Device An instance of an OIC stack. Multiple stack instances may exist on
the same platform.

Device Class RFC 7228 defines classes of constrained devices that
distinguishes when the OIC small footprint stack is used vs. a
large footprint stack. Class 2 and below is for small footprint
stacks.

Entity An element of the physical world that is exposed through an OIC Device

DeviceID OIC stack instance identifier.

Interface Interfaces define expected parameters to GET, PUT, POST,
DELETE commands for specific resources

Intermediary A device that implements both client and server roles and may
perform protocol translation, virtual device to physical device
mapping or resource translation.

OIC Cipher Suite A set of algorithms and parameters that define the cryptographic
functionality of an OIC Device. The OIC Cipher Suite includes the
definition of the public key group operations, signatures, and
specific hashing and encoding used to support the public key. An
OIC Cipher Suite should include a DTLS cipher suite.

Onboarding Tool A logical entity within a specific IoT network that establishes
ownership for a specific device and helps bring the device into
operational state within that network.

PlatformID Uniquely identifies the platform consisting of hardware, firmware
and operating system. The platform ID is considered unique and
immutable and typically inserted in platform in an integrity
protected manner. A platform may host multiple OIC Devices.

Property A named data element within a resource. May refer to intrinsic
properties that are common across all OIC resources.

Resource A data structure that defines the properties, type and interfaces of
an OIC Device.

Role (network
context)

Stereotyped behavior of an OIC device; one of [Client, Server or
Intermediary]

Role (Security
context)

A property of an OIC credential resource that names a role that a
device may assert when attempting access to device resources.
Access policies may differ for OIC Client if access is attempted

Copyright OIC © 2015. All rights Reserved. 7

 179

 180

Table 1 – Terminology 181
 182

3.2 Symbols and Abbreviations 183

 184
Table 2 - Symbols and abbreviations 185
 186

 187

3.3 Conventions 188

 189

through a role vs. the device UUID. This document assumes the
security context unless otherwise stated.

OIC Server An OIC resource host.

Secure Resource
Manager

A module in the OIC Core that implements security functionality
that includes management of security resources such as ACLs,
credentials and device owner transfer state.

SACL A signed ACL resource that is dynamically supplied to an OIC
Server

Trust Anchor A well-defined, shared authority, within a trust hierarchy, by which
two cryptographic entities (e.g. an OIC device and an onboarding
tool) can assume trust.

Unique
Authenticable
Identifier

A unique identifier created from the hash of a public key and
associated OIC Cipher Suite that is used to create the DeviceID.
The ownership of a UAID may be authenticated by peer devices.

Symbol Description

ACL Access control list
AMS Access manager service
APS ACL provisioning service
BPT Bootstrap and provisioning Tool
BSS Bootstrap service
CMS Credential management service
CRUDN Create, Read, Update, Delete, Notify
OBT Onboarding Tool
SRM Secure Resource Manager
UAID Unique Authenticable IDentifer

Copyright OIC © 2015. All rights Reserved. 8

Figure 1 - OIC interactions 190

OIC devices may implement OIC Client role that performs Actions on OIC Servers. Actions 191
access Resources managed by OIC Servers. The OIC stack enforces access policies on 192
resources. End-to-end device interaction can be protected using session protection protocol (e.g. 193
DTLS) or with data encryption methods. 194

4 Document Conventions and Organization 195

This document defines resources, protocols and conventions used to implement security for OIC 196
core framework and applications. 197

For the purposes of this document, the terms and definitions given in OIC Core Specification 198
apply. 199

4.1 Notation 200

In this document, features are described as required, recommended, allowed or DEPRECATED 201
as follows: 202

Required (or shall or mandatory). 203

These basic features shall be implemented to comply with OIC Core Architecture. The 204
phrases “shall not”, and “PROHIBITED” indicate behavior that is prohibited, i.e. that if 205
performed means the implementation is not in compliance. 206

Recommended (or should). 207

These features add functionality supported by OIC Core Architecture and should be 208
implemented. Recommended features take advantage of the capabilities OIC Core 209
Architecture, usually without imposing major increase of complexity. Notice that for 210
compliance testing, if a recommended feature is implemented, it shall meet the specified 211
requirements to be in compliance with these guidelines. Some recommended features could 212
become requirements in the future. The phrase “should not” indicates behavior that is 213
permitted but not recommended. 214

Allowed (or allowed). 215

These features are neither required nor recommended by OIC Core Architecture, but if the 216
feature is implemented, it shall meet the specified requirements to be in compliance with 217
these guidelines. 218

Conditionally allowed (CA) 219

The definition or behaviour depends on a condition. If the specified condition is met, then the 220
definition or behaviour is allowed, otherwise it is not allowed. 221

Conditionally required (CR) 222

The definition or behaviour depends on a condition. If the specified condition is met, then the 223
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default 224
unless specifically defined as not allowed. 225

DEPRECATED 226

Although these features are still described in this specification, they should not be 227
implemented except for backward compatibility. The occurrence of a deprecated feature 228
during operation of an implementation compliant with the current specification has no effect 229
on the implementation’s operation and does not produce any error conditions. Backward 230
compatibility may require that a feature is implemented and functions as specified but it shall 231
never be used by implementations compliant with this specification. 232

Copyright OIC © 2015. All rights Reserved. 9

Strings that are to be taken literally are enclosed in “double quotes”. 233

Words that are emphasized are printed in italic. 234

4.2 Data types 235

See OIC Core Specification. 236

4.3 Document structure 237

The Smart Home Device specification defines an OIC Device for usage in the Smart Home 238
vertical. This document describes an OIC Device and makes use of functionality defined in the 239
OIC Core Specification. 240

The OIC Core Specification provides building blocks to define OIC Devices. The following Core 241
functionality is used: 242

• Required OIC Core Resources. 243

• Required transports. 244

Note that other mandatory functions in the Core might be needed to create an OIC compliant 245
device, but are not mentioned in this document. 246

The Security specification may use RAML as a specification language and JSON Schemas as 247
payload definitions for all CRUDN actions. The mapping of the CRUDN actions is specified in the 248
OIC Core Specification. 249

4.4 Document Sections 250

5 Security Overview (Informative) 251

The goal for the OIC security architecture is to protect OIC resources themselves and all aspects 252
of HW and SW that are used to support the protection of OIC resource. From OIC perspective an 253
OIC device is a logical entity that conforms to OIC specifications. The OIC server holds and 254
controls the resources and provides OIC client access to those resources, subject to a set of 255
security mechanisms. The platform, hosting the OIC device may provide security hardening that 256
will be required for ensuring robustness of the variety of operations described in this 257
specification. 258

The security theory of operation is described in the following three steps. 259

 260

Copyright OIC © 2015. All rights Reserved. 10

 261

Step-1 - The OIC Client establishes a network connection to the OIC Server (OIC device holding 262
the resources). The connectivity abstraction layer ensures the devices are able to connect 263
despite differences in connectivity options. OIC Devices are identified using a DeviceID, which is 264
different from a platform ID. The platform ID is meant to uniquely identify the physical device. 265
There should be a binding between the device context and the platform implementing the device. 266
Network addresses map to DeviceIDs. The network address is used to establish connectivity, but 267
security policy is expressed in terms of DeviceID. 268

Note: Future versions of this specification will add a binding between a device (and device ID) 269
and and a platform ID. 270

Step-2 - The second step establishes a secure end-to-end channel that protects the exchange of 271
OIC messages and resources passed between OIC devices (e.g. OIC servers and OIC devices). 272
Encryption keys are stored securely (robustness dependent upon platform availability) in the 273
local platform. The OIC credential resource is used to reference the encryption keys. The set of 274
devices the OIC Server is able to communicate with securely is contained in the OIC services 275
resource. To access any resources on the OIC server, the OIC client must first be authenticated 276
to the OIC server. The OIC server then consults the ACL pertaining to the OIC resource, to 277
which access is being attempted and looks for an ACL entry that matches the OIC client 278
deviceID or roleID. In certain cases, the requester may assert a role, if privileged access is 279
required. 280

Step 3 – The final step applies the ACL permission to the requested resource where the decision 281
to allow or deny access is enforced by the OIC Server’s Secure Resource manager (SRM). 282

 283
OIC resource protection includes protection of data both while at rest and during transit. It should 284
be noted that, aside from access control mechanisms, OIC security specification does not 285
include specification of secure storage of OIC resources, while stored at OIC servers. However, 286
at rest protection for security resources is expected to be provided through a combination of 287
secure storage and access control. Secure storage can be accomplished through use of 288
hardware security or encryption of data at rest. The exact implementation of secure storage is 289

Copyright OIC © 2015. All rights Reserved. 11

subject to a set of hardening requirements that are specified in section 14 and may be subject to 290
certification guidelines. 291
 292
Data in transit protection, on the other hand, will be specified fully as a normative part of this 293
specification. In transit protection may be afforded at 294

1. OIC resource layer through mechanisms such as JSON Web Encryption (JWE) and JSON 295
Web Signatures (JWS) that allow payload protection independent of underlying transport 296
security. This may be a necessary for transport mechanisms that cannot take advantage 297
of DTLS for payload protection. 298

2. At transport layer through use of mechanisms such as DTLS. It should be noted that 299
DTLS will provide packet by packet protection, rather than protection for the payload as 300
whole. For instance, if the integrity of the entire payload as a whole is required, separate 301
signature mechanisms must have already been in place before passing the packet down 302
to the transport layer. 303

 304

5.1 Access control (Informative) 305

OIC framework assumes that resources are hosted at OIC server and are made available to OIC 306
clients subject to access control and authorization mechanisms. The resources at the end point 307
are protected through implementation of access control, authentication (data integrity protection 308
and possibly origin verification) and confidentiality protection. This section provide an overview 309
of access control (AC) through the use of Access Control Lists (ACLs), while leaving other 310
mechanisms such as resource integrity protection, confidentiality protection to other sections. 311
However, AC in the OIC stack is expected to be transport and connectivity-mechanism agnostic 312

Platform hardening
Access Control
(ACL, @rest Enc,
Payload encryption)

Platform hardening,
In transit protection
of packets

Copyright OIC © 2015. All rights Reserved. 12

Implementation of access control relies on a-priori definition of a set of access policies for data 313
(object) that needs protection. The policies may be stored by a local ACL or an Access Manager 314
service in form of Access Control Entries (ACE), where each ACE defines permissions required 315
to access a specific object along with the validity period for the granted permission. Two types 316
of access control mechanisms can be applied 317

• Subject-based access control (SBAC), where each ACE will match a subject (e.g. identity 318
of requestor) of the requesting entity against the subject included in the policy defined for 319
object (data that is to be accessed). Asserting the identity of the requestor requires an 320
authentication process. 321

• Role-based Access Control (RBAC), where each ACE will match a role required by policy 322
for the object to a role taken by the entity requesting access. Asserting the role of the 323
requestor requires proper authorization process. 324

In OIC access control model, each resource instance is required to have an associated access 325
control policy. This means, each OIC device acting as OIC server, needs to have an ACL for 326
each resource it is protecting. If access control is SBAC, then there needs to be an ACE for each 327
subject (identity of an OIC client) that needs to access a SBAC controlled resource. However, 328
ACLs for unknown or anonymous (unauthenticated) subject may be possible and subject to 329
default permissions defined for the resource. For example: 330

Example ACL: uuid:0000-0000-0000-0000 -> “/oic/*” ? 0x01 (read-only) 331

Details of the format for ACL is defined in section 12.5. Each ACL is composed of one or more 332
ACEs. It is assumed that each OIC device has at least one access control resource. Absence of 333
an ACL on an OIC device is an indication that ACL provisioning may be required and access to 334
the corresponding resource may be denied until the appropriate ACL is provisioned. 335
 336

It should be noted that the ACL is considered a secure virtual resource and thus requires the 337
same security protection as other sensitive resources, when it comes to both storage and 338
handling by SRM and PSI. Thus hardening of an underlying platform (HW and SW) must be 339
considered for protection of ACLs and as explained below ACLs may have different scoping 340
levels and thus hardening needs to be specially considered for each scoping level. For instance 341
a physical device may host multiple OIC device implementations and thus secure storage, usage 342
and isolation of ACLs for different OIC servers on the same device needs to be considered. 343

5.1.1 ACL Architecture (Informative) 344

As mentioned, an OIC Client device requests access to resources from an OIC Server. The OIC 345
Server examines the OIC client’s access rights to its resources based on either OIC client’s 346
identity (if SBAC) or role (RBAC). Access requests may be authorized based on group or device 347
credentials. The ACL architecture illustrates four client devices seeking access to server 348
resources. A server evaluates each request using local ACL policies and access manager 349
services. 350

Each ACE contains the permission set that will be applied for a given resource requestor. 351
Permissions consist of a combination of Create, Read, Update, Delete and Notify (CRUDN) 352
actions. Requestors authenticate as either a device or a device operating with a particular role. 353
OIC devices may acquire elevated access permissions when asserting a role. For example, an 354
ADMINISTRATOR role might expose additional resources and interfaces not normally accessible. 355

5.1.1.1 Use of local ACLs 356

OIC servers may host ACL resources locally. Local ACLs allow greater autonomy in access 357
control processing than remote ACL processing by an Access Manager Server (AMS) as 358
described below. 359

Copyright OIC © 2015. All rights Reserved. 13

 360

The following use cases intend to describe the operation of access control 361

Use Case 1: Server device hosts 4 resources (R1, R2, R3 and R4). OIC client device D1 362
requests access to resource R1 (hosted at OIC server device 5). ACL[0] corresponds to resource 363
R1 below and includes D1 as an authorized subject. Thus, device D1 receives access to 364
resource R1 because the local ACL /oic/sec/acl/0 matches the request. 365

 366

 367
Figure 2 – Use case-1 showing simple ACL enforcement 368

 369

Use Case 2: OIC client device D2 access is denied because no local ACL match is found for 370
subject D2 pertaining resource R2 and no access manager policy is found. 371

 372

Figure 3 Use case 2: A policy for the requested resource is missing 373

5.1.1.2 Use of Access Manager Service 374

Access manager services improve ACL policy management. However, they can become a central 375
point of failure. Due to network latency overhead, ACL processing may be slower. 376

Access manager services centralizing access control decisions, but OIC server devices retain 377
enforcement duties. The server shall determine which ACL mechanism to use for which resource 378
set. The /oic/sec/amacl resource is an ACL structure that specifies which resources will use an 379
access manager service to resolve access decisions. The amacl may be used in concert with 380
local ACLs (/oic/sec/acl). 381

Copyright OIC © 2015. All rights Reserved. 14

The provisioning services resource (/oic/sec/svc) shall contain an Access Manager service entry 382
of type oic.sec.ams. 383

 384

The OIC server device may open a connection to a service of type oic.sec.ams. Alternatively, the 385
OIC server may reject the resource access request with an error that instructs the requestor to 386
obtain a suitable access sacl. The sacl signature may be validated using the credential resource 387
associated with a service of type oic.sec.ams. 388

 389

Use Case 3: OIC device D3 requests and receives access to resource R3 with permission Perm1 390
because the /oic/sec/amacl/0 matches a policy to consult the Access Manager Server AMS1 391
service 392

 393

Figure 4 - Use case-3 showing Access Manager Service supported ACL 394

Use Case 4: OIC client device D4 requests access to resource R4 from Server device 5, which 395
fails to find a matching ACE and redirects the client device D4 to AMS1 by returning an error 396
identifying AMS1 as an access sacl issuer. Device D4 obtains Sacl1 signed by AMS1 and 397
forwards the SACL to server D5. D5 verifies the sacl signature evaluates the ACL policy that 398
grants Perm2 access. 399

ACE redirection is that D4 receives an error result with reason code indicating no match exists. 400
D4 reads D4 /oic/sec/svc resource to find who its AMS is then submits a request for a signed 401
ACL. The request is reissued subsequently. D4 is presumed to be known by AMS. 402

If not, a CMS can be consulted to provision needed credentials. 403

Copyright OIC © 2015. All rights Reserved. 15

 404

Figure 5 - Use case-4 showing dynamically obtained ACL from an AMS 405

 406

 407

 408

 409

5.1.2 Access control scoping levels (Informative) 410

Group Level Access - Group scope means applying AC to the group of OIC devices that are 411
grouped for a specific context. Group credentials may be used when encrypting data to the group 412
or authenticating individual OIC device members into the group. Group Level Access means all 413
group members have access to group data but non-group members must be granted explicit 414
access. 415

OIC Device Level Access – OIC Device scope means applying AC to an individual OIC device, 416
which may contain multiple OIC Resources. OIC Device level access implies accessibility 417
extends to all OIC resources available to the OIC device identified by OIC DeviceID. Credentials 418
used for AC mechanisms at OIC device are OIC device-specific. 419

OIC Resource Level Access – OIC Resource level scope means applying AC to individual OIC 420
Resources. Resource access requires an Access Control List (ACL) that specifies how the entity 421
holding the OIC resource (OIC server) shall make a decision on allowing a requesting entity (OIC 422
client) to access the OIC resource. 423

Property Level Access - Property level scope means applying AC only to a property that is part 424
of a parent OIC resource. This is to provide a finer granularity for AC to OIC resources that may 425
require different permissions for different properties. Property level access control is achieved by 426
creating a Collection resource that references other resources containing a single property. This 427
technique allows the resource level access control mechanisms to be used to enforce property 428
level granularity. 429

As mentioned, OIC ACL policies are expressed at the resource level granularity. In case, some 430
properties of a resource require different access permissions that the rest of properties within a 431
resource, the resource designer should divide the resource into a collection resource that 432
references the child resources with separate access permissions. An example is shown below, 433
where an “oic.thing” resource has two properties: Property-1 and Property-2 that would require 434
different permissions. 435

Copyright OIC © 2015. All rights Reserved. 16

 436

Figure 6 Example resource definition with opaque properties 437

Currently, OIC framework treats properly level information as opaque; therefore, different 438
permissions cannot be assigned as part of an ACL policy (e.g. read-only permission to Property-439
1 and write-only permission to Property-2). Thus, the “oic.thing” is split into two new resource 440
“oic.RsrcProp-1” and “oic.RsrcProp-2”. This way, property level ACL can be achieved through 441
use of resource-level ACLs. 442

 443

 444

Figure 7 Example resource definition with property-level access control using resource 445
ACLs with Read access for the first property and Write access for the second 446
 447

 448

Copyright OIC © 2015. All rights Reserved. 17

 449

5.2 Onboarding and provisioning Overview 450

In order to provision a new device into the OIC network/ environment, the first step is to onboard 451
the device and perform the necessary security provisioning, which include establishment of 452
ownership as well as creation of identifiers, provisioning of credentials and other security related 453
parameters, needed for secure operation as an OIC device. This section defines the onboarding 454
and security provisioning process but leaves provisioning of other service and application 455
specific parameters to other specifications. 456

5.2.1 On-Boarding 457

On-boarding may include a variety of security and non-security related setup to allow a new 458
device to function within the user’s OIC network. This may include: 459

• Configuration of a WiFi access point or other network connectivity setup 460

• Assignment of an IP address 461

• Establishing a device owner (or transferring ownership) 462

• Assignment or registration of a device identifiers (device ID) 463

• Provisioning of security resources 464

5.2.2 Establishing a Device Owner 465

The objective behind establishing device ownership is to establish that a device belongs to a 466
specific IoT network (operated by an owner) where an ‘on-boarding’ tool (OBT) asserts 467
operational control and management of the device. The process of establishing a device owner 468
includes creation of an ownership context between the new device and the OBT tool. The OBT 469
can be considered a logical entity hosted by any of the tools/ servers mentioned in the following 470
as an example. However, a physical device hosting the OBT will be subject to some security 471
hardening requirements, thus preserving integrity and confidentiality of any credentials being 472
stored. Some examples of tools that could perform the OBT function include a network 473
management console, a device management tool, a network-authoring tool, a network 474
provisioning tool, a home gateway device, or a home automation controller. For the purposes of 475
this document the tool that establishes device ownership is referred to as the OBT. 476

Establishing a device owner should be done securely to ensure the device acknowledges it is 477
owned by the intended OBT. This document refers to this process as ownership transfer, since it 478
is assumed that even a new device needs to transfer its ownership from a manufacturer/ seller to 479
a buyer as a new owner. An owner transfer protocol establishes that a new owner (the operator 480
of OBT) is authorized to manage the device. A result of owner transfer is the establishment of 481
the following 482

• An ownership credential (OC) established at OBT and device. The OC allows the device 483
and OBT to mutually authenticate to each other. OC may be expressed using symmetric 484
or asymmetric cryptography. In this document, the term ownerPSK is used for cases 485
where the ownership credential is a pre-shared symmetric key. 486

• Creation of device owner transfer method resource (/oic/sec/doxm) that contains a set of 487
properties, including a device identifier associated to the OIC device (logical entity) that 488
is being provisioned within the new device. 489

• The device needs to know who its owner is. This means the device needs to record the 490
identifier of the OBT (e.g. device ID for OBT). The OBT needs to record the identity of 491
device is part of ownership transfer 492

Copyright OIC © 2015. All rights Reserved. 18

• A binding between the device platform ID (if provided by the manufacture) and device ID 493
as a logical identifier, provisioned during ownership transfer. 494

• Bootstrap information: this is the information as well as credentials needed for the device 495
to interact with the bootstrap server (see next subsection). 496

This document provides specifications for several alternatives for ownership transfer. 497
Requirements related to implementation of ownership transfer methods are stated in section 7. 498

As mentioned, part of the ownership transfer is to provision the device with bootstrapping 499
parameters (BP) that allow the device to contact the bootstrap server (BS) and establish a 500
secure session with the BS. The bootstrap parameters are as follows 501

• Bootstrap server (BS)/ tool metadata: This information needs to include addressing and 502
access mechanism/ protocol to be used to access the bootstrap server. Addressing 503
information may include server URI or FQDN if HTTP or TCP/IP is being used to contact 504
the server. 505

• Boostrapping credentials (BC): This is the credential that the OIC device needs to use to 506
contact the BS, authenticate to the BS, and establish a secure session with the BS to 507
receive provisioning parameters from the BS. 508

As mentioned earlier, the ownership transfer needs to provide the bootstrapping parameters (BP) 509
above. Note that the ownership credentials may be used to provision bootstrapping credentials 510
into the device. For instance if symmetric cryptography is being used as OC and BC, the OC 511
(ownerPSK) may be used in any of the three following methods 512

• OC can be used as key-encryption key (KEK) for wrapping any BC for the following 513
bootstrapping process 514

• OC can be used along with PRF to generate bootstrapping keys that are considered 515
child-keys of the OC. 516

• A symmetric OC may be used as PSK in a PSK-based cipher suite for DTLS 517
authentication. 518

However, bootstrapping server may also use asymmetric cryptography, such as X.509 519
certificates for establishing a secure session with the device based upon a pre-existing Trust 520
Anchor, using DTLS and thus may not use OC explicitly in the creation of the BC. 521
 522
At any rate, the OC should not be used as BC or as credential for any of subsequent network or 523
service provisioning and management activities. 524

All device owner transfer methods accomplish the following goals: 525

a. Establish a secure session between new device and the on-boarding tool. 526

b. Optionally asserts any of the following: 527

i. Proximity (using PIN) of the on-boarding tool to the platform. 528

ii. Manufacturer’s certificate asserting platform vendor, model and other 529
platform specific attributes. 530

iii. Attestation of the platform’s secure execution environment and current 531
configuration status. 532

iv. Platform ownership using a digital title. 533

c. Determines the device identifier. 534

d. Determines the device owner. 535

e. Specifies the device owner (e.g. DeviceID of the on-boarding tool). 536

f. Provisions the device with owner’s credentials. 537

Copyright OIC © 2015. All rights Reserved. 19

g. Provisions a 2nd carrier settings and credentials as needed to join the network 538
subsequent to on-boarding and successful owner transfer. 539

h. Sets the ‘Owned” state of the new device to TRUE. 540

5.3 Bootstrap process and Security bootstrapping 541

Note that in general, provisioning may include processes during manufacturing and distribution of 542
the device as well as processes after the device has been brought into its intended environment 543
(parts of onboarding process). In this specification, security provisioning includes, processes 544
after ownership transfer (even though some activities during ownership transfer and onboarding 545
may lead to provisioning of some data in the device) configuration of credentials for interacting 546
with bootstrapping and provisioning services, configuration of any security related resources and 547
credentials for dealing with any services that the device need to contact later on. 548

 549

Once the ownership transfer is complete and bootstrap credentials are established, the device 550
needs to engage with the bootstrap server to be provisioned with proper security credentials and 551
parameters. These parameters can include 552

• Security credentials through a credential management service, currently assumed to be 553
deployed in the same bootstrap and provisioning tool (BPT) 554

• Access control policies and ACLs through a ACL provisioning service, currently assumed 555
to be deployed in the same bootstrap and provisioning tool (BPT), but may be part of 556
Access Manager service in future. 557

As mentioned, to accommodate a scalable and modular design, these functions are considered 558
as services that in future could be deployed as separate servers. Currently, the deployment 559
assumes that these services are all deployed as part of a BPT. Regardless of physical 560
deployment scenario, the same security-hardening requirement (TBD: e.g. protection of 561
credentials used to secure the bootstrapping message exchange with all devices) applies to any 562
physical server that hosts the tools and security provisioning services discussed here. 563
 564

Devices are aware of their security provisioning status. Self-awareness allows them to be 565
proactive about provisioning or re-provisioning security resources as needed to achieve the 566
devices operational goals. 567

5.3.1 Provisioning a bootstrap service 568

The device need to have discovered the bootstrap parameters (BP), including the metadata 569
required to discover and interact with the Bootstrap server (BS) and have been configured with 570
bootstrap credential (BC) required to communicate with BS securely. 571

In the resource structure, the oic.sec.bss entry in the /oic/sec/svc resource identifies the 572
bootstrap service. 573

As mentioned, when symmetric keys are used, the ownership credential (OC) is used to derive 574
the BC. However, when the device is capable of using asymmetric keys for ownership transfer 575
and other provisioning processes, there may not be a need for a cryptographic relationship 576
between BC and OC. 577

Regardless of how the BC is created, the communication between device and bootstrap servers 578
(and potentially other servers) must be done securely. For instance when a pre-shared key is 579
used for secure connection with the device, The oic.sec.bss service includes a oic.sec.cred 580
resource is provisioned with the PSK. 581

Copyright OIC © 2015. All rights Reserved. 20

5.3.2 Provisioning other services 582

To be able to support the use of potentially different servers, each device may possess an 583
oic.sec.svc resource that describes which service entity to select for provisioning support. To 584
support this, the oic.sec.bss creates or updates the oic.sec.svc resources for 585

• Credential management service (oic.sec.cms) 586

• ACL provisioning service (oic.sec.aps) 587

• Access Manager service (oic.sec.ams) 588

The idea is that oic.sec.svc resource contains a list of services the device may consult for self-589
provisioning. Similar to the bootstrapping mechanism, each of the services above must be 590
performed securely and thus require specific credentials to be provisioned. The bootstrap service 591
may initiate of any services above by triggering the device to re-provision its credential resources 592
(oic.sec.cred) for that service. 593

If symmetric keys are used as credentials for any of the provisioning services above, the 594
bootstrap service needs to provision the appropriate required credentials. 595

In general, the OIC Server devices may restrict the type of key (CredType) supported. 596

 597

5.3.3 Credential provisioning 598

Several types of credential may be configured in a /oic/sec/cred resource. Currently, they include 599
at least the following key types; pairwise symmetric keys, group symmetric keys, asymmetric 600
keys and signed asymmetric keys. Keys may be provisioned by a credential management service 601
(e.g. ”oic.sec.cms”) or dynamically using a Diffie-Hellman key agreement protocol or through 602
other means. 603

The following describe an example on how a device can update a PSK for a secure connection. 604
A device may discover the need to update credentials, e.g. because a secure connection attempt 605
fails. The device will then need to request credential update from a credential management 606
service. The device may enter credential-provisioning mode (e.g. /oic/sec/pstat.Cm=16) and may 607
configure operational mode (e.g. /oic/sec/pstat.Om=”1”) to request an update to its credential 608
resource. The CMS responds with a new pairwise pre-shared key (PSK). 609

5.3.4 Role assignment and provisioning 610

The OIC servers, receiving requests for resources they host, need to examine the role asserted 611
by the entity requesting the resource (OIC client) and compare that role with the constraints 612
described in their ACLs. Thus, a OIC client device seeking a role, needs to be provisioned with 613
the required role. 614

Each OIC device holds the role information as a property within the credential resource. Thus, it 615
is possible that OIC client, seeking a role provisioning, enters a mode where it can provision both 616
credentials and ACLs (if they are provisioned by the same sever!). The provisioning mode/status 617
is typically indicated by the content of /oic/sec/pstat. 618

Once configured, the OIC client can assert the role it is using by including the role string with the 619
CoAP payload. 620

 e.g. GET /a/light; ‘role’=admin 621

Copyright OIC © 2015. All rights Reserved. 21

5.3.5 ACL provisioning 622

During ACL provisioning, the device establishes a secure connection to an ACL provisioning 623
service (or bootstrap server, if it is hosting the ACL provisioning service). The ACL provisioning 624
service will instantiate or update device ACLs according to the ACL policy. 625

The device and ACL provisioning service may establish an observer relationship such that when 626
a change to the ACL policy is detected; the device is notified triggering ACL provisioning. 627

The ACL provisioning service (e.g. rt=”oic.sec.aps”) may digitally sign an ACL as part of issuing 628
a /oic/sec/sacl resource. The public key used by OIC Servers to verify the signature may be 629
provisioned as part of credential provisioning. A /oic/sec/cred resource with an asymmetric key 630
type or signed asymmetric key type is used. The PublicData property contains the ACL 631
provisioning service’s public key. 632

 633

5.4 Secure Resource Manager 634

Secure Resource Manager (SRM) plays a key role in the overall security operation. In short, 635
SRM performs both management of secure virtual resources (SVR) and access control for 636
requests to access and manipulate resources. SRM consists of 3 main functional elements: 637

• A resource manager (RM): responsible for 1) Loading Secure Virtual Resources (SVRs) 638
from persistent storage (using PSI) as needed. 2) Supplying the Policy Engine (PE) with 639
resources upon request. 3) Responding to requests for SVRs. While the SVRs are in 640
SRM memory, the SVRs are in a format that is consistent with device-specific data store 641
format. However, the RM will use JSON format to marshal SVR data structures before be 642
passed to PSI for storage, or travel off-device. 643

• A Policy Engine (PE) that takes requests for access to secure virtual resources (SVRs) 644
and based on access control policies responds to the requests with either 645
“ACCESS_GRANTED” or “ACCESS_DENIED”. To make the access decisions, the PE 646
consults the appropriate ACL and looks for best Access Control Entry (ACE) that can 647
serve the request given the subject (device or role) that was authenticated by DTLS. 648

• Persistent Storage Interface (PSI): PSI provides a set of APIs for the RM to manipulate 649
files in its own memory and storage. The SRM design is modular such that it may be 650
implemented in the platform’s secure execution environment; if available. 651

Copyright OIC © 2015. All rights Reserved. 22

 652

5.5 Credential Overview 653

OIC Devices use credentials to prove the identity of the parties in bidirectional communication. 654
Credentials can be symmetric or asymmetric. Each device stores secret and public (if applicable) 655
parts of it’s own credentials, as well as credentials for other devices that have been provided by 656
the On-boarding Tool or a Credential Management Service. These credentials are then used in 657
the establishment of secure communication sessions (e.g. using DTLS) to validate the identities 658
of the participating parties. 659

6 Security for the Discovery Process 660

The main function of a discovery mechanism is to provide Universal Resource Identifiers (URIs, 661
called links) for the resources hosted by the server, complemented by attributes about those 662
resources and possible further link relations. (in accordance to section 10 in Core Spec) 663
 664

6.1 Security Considerations for Discovery 665

When defining discovery process, care must be taken that only a minimum set of resources are 666
exposed to the discovering entity w/o violating security of sensitive information or privacy 667
requirements of the application at hand. This includes both data included in the resources, as 668
well as the corresponding metadata. 669

To achieve extensibility and scalability, this specification does not provide a mandate on 670
discoverability of each individual resource. Instead, the OIC server, holding the resource will rely 671
on ACLs for each resource to determine if the requester (the client) is authorized to see/ handle 672
any of the resources. 673

The /oic/sec/acl resource contains access control list entries governing access to OIC Server 674
hosted resources. (See Section12.5.2) 675

Aside from the privacy and discoverability of resources from ACL point of view, the discovery 676
process itself needs to be secured. This specification sets the following requirements for the 677
discovery process: 678

1. Providing integrity protection for discovered resources. 679

Resource Introspection (RI) layer

Secure Resource Manager (SRM)

Persistent
Storage

Interface (PSI)

Policy Engine
(PE)

Resource
Manager (RM)

Platform Secure
storage

(secure virtual
resource database)

Connectivity Abstraction (CA) layer

PSI

Copyright OIC © 2015. All rights Reserved. 23

2. Providing confidentiality protection for discovered resources that are considered sensitive. 680

The discovery of resources is done by doing a RETRIEVE operation (either unicast or multicast) 681
on the known resource “/oic/res”. 682

When the discovery request is sent over a non-secure channel (multicast or unicast without 683
DTLS), an OIC Server cannot determine the identity of the requester. In such cases, an OIC 684
Server that wants to authenticate the client before responding can list the secure discovery URI 685
(e.g. coaps://IP:PORT/oic/res) in the unsecured /oic/res response. This means the secure 686
discovery URI is by default discoverable by any OIC client. The OIC Client will then be required 687
to send a separate unicast request using DTLS to the secure discovery URI. 688

For secure discovery, any resource that has an associated ACL will be listed in the response to 689
/oic/res if and only if the client has permissions to perform at least one of the CRUDN operations 690
(i.e. the bitwise OR of the CRUDN flags must be true). 691

For example, an OIC Client with DeviceId “d1” makes a RETRIEVE request on the “/door” 692
Resource hosted on an OIC Server with DeviceId “d3” where d3 has the ACLs below: 693

{ 694

 "Subject": "d1", 695

 "Resource": "/door", 696

 "Permission": "00000010", <read> 697

 "Period": " ", 698

 "Recurrence": " ", 699

 "Rowner": "oic.sec.ams" 700

} 701

{ 702

 "Subject": "d2", 703

 "Resource": "/door","Permission": "00000010", <read> 704

 "Period": " ", 705

 "Recurrence": " ", 706

 "Rowner": "oic.sec.ams" 707

} 708

{ 709

 "Subject": "d2", 710

 "Resource": "/door/lock", 711

 "Permission": "00000100", <update> 712

 "Period": " ", 713

Copyright OIC © 2015. All rights Reserved. 24

 "Recurrence": " ", 714

 "Rowner": "oic.sec.ams" 715

} 716

{ 717

 "Subject": "d4", 718

 "Resource": "/door/lock", 719

 "Permission": "00000100", <update> 720

 "Period": " ", 721

 "Recurrence": " ", 722

 "Rowner": "oic.sec.ams" 723

} 724

{ 725

 "Subject": "*", 726

 "Resource": "/light", 727

 "Permission": "00000010", <read> 728

 "Period": " ", 729

 "Recurrence": " ", 730

 "Rowner": "oic.sec.ams" 731

} 732

The ACL indicates that OIC Client “d1” has RETRIEVE permissions on the resource. Hence when device 733
“d1” does a discovery on the /oic/res resource of OIC Server “d3”, the response will include the URI of the 734
“/door” resource. Similarly if an OIC Client “d4” does a discovery on OIC Server “d3”, the response will not 735
include the URI of the “/door” but will include the URI of the “/door/lock” resource. OIC Client “d2” will 736
have access to both the resources. 737
 738
Discovery results delivered to d1 regarding d3’s /oic/res resource from the secure interface: 739
[740
{ 741
"d3": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1", 742

 { 743
 "href": "/door", 744
 "rt": "oic.r.door", 745
 "if": "oic.if.b oic.ll" 746
 } 747
 } 748
] 749
 750
Discovery results delivered to d2 regarding d3’s /oic/res resource from the secure interface: 751
[752
{ 753

Copyright OIC © 2015. All rights Reserved. 25

"d3": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1", 754
 { 755
 "href": "/door", 756
 "rt": "oic.r.door", 757
 "if": "oic.if.b oic.ll" 758
 }, 759
 { 760
 "href": "/door/lock", 761
 "rt": "oic.r.lock", 762
 "if": "oic.if.b", 763
 "type": "application/json application/exi+xml" 764
 } 765
 } 766
] 767
 768
Discovery results delivered to d4 regarding d3’s /oic/res resource from the secure interface: 769
[770
{ 771
"d3": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1", 772

 { 773
 "href": "/door/lock", 774
 "rt": "oic.r.lock", 775
 "if": "oic.if.b", 776
 "type": "application/json application/exi+xml" 777
 } 778
 } 779
] 780
 781
Discovery results delivered to any device regarding d3’s /oic/res resource from the unsecure interface: 782
[783
{ 784
"d3": "0685B960-736F-46F7-BEC0-9E6CBD61ADC1", 785

 { 786
 "href": "/light", 787
 "rt": "oic.r.light", 788
 "if": "oic.if.s" 789
 } 790
} 791

] 792
 793

6.2 Discoverability of security resources 794

 795
This section will be specified in a future version. 796

 797

7 Security Provisioning 798

7.1 Device Identity (Normative) 799

Each OIC device, which is a logical device, is identified with a device ID. 800

OIC devices SHALL identified by a DeviceID value that is established as part of device on 801
boarding. The /oic/sec/doxm resource specifies the DeviceID format (e.g. urn:uuid). Device IDs 802
shall be unique within the scope of operation of the corresponding OIC network, and should be 803
universally unique. Device ID uniqueness within the network should enforced at device on 804

Copyright OIC © 2015. All rights Reserved. 26

boarding. A device on boarding tool shall verify the chosen new device identifier does not conflict 805
with other devices previously introduced into the network. 806

OIC devices maintain an association of Device ID and cryptographic credential using a 807
/oic/sec/cred resource. OIC devices regard the /oic/sec/cred resource as authoritative when 808
verifying authentication credentials of a peer device. 809

An OIC device maintains its device ID in the /oic/sec/doxm resource. It maintains a list of 810
credentials, both its own and other device credentials, in the /oic/sec/cred resource. The device 811
ID can be used to distinguish between a device’s own credential, and credentials for other 812
devices. Furthermore, the /oic/sec/cred resource may contain more multiple credentials for the 813
device. 814

Device ID SHALL be: 815

• Unique 816

• Immutable 817

• Verifiable 818

When using manufacturer certificates, the certificate should bind the ID to the stored secret in 819
the device as described later in this section. 820

A physical device, referred to as platform in OIC specifications, may host multiple OIC devices. 821
The platform is identified by a platform ID. The platform ID SHALL be globally unique and 822
inserted in the device in an integrity protected manner (e.g. inside secure storage or signed and 823
verified). 824

Note: An OIC Platform may have secure execution environment, which SHALL be used to secure 825
unique identifiers and secrets. If a platform hosts multiple devices, some mechanism is needed 826
to provide each device with the appropriate and separable security. 827

7.1.1 Device Identity for Devices with UAID 828

When a manufacturer certificate is used with certificates chaining to an OIC root CA (as specified 829
in section 7.1.1), the manufacturer shall include a platform ID inside certificate subject CN field. 830
In such cases, the device ID may be created according to UAID scheme defined in this section. 831

For identifying and protecting OIC devices, the platform secure execution environment (SEE) 832
may opt to generate new dynamic public key pair (DPC) for each OIC device it is hosting, or it 833
may opt to simply use the same public key credentials embedded by manufacturer (EPC). In 834
either case, the platform SEE will use its random number generator (RNG) to create a device 835
identity called UAID for each OIC device. The UAID is generated using EPC only or DPC and 836
EPC if both are available. When both are available, the platform SHALL use both key pairs to 837
generate the UAID as described in this section. 838

The OIC DeviceID is formed from the device’s public keys and associated OIC Cipher Suite. The 839
DeviceID is formed by: 840

1. Determining the OIC Cipher Suite of the Dynamic Public Key. The Cipher Suite curve 841
must match the usage of the AlgorithmIdentifier used in SubjectPublicKeyInfo as intended 842
for use with OIC device security mechanisms. Use the encoding of the CipherSuite as the 843
‘csid’ value in the following calculations. Note that if the OIC Cipher Suite for Dynamic 844
Public key is different from ciphersuite indicated in platform certificate (EPC), OIC Cipher 845
Suite SHALL be used below. 846

Copyright OIC © 2015. All rights Reserved. 27

2. From EPC extract the value of embedded public key from a certificate (EPC). The value 847
should correspond to the value of subjectPublicKey defined in SubjectPublicKeyInfo of 848
the certificate. In the following we refer to this as EPK. If the public key is extracted from 849
a certificate, validate that the AlgorithmIdentifier matches the expected value for the 850
CipherSuite within the certificate. 851

3. From DPC Extract the opaque value of the public key. The value should correspond to 852
the value of subjectPublicKey defined in SubjectPublicKeyInfo. In the following we refer 853
to this as DPK. 854

4. Using the hash for the Cipher Suite calculate: 855
h = hash(‘uaid’ | csid | EPK| DPK | <other_info>) 856

Other_info could be 1) device type as indicated in /oic/d (could be read-only and set by 857
manufacturer), 2) in case there are two sets of public key pairs (one embedded, and one 858
dynamically generated), both public keys would be included. 859

5. Truncate to 128 bits by taking the first 128 bits of h 860
UAID = h[0:16] # first 16 octets 861

6. Convert the binary UAID to a ASCII string by 862
USID = base27encode(UAID) 863

def base_N_encode(octets, alphabet): 864
long_int = string_to_int(octets) 865
 text_out = '' 866
 while long_int > 0: 867
 long_int, remainder = divmod(long_int, len(alphabet)) 868
 text_out = alphabet[remainder] + text_out 869
 return text_out 870
 871
b27chars = 'ABCDEFGHJKMNPQRTWXYZ2346789' 872
def b27encode(octet_string): 873
 """Encode a octet string using 27 characters. """ 874

 return base_N_encode(octet_string, _b27chars) 875

7. Append the string value of USID to ‘urn:usid:’ to form the final string 876
value of the DeviceID 877
urn:usid:ABXW.... 878

Whenever the public key is encoded the format described in RFC 7250 for SubjectPublicKeyInfo 879
shall be used. 880

7.1.1.1 Validation of UAID 881

To be able to use the newly generated Device ID (UAID) and public key pair (DPC), the device 882
platform SHALL use the embedded private key (corresponding to manufacturer embedded public 883
key and certificate) to sign a token vouching for the fact that it (the platform) has in fact 884
generated the DPC and UAID and thus deferring the liability of the use of the DPC to the device 885
new owner. This also allows the ecosystem to extend the trust from manufacturer certificate to a 886
device issued certificate for use of the new DPC and UAID. The degree of trust is in this 887
dependent of the level of hardening of the device SEE. 888

 889

Dev_Token=Info, Signature(hash(info)) 890

Signature algorithm=ECDSA (can be same algorithm as that in EPC or that possible for DPC) 891

Copyright OIC © 2015. All rights Reserved. 28

Hash algorithm=SHA256 892

Info=UAID| <Platform ID> | UAID_generation_data | validity 893

UAID_generation_data=data used in the hash algorithm above to generate UAID. 894

Validity=validity period in days (how long the token will be valid) 895

 896

7.2 Device Ownership (Informative) 897

OIC devices are logical entities that are security endpoints that have an identity that is 898
authenticable using cryptographic credentials. An OIC device is ‘un-owned’ when it is first 899
initialized. Establishing device ownership is a process by which the device asserts it’s identity to 900
an on-boarding tool (OBT) and the OBT asserts its identity to the device. This exchange results 901
in the device changing its ownership state thereby preventing a different OBT from asserting 902
administrative control over the device. 903

Device ownership transfer logically transitions ownership from a previous owner (e.g. a device 904
manufacturer) to the OBT. Transfer of ownership is achieved through an ad-hoc Diffie-Hellman 905
key exchange. 906

Ownership transfer protocols should include techniques for establishing the physical proximity of 907
the device to an OBT and establishing the security hardening properties of the device through 908
attestation. Attestation typically requires the use of an embedded manufacturer’s certificate that 909
describes the security properties of the physical platform hosting the device. 910

The ownership transfer process starts with the OBT discovering a new device that is “un-owned” 911
through examination of the “Owned” property of the /oic/sec/doxm resource of the new device. 912

 913

7.3 Device Ownership Transfer Methods (Informative) 914

Device ownership transfer methods facilitate interoperability between devices and on-boarding 915
tools. 916

The un-owned device does not allow any other function, besides discovery, than to engage in an 917
owner transfer method. 918

On-boarding typically involves a two stage process for connecting a new device to the owner’s 919
network. During the first step the device connects using a first carrier network that builds an 920
isolated network where only the new device, OBT on optionally provisioning and key 921
management services are reachable. 922

The owner transfer method is performed establishing ownership credentials. Following 923
successful ownership, the OBT provisions the new device with settings necessary to connect to 924
the regular network via a second carrier network. 925

The new device restarts to begin the second stage of on-boarding. During the second stage, the 926
new device, now ‘owned’ is discoverable by other devices in the network. The new device 927
however may not be fully provisioned. Provisioning services bring the device to full operational 928
state. 929

7.3.1 OTM implementation requirements (Normative) 930

This document provides specifications for several methods for ownership transfer. 931
Implementation of each individual ownership transfer method is considered optional. However, 932

Copyright OIC © 2015. All rights Reserved. 29

each device shall implement at least one of the ownership transfer methods not including vendor 933
specific methods. 934

All owner transfer methods (OTMs) included in this document are considered optional. Each 935
vendor is required to choose and implement at least one of the OTMs specified in this 936
specification. The OIC, does however, anticipate vendor-specific approaches will exist. Should 937
the vendor wish to have interoperability between an vendor-specific owner transfer method and 938
and OBTs from other vendors, the vendor must work directly with OBT vendors to ensure 939
interoperability. Not withstanding, standardization of OTMs is the preferred approach.. In such 940
cases, a set of guidelines is provided below to help vendors in designing vendor-specific OTMs. 941
(See Section 7.3.6). 942

The device owner transfer method (doxm) resource is extensible to accommodate vendor-943
defined methods. All OTM methods shall facilitate allowing the OBT to determine which owner 944
credential is most appropriate for a given new device within the constraints of the capabilities of 945
the device. The OBT will query the credential types that the new device supports and allow the 946
OBT to select the credential type from within device constraints. 947

Vendor-specific device owner transfer methods shall adhere to the /oic/sec/doxm resource 948
specification for owner credentials that result from vendor-specific device owner transfer. 949
Vendor-specific methods should include provisions for establishing trust in the new device by the 950
OBT an optionally establishing trust in the OBT by the new device. 951

The end state of a vendor-specific owner transfer method shall allow the new device to 952
authenticate to the OBT and the OBT to authenticate to the new device. 953

Additional provisioning steps may be applied subsequent to owner transfer success leveraging 954
the established session, but such provisioning steps are technically considered provisioning 955
steps that an OBT may not anticipate hence may be invalidated by OBT provisioning. 956

 957

7.3.2 Just-Works Owner Transfer Method (Normative) 958

Just-works owner transfer method creates a symmetric key credential that is a pre-shared key 959
used to establish a secure connection through which a device should be provisioned for use 960
within the owner’s network. Provisioning additional credentials and OIC resources is a typical 961
step following ownership establishment. The pre-shared key is called OwnerPSK. 962
 963

The ownership transfer process starts with the OBT discovering a new device that is “un-owned” 964
through examination of the “Owned” property of the /oic/sec/doxm resource at the OIC device 965
hosted by the new device. 966

Once the OBT asserts that the device is un-owned, when performing the Just-works owner 967
transfer method, the OBT relies on DTLS key exchange process where an anonymous Elliptic 968
Curve Diffie-Hellman (ECDH) is used as a key agreement protocol. 969

Copyright OIC © 2015. All rights Reserved. 30

970
Figure 8 - A 'Just Works' Device Owner Transfer Method 971

Copyright OIC © 2015. All rights Reserved. 31

Step Description

1 The OBT queries to see if the new device is not yet owned.

2 The new device returns the /oic/sec/doxm resource containing ownership status and
supported owner transfer methods. It also contains a temporal device ID that should change
subsequent to successful owner transfer. The device should supply a temporal ID to facilitate
discovery as a guest device.

3, 4 The OBT selects the ‘just works’ method.

5, 6 The OBT also queries to determine if the device is operationally ready to transfer device
ownership.

7, 8 The OBT asserts that it will follow the client provisioning convention.

9 - 14 A DTLS session is established using anonymous Diffie-Hellman. Note: This method assumes
the operator is aware of the potential for man-in-the-middle attack and has taken
precautions to perform the method in a clean-room network.

15, 16 The OBT finds out which credential types the new device can support and decides the
ownership credential to provision to the new device.

17, 18 The OBT asserts itself as the owner of the new device and requests device owned status to
be changed to TRUE.

19, 20 If symmetric credential type is selected: The OBT uses a pseudo-random-function (PRF) and
other information to generate a symmetric key credential - OwnerPSK.

21, 22 If symmetric credential type is selected: The OwnerPSK credential is created on the new
device.

23, 24 New device derives the OwnerPSK locally and verifies it matches the value derived by OBT.

25, 26 If asymmetric credential type is selected: The owner public key credential is created on the
new device. It may be used subsequently to authenticate the OBT.

27 The new device creates an asymmetric key pair.

28, 29 The OBT reads the new device’s asymmetric credential. It may be used subsequently to
authenticate the new device.

30, 31 If certificate credential type is selected: Steps 23 – 27 are applied. In addition, the OBT
obtains a certificate and instantiates the certificate credential on the new device.

32, 33 OBT creates an entry in the new device’s /oic/sec/svc resource that identifies the OBT
service.

34, 35 The new device changes the /oic/sec/doxm.Owned status to TRUE and refuses to accept
requests to perform ownership transfer methods. The OBT accepts the new device into its
database of ‘owned’ devices.

36, 37 The new device provisioning state is updated.

38 Close the DTLS session.

Table 3 - A 'Just Works' Device Owner Transfer Method Details 972

7.3.2.1 Just-works Owner Transfer Method Pseudo-Random Function 973

The OwnerPSK is derived using a PRF that accepts the DTLS MasterSecret value resulting from 974
an anonymous Diffie-Hellman key agreement. The OIC Server and OIC device on-boarding tool 975
shall follow the following format to ensure interoperability across vendor products: 976

OwnerPSK = PRF(MasterSecret, Message, Length); 977

 Where: 978

Copyright OIC © 2015. All rights Reserved. 32

 - PRF shall use TLS 1.2 PRF defined by RFC5246. 979

 - MasterSecret is the master secret key resulting from the DTLS handshake 980

 - Message is a concatenation of the following: 981

 - DoxmType string for the just works method (e.g. “oic.sec.doxm.jw”) 982

 - OwnerID is a URI identifying the device owner identifier and the device that maintains OwnerPSK. 983

 - DeviceID is new device’s DeviceID (e.g. “urn:uuid:XXXX-XXXX-XXXX-XXXX”). 984

 - Length is the length of Message in octets 985

7.3.2.2 Security Considerations 986

Anonymous Diffie-Hellman key agreement is subject to a man-in-the-middle attacker. Use of this 987
method presumes the OBT and the new device perform the ‘just-works’ method assumes on 988
boarding happens in a relatively safe environment absent of an attack device. 989

This method doesn’t have a trustworthy way to prove the device ID asserted is reliably bound to 990
the device. 991

The new device should use a temporal device ID prior to transitioning to an owned device while it 992
is considered a guest device to prevent privacy sensitive tracking. The device asserts a non-993
temporal device ID that could differ from the temporal value during the secure session in which 994
owner transfer exchange takes place. The OBT will verify the asserted device ID does not 995
conflict with a device ID already in use. If it is already in use the existing credentials are used to 996
establish a secure session. 997

An un-owned device that also has established device credentials might be an indication of a 998
corrupted or compromised device. 999

7.3.3 Random PIN Based Owner Transfer Method 1000

The Random PIN method establishes physical proximity between the new device and the OBT 1001
and prevents man-in-the-middle attacks. The device generates a random number that is 1002
communicated to the OBT over an out-of-band channel. The definition of out-of-band 1003
communications channel is outside the scope of the definition of device owner transfer methods. 1004
The OBT and new device present the PIN to a Diffie-Hellman key exchange as evidence that 1005
someone authorized the transfer of ownership by virtue of having physical access to the new 1006
device via the out-of-band-channel. 1007

Copyright OIC © 2015. All rights Reserved. 33

7.3.3.1 Random PIN Owner Transfer Sequence 1008

 1009

Figure 9 – Random PIN-based Device Owner Transfer Method 1010

Copyright OIC © 2015. All rights Reserved. 34

Step Description

1 The OBT queries to see if the new device is not yet owned.

2 The new device returns the /oic/sec/doxm resource containing ownership status and
supported owner transfer methods. It also contains a temporal device ID that might change
subsequent to successful owner transfer. The device should supply a temporal ID to facilitate
discovery as a guest device.

3, 4 The OBT selects the ‘Random PIN’ method.

5, 6 The OBT also queries to determine if the device is operationally ready to transfer device
ownership.

7, 8 The OBT asserts that it will follow the client provisioning convention.

9 - 14 A DTLS session is established using PSK-based Diffie-Hellman ciphersuite. The PIN is
supplied as the PSK parameter. The PIN is randomly generated by the new device then
communicated via an out-of-band channel that establishes proximal context between the
new device and the OBT. The security principle is the attack device will be unable to
intercept the PIN due to a lack of proximity.

15, 16 The OBT finds out which credential types the new device can support and decides the
ownership credential to provision to the new device.

17, 18 The OBT asserts itself as the owner of the new device and requests device owned status to
be changed to TRUE.

19, 20 If symmetric credential type is selected: The OBT uses a pseudo-random-function (PRF) and
other information to generate a symmetric key credential - OwnerPSK.

21, 22 If symmetric credential type is selected: The OwnerPSK credential is created on the new
device.

23, 24 New device derives the OwnerPSK locally and verifies it matches the value derived by OBT.

25, 26 If asymmetric credential type is selected: The owner public key credential is created on the
new device. It may be used subsequently to authenticate the OBT.

27 The new device creates an asymmetric key pair.

28, 29 The OBT reads the new device’s asymmetric credential. It may be used subsequently to
authenticate the new device.

30, 31 If certificate credential type is selected: Steps 23 – 27 are applied. In addition, the OBT
obtains a certificate and instantiates the certificate credential on the new device.

32, 33 OBT creates an entry in the new device’s /oic/sec/svc resource that identifies the OBT
service.

34, 35 The new device changes the /oic/sec/doxm.Owned status to TRUE and refuses to accept
requests to perform ownership transfer methods. The OBT accepts the new device into its
database of ‘owned’ devices.

36, 37 The new device provisioning state is updated.

38 Close the DTLS session.

Table 4 - Random PIN-based Device Owner Transfer Method Details 1011

The random PIN-based device owner transfer method uses a pseudo-random function (PBKDF2) 1012
defined by RFC2898 and a PIN exchanged via an out-of-band method (which is outside the 1013
scope this specification) to generate a pre-shared key. The PIN-authenticated pre-shared key 1014
(PPSK) is supplied to TLS ciphersuites that accept a PSK. 1015

 PPSK = PBKDF2(PRF, PIN, DeviceID, c, dkLen) 1016

Copyright OIC © 2015. All rights Reserved. 35

The PBKDF2 function has the following parameters: 1017

 - PRF – Uses the TLS 1.2 PRF defined by RFC5246. 1018

 - PIN – obtain via out-of-band channel. 1019

 - DeviceID – UUID of the new device. 1020

 - c – Iteration count initialized to 1000, incremented upon each use. 1021

 - dkLen – Desired length of the derived PSK in octets. 1022

7.3.3.2 Security Considerations 1023

The Random PIN device owner transfer method security depends on an assumption that the out-1024
of-band method for communicating a randomly generated PIN from the new device to the OBT 1025
has not been spoofed. 1026

The PIN value should contain entropy to prevent dictionary attack on the PIN by a man-in-the-1027
middle attacker. 1028

The out-of-band mechanism should be chosen such that it requires proximal context between the 1029
OBT and the new device. The attacker is assumed to not have compromised the out-of-band-1030
channel. 1031

OwnerPSK derives additional entropy from the TLS MasterSecret. 1032

7.3.4 Manufacturer Certificate Based Owner Transfer Method 1033

The manufacturer certificate-based owner transfer method shall use a certificate embedded into 1034
the device by the manufacturer and a signed OBT, which determines the Trust Anchor between 1035
the device and the OBT. 1036

When utilizing certificate-based ownership transfer, devices shall utilize asymmetric keys with 1037
certificate data to authenticate their identities with the on-boarding tool (“OBT”) in the process of 1038
bringing a new device into operation on a user’s network. The on-boarding process involves 1039
several discrete steps: 1040

1) Pre-on-board conditions 1041
a. The device shall be certified by OIC and contain a signed certificate and unique 1042

asymmetric key pair 1043
b. It is recommended that the OBT app binary is signed by a trust anchor/trusted CA 1044

to enable mutual authentication with manufacturer-signed clients. 1045
c. If the device requires authentication of the OBT as part of ownership transfer, it is 1046

presumed that the OBT has been registered and has obtained a certificate for its unique 1047
key pair signed by a predetermined trust anchor. 1048

d. User has configured the OBT app with network access info and account info (if 1049
any). 1050

2) Through the OBT, the user connects to the new device using the First Carrier as 1051
indicated in Section 7.3 1052

3) Device and OBT shall mutually authenticate using ECDSA to verify each other’s 1053
signatures. Optionally, the device may bypass OBT authentication by automatically 1054
trusting all OBT trust anchors. 1055

4) If authentication fails, the device shall indicate the reason for failure and revert to its pre-1056
on-boarded state. 1057

5) If authentication succeeds, the device and OBT shall establish an encrypted link using 1058
ECDH. 1059

6) The OBT shall establish ownership credentials for the device and shall transfer these 1060
credentials to the device using the encrypted link. 1061

7) The OBT shall transfer Second Carrier credentials to the device using the encrypted link. 1062

Copyright OIC © 2015. All rights Reserved. 36

8) Additional ownership transfer provisioning data (e.g. certificates signed by the OBT, user 1063
network access information, provisioning functions, shared keys, or Kerberos tickets) may 1064
be sent by the OBT to the device. 1065

9) The device shall restart and establish communications to the Second Carrier using 1066
credentials received from the OBT. Ownership transfer is now completed. 1067

10) Final state of the device is as follows: 1068
a. Device shall now be associated with the user network 1069
b. Device shall no longer accept requests to change ownership 1070
c. Device shall require credential authentication for any future communication with a 1071

new device. 1072
d. Device may be provisioned with additional credentials for OIC device to device 1073

communications. (Credentials may consist of certificates with signatures, UAID 1074
based on the device public key, PSK, etc.) 1075

 1076

7.3.4.1 Certificate Profiles 1077

Within the Device PKI, the following format SHALL be used for the subject within the 1078
certificates. It is anticipated that there may be N distinct roots for scalability and failover 1079
purposes. The vendor creating and operating root will be approved by OIC based on due process 1080
described in Certificate Policy (CP) document and appropriate RFP documentation. Each root 1081
may issue one or more DEV CAs, which in turn issue Manufacturer DEV CAs to individual 1082
manufacturers. A manufacturer may decide to request for more than one Manufacturer CAs. 1083
Each Manufacturer CA issues one or more Device Sub-CAs (up to M) and issues one or more 1084
OSCP responders (up to O). For now we can assume that revocation checking for any CA 1085
certificates is handled by CRLs issued by the higher level CAs. 1086

 1087
 1088

• Root CA: C=<county the root created>, O=<name of root CA vendor>, OU=OIC Root CA, 1089
CN=OIC (R) Device Root-CA<n> 1090

• DEV CA: C=<country for the DEV CA>, O=<name of root CA vendor>, OU=OIC DEV CA, 1091
CN=<name of DEV CA defined by root CA vendor> 1092

Copyright OIC © 2015. All rights Reserved. 37

• Manufacturer DEV CA: C=<country where Manufacturer DEV CA is registered>, 1093
O=<name of root CA vendor>, OU=OIC Manufacturer DEV CA, CN=<name defined by 1094
manufacturer><m> 1095

• Device Sub-CA: C=<country device sub-CA>, O=<name of root CA vendor>, OU=OIC 1096
Manufacturer Device sub-CA, OU=<defined by Manufacturer>, CN=<defined by 1097
manufacturer> 1098

• For Device Sub-CA Level OCSP Responder: C=<country of device Sub-CA>, O=<name 1099
of root CA vendor>, OU=OIC Manufacturer OCSP Responder <o>, CN=<name defined by 1100
CA vendor > 1101

• Device cert: C=<country>, O=<manufacturer>, OU=OIC Device, 1102
CN=<device Type><single space (i.e., " ")><device model name> 1103

o The following optional naming elements MAY be included between the OU=OIC(R) 1104
Devices and CN= naming elements. They MAY appear in any order: 1105
OU=chipsetID: <chipsetID>, OU=<device type>, OU=<device model name> 1106
OU=<mac address> OU=<device security profile> 1107

• Gateway Sub-CA: C=<country>, O=<manufacturer>, OU=<manufacture name> Gateway 1108
sub-CA, CN=<name defined by manufacturer>, <unique Gateway identifier generated 1109
with UAID method> 1110

• Home Device Cert: C=<country>, O=<manufacturer>, OU=Non-OIC Device cert, 1111
OU=<Gateway UAID>, CN=<device Typle> 1112

Technical Note regarding Gateway Sub-CA: If a manufacturer decides to allow its Gatways to act 1113
as Gateway Sub-CA, it needs to accommodate this by setting the proper value on path-length-1114
constraint value within the Device Sub-CA certificate, to allow the latter sub-CA to issue CA 1115
certificates to Gateway Sub-CAs. Given that the number of Gateway Sub-CAs can be very large 1116
a numbering scheme should be used for Gateway Sub-CA ID and given the Gateway does have 1117
public key pair, UAID algorithm SHALL be used to calculate the gateway identifier using a hash 1118
of gateway public key and inserted inside subject field of Gateway Sub-CA certificate. 1119
 1120
A separate Device Sub-CA SHALL be used to generate Gateway Sub-CA certificates. This 1121
Device Sub-CA SHALL not be used for issuance of non-Gateway device certificates. 1122
CRLs including Gatway Sub-CA certificates SHALL be issued on monthly basis, rather than 1123
quarterly basis to avoid potentially large liabilities related to Gateway Sub-CA compromise. 1124
 1125
Device certificates issued by Gateway Sub-CA SHALL include an OU=Non-OIC Device cert, to 1126
indicate that they are not issued by an OIC governed CA. 1127
 1128
When the naming element is DirectoryString (i.e., O=, OU=) either PrintableString or UTF8String 1129
SHALL be used. The following determines which choice is used: 1130

• PrintableString only if it is limited to the following subset of US ASCII characters (as 1131
required by ASN.1): 1132
A, B, …, Z 1133
a, b, …, z 1134
0, 1, …9, 1135
(space) ‘ () + , - . / : = ? 1136

• UTF8String for all other cases, e.g., subject name attributes with any other characters or 1137
for international character sets. 1138

A CVC CA is used by a trusted organization to issue CVC code signing certificates to software 1139
providers, system administrators, or other entities that will sign software images for the OIC 1140
Devices. A CVC CA shall not sign and issue certificates for any specialization other than code 1141
signing. In other words, the CVC CA shall not sign and issue certificates that belong to any 1142
branches other than the CVC branch. 1143

Copyright OIC © 2015. All rights Reserved. 38

 1144

 1145

The certificate formats below are placeholders and are not finalized in this release of the 1146
specification. 1147

7.3.4.2 Certificate Owner Transfer Sequence Security Considerations 1148

In order for full, mutual authentication to occur between the device and the OBT, both the device 1149
and OBT must be able to trace back to a pre-determined Trust Anchor or Certificate Authority. 1150
This implies that OIC may need to obtain services from a Certificate Authority (e.g. Symantec, 1151
Verisign, etc.) to provide ultimate trust anchors from which all subsequent OIC trust anchors are 1152
derived. 1153

The OBT shall authenticate the device. However, the device is not required to authenticate the 1154
OBT due to potential resource constraints on the device. 1155

In the case where the device does NOT authenticate the OBT software, there is the possibility of 1156
malicious OBT software unwittingly deployed by users which can compromise network access 1157
credentials and/or personal information. 1158

Copyright OIC © 2015. All rights Reserved. 39

7.3.4.3 Manufacturer’s Certificate Owner Transfer Sequence 1159

 1160

Figure 10 – Manufacturer Certificate Owner Transfer Sequence 1161

Copyright OIC © 2015. All rights Reserved. 40

Step Description

1 The OBT queries to see if the new device is not yet owned.

2 The new device returns the /oic/sec/doxm resource containing ownership status and
supported owner transfer methods. It also contains a temporal device ID that may change
subsequent to successful owner transfer. The device should supply a temporal ID to facilitate
discovery as a guest device.

3, 4 The OBT selects the ‘Manufacturer Certificate’ method.

5, 6 The OBT also queries to determine if the device is operationally ready to transfer device
ownership.

7, 8 The OBT asserts that it will follow the client provisioning convention.

9 - 14 A DTLS session is established using a signed Diffie-Hellman ciphersuite. The manufacturer’s
certificate is used to sign the Diffie-Hellman messages. The OBT has been provisioned with
the issuer’s trust anchor so that certificate path validation can terminate. If the OBT supplies
a Certificate message new device may verify the OBT certificate. The mfg certificate may
contain attribute data that describes device hardening and security properties.

15, 16 The OBT finds out which credential types the new device can support and decides the
ownership credential to provision to the new device.

17, 18 The OBT asserts itself as the owner of the new device and requests device owned status to
be changed to TRUE.

19, 20 If symmetric credential type is selected: The OBT uses a pseudo-random-function (PRF) and
other information to generate a symmetric key credential - OwnerPSK.

21, 22 If symmetric credential type is selected: The OwnerPSK credential is created on the new
device.

23, 24 New device derives the OwnerPSK locally and verifies it matches the value derived by OBT.

25, 26 If asymmetric credential type is selected: The owner public key credential is created on the
new device. It may be used subsequently to authenticate the OBT.

27 The new device creates an asymmetric key pair.

28, 29 The OBT reads the new device’s asymmetric credential. It may be used subsequently to
authenticate the new device.

30, 31 If certificate credential type is selected: Steps 23 – 27 are applied. In addition, the OBT
obtains a certificate and instantiates the certificate credential on the new device.

32, 33 OBT creates an entry in the new device’s /oic/sec/svc resource that identifies the OBT
service.

34, 35 The new device changes the /oic/sec/doxm.Owned status to TRUE and refuses to accept
requests to perform ownership transfer methods. The OBT accepts the new device into its
database of ‘owned’ devices.

36, 37 The new device provisioning state is updated.

38 Close the DTLS session.

Table 5 - Manufacturer Certificate Owner Transfer Details 1162

7.3.4.4 Security Considerations 1163

The manufacturer certificate private key is embedded in the platform with a high degree of 1164
assurance that the private key cannot be copied. 1165

The platform manufacturer issues the manufacturer certificate and attests the private key 1166
protection mechanism. 1167

Copyright OIC © 2015. All rights Reserved. 41

The manufacturer certificate defines it’s uniqueness properties. 1168

There may be multiple OIC device instances hosted by a platform containing a single 1169
manufacturer certificate 1170

7.3.5 OIC Decentralized Public Key (DECAP) Owner Transfer Method 1171

OIC Devices can provide strong authentication using self generated public keys (Referred to 1172
dynamically generated credentials, DPC, earlier). The public keys enable a robust and scalable 1173
distributed security architecture. The public/private key pairs are also used to derive a unique 1174
UAID that can be readily authenticated by peer devices. The generation of OIC Device ID, using 1175
DPC is described in an earlier section 7.1. The OIC Device ID is a URI formed from the UAID. 1176
The UAID and DeviceId may be shared and used for security management without having to 1177
exchange shared secrets. The baseline mechanisms provide support for ACL management 1178
without the need for a key distribution center or certificate authority (CA). The use of DECAP 1179
does not fully replace the benefits for third party authorization. The use of digital signatures 1180
binding properties to the DeviceIds is supported as a means to provide decentralized 1181
authorization. As mentioned in section 7.1 for generation of device IDs, embedded certificates 1182
and the corresponding credentials (EPC) can, along with DPC, be used in generation of device 1183
ID as well as for certification of the self-generated credentials (DPC). 1184

OIC devices, implementing the DECAP transfer method shall use the device ID generation 1185
mechanism described in section 7.1 to ensure interoperability as extending the trust to the newly 1186
generated key pair (DPC). Furthermore, DECAP relies on an authenticated Diffie-Hellman key 1187
agreement protocol to arrive at a mutual validation of the peer’s identity and establishment of 1188
symmetric keys. The symmetric keys should be used to calculate the Owner Credential. 1189

DECAP may be used to support several models of device on-boarding. The process of 1190
introducing one OIC Device to another will vary based on the security requirements and the 1191
capabilities for the devices. When a rich UI is available, the UAID may be used as part of the 1192
discovery process to act as a ‘secure serial number’ to distinguish similar devices. 1193

7.3.5.1 OIC Device Public Key States 1194

When an OIC Device transitions to the <OOB/whatever name is correct> state it shall generate 1195
or derive a new public private key pair. The asymmetric key pair uses the cryptographic 1196
parameters and formats determined by the OIC Device Cipher Suite. A DeviceID is formed from 1197
the public key and is used for subsequent identification of the device. This Device public/private 1198
key should be used to authenticate the OIC Device until the OIC Device transitions to the <reset> 1199
state. 1200

 When a OIC Device transitions to <Reset>,the public/private key pair shall be deleted and any 1201
associated repositories of credentials reset to default values. 1202

7.3.5.2 OIC Cipher Suite 1203

The OIC Cipher Suite determines the format and associated algorithms for a public/private key 1204
pair that is established when an OIC Device is first initialized. The OIC Cipher Suites provides 1205
the means to prevent cross protocol and cross crypto vulnerabilities by bundling an appropriate 1206
set of processing options into a single identifier. An OIC Device should select and support a 1207
single OIC Cipher Suite. 1208

The OIC Cipher Suites may be used to support multiple cryptographic options. When multiple 1209
OIC Cipher Suites are supported, each option for algorithm support is represented as a different 1210
OIC Device with a different OIC DeviceID. 1211

Cipher Suite Encoding Suite Parameters
OIC1 0x0101 curve: NIST P256

Copyright OIC © 2015. All rights Reserved. 42

Cipher Suite Encoding Suite Parameters
hash: SHA256

sign: ECDSA

DTLS Suite: TLS_ECDHE_ECDSA_WITH_AES_128_CCM_SHA256

UAID Format: base27

OIC2 0x0102 curve: NIST P521

hash: SHA386

sign: ECDSA

DTLS Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CCM_SHA386

UAID Format: base27

7.3.5.3 UAID generation 1212

See section 7.1.1 for UAID generation. 1213

The device public key pair is used during the on-boarding process to create an OwnerPSK using 1214
an authenticated key exchange (DTLS based). An out-of-band process should validate the 1215
binding of a key pair to a device during the on-boarding process. 1216

The OwnerPSK is the result of an out-of-band transfer of ownership method between the 1217
previous owner / manufacturer and the new owner. Both the OOB and Just-Works methods 1218
produce a pre-shared key value that is used to assert device ownership. The OwnerPSK must be 1219
used to generate the symmetric keys that are used for other purposes. For example, a pair-wise 1220
PSK is used to protect device-provisioning data from a system management tool. Easy DECAP 1221
may be used to support a simple secure introduction of devices that uses a minimum of out-of-1222
band information. 1223

 1224

 1225

Copyright OIC © 2015. All rights Reserved. 43

Figure 11 – Easy - DECAP Device Owner Transfer Method 1226

Supported ciphersuites: 1227

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 using RFC 7520 1228
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 using RFC 7520 1229
 1230

OwnerPSK = PRF(MasterSecret, Message, Length); 1231

 Where: 1232

 - MasterSecret is the master secret key resulting from the DTLS handshake 1233

 - Message is a concatenation of the following: 1234

 - DeviceID is the string representation of the newly added device’s DeviceID (e.g. urn:uuid:XXXX-XXXX-1235
XXXX-XXXX). 1236

 - NewOwnerLabel is string supplied by the owner to distinguish this owner. The new owner must supply this 1237
value at device on-boarding. The NewOwnerLabel MAY be a NULL string. For example, the owner’s domain 1238
name string may be supplied. If the platform contains a platform ownership capability such that multiple OIC 1239
device instances hosted on the same platform would not require taking ownership subsequent to the first OIC 1240
device instance. The NewOwnerLabel SHOULD identify the platform ownership method and MAY reference the 1241
platform owner authorization data. The NewOwnerLabel values may be shared between OIC Device and owner 1242
transfer service to facilitate OwnerPSK computation using the prf(). 1243

 - PrevOwnerLabel is a string supplied by the previous owner that indicates an intention to transfer ownership. 1244
The previous owner must supply this value at device on-boarding. He NewOwnerLabel MAY be a NULL string. 1245
For example, an owner transfer PIN. 1246

 - Length is the length of Message in octets 1247

 - PRF MUST use TLS PRF defined by RFC5246. 1248

7.3.6 Vendor Specific Owner Transfer Methods (Normative) 1249

The OIC anticipates situations where a vendor will need to implement an owner transfer method 1250
that accommodates manufacturing or device constraints. The device owner transfer method 1251
resource is extensible for this purpose. Vendor-specific owner transfer methods must adhere to a 1252
set of conventions that all owner transfer methods follow. 1253
 1254

• The OBT must determine which credential types are supported by the device. This is 1255
accomplished by querying the device’s /oic/sec/doxm resource to identify supported 1256
credential types. 1257

• The OBT provisions the device with owner credential(s). 1258
• The OBT supplies the device ID and credentials for subsequent access to the OBT. 1259
• The OBT will supply second carrier settings sufficient for accessing the owner’s network 1260

subsequent to ownership establishment. 1261
• The OBT may perform additional provisioning steps but must not invalidate provisioning 1262

tasks to be performed by a bootstrap or security service. 1263
 1264

Copyright OIC © 2015. All rights Reserved. 44

7.3.6.1 Vendor-specific Owner Transfer Sequence Example 1265

 1266
Figure 12 – Vendor-specific Owner Transfer Sequence 1267

Copyright OIC © 2015. All rights Reserved. 45

Step Description

1 The OBT queries to see if the new device is not yet owned.

2 The new device returns the /oic/sec/doxm resource containing ownership status and
supported owner transfer methods. It also contains a temporal device ID that may change
subsequent to successful owner transfer. The device should supply a temporal ID to facilitate
discovery as a guest device.

3, 4 The OBT selects a vendor-specific owner transfer method.

5, 6 The OBT also queries to determine if the device is operationally ready to transfer device
ownership.

7, 8 The OBT asserts that it will follow the client provisioning convention.

9 - 14 The vendor-specific owner transfer method is applied

15, 16 The OBT finds out which credential types the new device can support and decides the
ownership credential to provision to the new device.

17, 18 The OBT asserts itself as the owner of the new device and requests device owned status to
be changed to TRUE.

19, 20 If symmetric credential type is selected: The OBT uses a pseudo-random-function (PRF) and
other information to generate a symmetric key credential - OwnerPSK.

21, 22 If symmetric credential type is selected: The OwnerPSK credential is created on the new
device.

23, 24 New device derives the OwnerPSK locally and verifies it matches the value derived by OBT.

25, 26 If asymmetric credential type is selected: The owner public key credential is created on the
new device. It may be used subsequently to authenticate the OBT.

27 The new device creates an asymmetric key pair.

28, 29 The OBT reads the new device’s asymmetric credential. It may be used subsequently to
authenticate the new device.

30, 31 If certificate credential type is selected: Steps 23 – 27 are applied. In addition, the OBT
obtains a certificate and instantiates the certificate credential on the new device.

32, 33 OBT creates an entry in the new device’s /oic/sec/svc resource that identifies the OBT
service.

34, 35 The new device changes the /oic/sec/doxm.Owned status to TRUE and refuses to accept
requests to perform ownership transfer methods. The OBT accepts the new device into its
database of ‘owned’ devices.

36, 37 The new device provisioning state is updated.

38 Close the DTLS session.

Table 6 – Vendor-specific Owner Transfer Details 1268

7.3.6.2 Security Considerations 1269

The vendor is responsible for considering security threats and mitigation strategies. 1270

 1271

 1272

Copyright OIC © 2015. All rights Reserved. 46

7.4 Provisioning 1273

7.4.1 Provisioning Flows 1274

As part of on-boarding a new device a secure channel is formed between the new device and the 1275
on-boarding tool. Subsequent to the device ownership status being changed to ‘owned’, there is 1276
an opportunity to begin provisioning. The on-boarding tool decides how the new device will be 1277
managed going forward and provisions the support services that should be subsequently used to 1278
complete device provisioning and on-going device management. 1279

The OIC device employs a Server-directed or Client-directed provisioning strategy. The 1280
/oic/sec/pstat resource identifies the provisioning strategy and current provisioning status. The 1281
provisioning service should determine which provisioning strategy is most appropriate for the 1282
network. See Section 12.6 for additional detail. 1283

7.4.1.1 Client -directed Provisioning 1284

Client-directed provisioning relies on a provisioning service that identifies OIC Servers in need of 1285
provisioning then performs all necessary provisioning duties. 1286

 1287

Figure 13 – Example of Client -directed provisioning 1288
 1289

Copyright OIC © 2015. All rights Reserved. 47

Step Description

1 Discover devices that are owned and support provisioning-tool-led provisioning.

2 The /oic/sec/doxm resource identifies the device and it’s owned status.

3 PT obtains the new device’s provisioning status found in /oic/sec/pstat resource

4 The pstat resource describes the types of provisioning modes supported and which is
currently configured. A device manufacturer should set a default current operational mode
(Om). If the Om isn’t configured for PT-led provisioning, its Om value can be changed.

5 - 6 PT instantiates the /oic/sec/svc resource. The svc resouce includes entries for the bootstrap
service, ACL provisioning service and credential management service. It references
credentials that should not have been provisioned yet.

7 - 8 The new device provisioning status mode is updated to reflect that various services have
been configured.

9 - 10 PT instantiates the /oic/sec/cred resource. It contains credentials for the provisioned
services and other OIC devices

11 - 12 The new device provisioning status mode is updated to reflect that the security services have
been configured.

13 - 14 PT instantiates /oic/sec/acl resources.

15 The new device provisioning status mode is updated to reflect that ACLs have been
configured. The PT computes a hash of all the provisioning messages “CommitHash”.
CommtHash is given to the new device.

16 The new device compares the CommitHash with an internal CommitHash value it has
computed over the provisioning messages. If these values match, the
/oic/sec/pstat.CommitHash property is updated with the new value.

17 The return code reflects successful CommitHash verification and resource update.

18 The secure session is closed.

Table 7 - Steps describing Client -directed provisioning 1290

 1291

7.4.1.2 Server -directed Provisioning 1292

Server-directed provisioning relies on the OIC Server (i.e. New Device) for directing much of the 1293
provisioning work. As part of the on-boarding process the support services used by the OIC Server 1294
to seek additional provisioning are provisioned. The New Device uses a self-directed, state-driven 1295
approach to analyze current provisioning state, and tries to drive toward target state. This example 1296
assumes a single support service is used to provision the new device. 1297

 1298

Copyright OIC © 2015. All rights Reserved. 48

 1299

Figure 14: Example of Server-directed provisioning using a single provisioning service 1300

Copyright OIC © 2015. All rights Reserved. 49

Step Description

1 The new device verifies it is owned.

2 The new device verifies it is in self-provisioning mode.

3 The new device verifies its target provisioning state is fully provisioned.

4 The new device verifies its current provisioning state requires provisioning.

5 The new device initiates a secure session with the provisioning tool using the
/oic/sec/doxm.DevOwner value to open a TLS connection using OwnerPSK.

6 - 7 The new device gets the /oic/sec/svc resources. The svc resource includes entries for the
bootstrap service, ACL provisioning service and credential management service. It references
credentials that should not have been provisioned yet.

8 - 9 The new device gets the PT commitHash value.

10 The new device verifies the PT commitHash value matches its local value.

11 The new device updates Cm to reflect provisioning of bootstrap and other services.

12 - 13 The new devices gets the /oic/sec/cred resources. It contains credentials for the provisioned
services and other OIC devices.

14 - 15 The new device gets the PT commitHash value.

16 The new device verifies the PT commitHash value matches its local value.

17 The new device updates Cm to reflect provisioning of credential resources.

18 - 19 The new device gets the /oic/sec/acl resources.

20 - 21 The new device gets the PT commitHash value.

22 The new device verifies the PT commitHash value matches its local value.

23 The new device updates Cm to reflect provisioning of ACL resources.

24 The secure session is closed.

Table 8 – Steps for Server-directed provisioning using a single provisioning service 1301

 1302

7.4.1.3 Server-directed Provisioning Involving Multiple Support Services 1303

A server-directed provisioning flow involving multiple support services distributes the 1304
provisioning work across multiple support services. Employing multiple support services is an 1305
effective way to distribute provisioning workload or to deploy specialized support. The following 1306
example demonstrates using a provisioning tool to configure two support services, a credential 1307
management support service and an ACL provisioning support service. 1308

Copyright OIC © 2015. All rights Reserved. 50

 1309

Figure 15 – Example of Server-directed provisioning involving multiple support services 1310

Copyright OIC © 2015. All rights Reserved. 51

Step Description

1 The new device verifies it is owned.

2 The new device verifies it is in self-provisioning mode.

3 The new device verifies its target provisioning state is fully provisioned.

4 The new device verifies its current provisioning state requires provisioning.

5 The new device initiates a secure session with the provisioning tool using the
/oic/sec/doxm.DevOwner value to open a TLS connection using OwnerPSK.

6 - 7 The new device gets the /oic/sec/svc resources. The svc resource includes entries for the
bootstrap service, ACL provisioning service, ACL management service and credential
management service. It references credentials that might not have been provisioned yet.

8 - 9 The new devices gets the /oic/sec/cred resources. It contains credentials for the provisioned
services..

10 - 11 The new device gets the PT commitHash value.

12 The new device verifies the PT commitHash value matches its local value.

13 The new device updates Cm to reflect provisioning of support services.

14 The new device closes the DTLS session with the provisioning tool.

15 The new device finds the credential management service (CMS) from the /oic/sec/svc
resource and opens a DTLS connection. The new device finds the credential to use from the
/oic/sec/cred resource.

16 - 17 The new device requests additional credentials that are needed for interaction with other
devices.

18 - 19 The new device gets the CMS commitHash value

20 The new device verifies the CMS commitHash value matches its local value.

21 The new device updates Cm to reflect provisioning of credential resources.

22 The DTLS connection is closed.

23 The new device finds the ACL provisioning and management service from the /oic/sec/svc
resource and opens a DTLS connection. The new device finds the credential to use from the
/oic/sec/cred resource.

24 - 25 The new device gets ACL resources that it will use to enforce access to local resources.

26 - 27 The new device should get signed ACL resources immediately or in response to a subsequent
device resource request.

28 - 29 The new device should also get a list of resources that should consult an Access Manager for
making the access control decision.

30 - 31 The new device gets the AMS commitHash value

32 The new device verifies the AMS commitHash value matches its local value.

33 The new device updates Cm to reflect provisioning of ACL resources.

34 The DTLS connection is closed.

Table 9 - Steps for Server-directed provisioning involving multiple support services 1311

Copyright OIC © 2015. All rights Reserved. 52

 1312

7.5 Bootstrap Example 1313

8 Security Credential Management 1314

8.1 Overview 1315

Note, the Core specification doesn’t specify that every device shall act as a Server as it pertains 1316
to hosting security resources. 1317

8.2 Credential Lifecycle 1318

OIC credential lifecycle has the following phases: (1) creation, (2) deletion, (3) refresh, (4) 1319
issuance and (5) revocation. Credential lifecycle may be applied in an ad-hoc fashion using a 1320
device owner transfer method or using a guest introduction method or with the aid of a trusted 1321
third party such as a credential management service (CMS). 1322

8.2.1 Creation 1323

OIC devices may instantiate credential resources directly using an ad-hoc key exchange method 1324
such as Diffie-Hellman. Alternatively, a credential management service (CMS) may be used to 1325
provision credential resources to the OIC device. 1326

The credential resource maintains a resource owner property (/oic/sec/cred.Rowner) that 1327
identifies a CMS. If a credential was created ad-hoc, the peer device is considered to be the 1328
CMS. 1329

Credential resources created using a CMS may involve specialized credential issuance protocols 1330
and messages. These may involve the use of public key infrastructure (PKI) such as a certificate 1331
authority (CA), symmetric key management such as a key distribution centre (KDC) or as part of 1332
a provisioning action by a provisioning, bootstrap or on boarding service. 1333

8.2.2 Deletion 1334

The CMS can delete credential resources or the OIC Device (e.g. the device where the 1335
credential resource is hosted) can directly delete credential resources. 1336

An expired credential resource may be deleted to manage memory and storage space. 1337

Deletion in OIC key management is equivalent to credential suspension. 1338

8.2.3 Refresh 1339

Credential refresh may be performed with the help of a credential management service (CMS) 1340
before it expires. 1341

The method used to obtain the credential initially should be used to refresh the credential. 1342

The /oic/sec/cred resource supports expiry using the Period property. Credential refresh may be 1343
applied when a credential is about to expire or is about to exceed a maximum threshold for bytes 1344
encrypted. 1345

A credential refresh method specifies the options available when performing key refresh. The 1346
Period property informs when the credential should expire. The OIC Device may proactively 1347
obtain a new credential using a credential refresh method using current unexpired credentials to 1348
refresh the existing credential. If the device does not have an internal time source, the current 1349
time should be obtained from a credential management service (CMS) at regular intervals. 1350

Alternatively, a credential management service (CMS) can be used to refresh or re-issue an 1351
expired credential unless no trusted CMS can be found that is recognized by both devices. 1352

Copyright OIC © 2015. All rights Reserved. 53

If the CMS credential is allowed to expire, the bootstrap service or on boarding service may be 1353
used to re-provision the CMS. If the on boarding established credentials are allowed to expire 1354
the device will need to be re-on-boarded and re-apply the device owner transfer steps. 1355

If credentials established through ad-hoc methods are allowed to expire the ad-hoc methods will 1356
need to be re-applied. 1357

(Normative) All devices shall support at least one credential refresh method. 1358

8.2.4 Revocation 1359

Credentials issued by a CMS may be equipped with revocation capabilities. In situations where 1360
the revocation method involves provisioning of a revocation object that identifies a credential that 1361
is to be revoked prior to its normal expiration period, a credential resource is created containing 1362
the revocation information that supersedes the originally issued credential. The revocation object 1363
expiration should match that of the revoked credential so that the revocation object is cleaned up 1364
upon expiry. 1365

It is conceptually reasonable to consider revocation applying to a credential or to a device. 1366
Device revocation asserts all credentials associated with the revoked device should be 1367
considered for revocation. Device revocation is necessary when a device is lost, stolen or 1368
compromised. Deletion of credentials on a revoked device might not be possible or reliable. 1369

8.3 Credential Types 1370

The /oic/sec/cred resource maintains a credential type property that supports several 1371
cryptographic keys and other information used for authentication and data protection. The 1372
credential types supported include pair-wise symmetric keys, group symmetric keys, asymmetric 1373
authentication keys, certificates (i.e. signed asymmetric keys) and shared-secrets (i.e. 1374
PIN/password). (See Section 12.2 for additional details regarding credential types.) 1375

8.3.1 Pair-wise Symmetric Key Credentials 1376

Pair-wise symmetric key credentials have a symmetric key in common with exactly one other 1377
peer device. A credential management service (CMS) might maintain an instance of the 1378
symmetric key. The CMS is trusted to issue or provision pair-wise keys and not misuse it to 1379
masquerade as one of the pair-wise peers. 1380

Pair-wise keys could be established through ad-hoc key agreement protocols. 1381

The PrivateData property in the /oic/sec/cred resource contains the symmetric key. 1382

The PublicData property may contain a token encrypted to the peer device containing the pair-1383
wise key. 1384

The OptionalData property may contain revocation status. 1385

The OIC device implementer should apply hardened key storage techniques that ensure the 1386
PrivateData remains private. 1387

The OIC device implementer should apply appropriate integrity protection of the /oic/sec/cred 1388
resources to prevent unauthorized modifications. 1389

8.3.2 Group Symmetric Key Credentials 1390

Group keys are symmetric keys shared among a group of OIC devices (3 or more). Group keys 1391
are used for efficient sharing of data among group participants. 1392

Group keys do not provide authenticate of OIC devices but only establish membership in a group. 1393

Copyright OIC © 2015. All rights Reserved. 54

Group keys are distributed with the aid of a credential management service (CMS). The CMS is 1394
trusted to issue or provision group keys and not misuse them to manipulate protected data. 1395

The PrivateData property in the /oic/sec/cred resource contains the symmetric key. 1396

The PublicData property may contain the group name. 1397

The OptionalData property may contain revocation status. 1398

The OIC device implementer should apply hardened key storage techniques that ensure the 1399
PrivateData remains private. 1400

The OIC device implementer should apply appropriate integrity protection of the /oic/sec/cred 1401
resources to prevent unauthorized modifications. 1402

8.3.3 Asymmetric Authentication Key Credentials 1403

Asymmetric authentication key credentials contain either a public and private key pair or only a 1404
public key. The private key is used to sign device authentication challenges. The public key is 1405
used to verify a device authentication challenge-response. 1406

Asymmetric authentication key pairs are generated by the OIC device and instantiated in the 1407
device’s /oic/sec/cred resource by the device directly or the key pair is generated by a credential 1408
management service (CMS) and provisioned to the device. 1409

The public key is provisioned to a peer OIC device by a credential management service (CMS) or 1410
instantiated directly by a peer device using an enrolment protocol that for example requires 1411
proof-of-possession. 1412

The PrivateData property in the /oic/sec/cred resource contains the private key. 1413

The PublicData property contains the public key. 1414

The OptionalData property may contain revocation status. 1415

The OIC device implementer should apply hardened key storage techniques that ensure the 1416
PrivateData remains private. 1417

The OIC device implementer should apply appropriate integrity protection of the /oic/sec/cred 1418
resources to prevent unauthorized modifications. 1419

8.3.4 Asymmetric Key Encryption Key Credentials 1420

The asymmetric key-encryption-key (KEK) credentials are used to wrap symmetric keys when 1421
distributing or storing the key. 1422

The PrivateData property in the /oic/sec/cred resource contains the private key. 1423

The PublicData property contains the public key. 1424

The OptionalData property may contain revocation status. 1425

The OIC device implementer should apply hardened key storage techniques that ensure the 1426
PrivateData remains private. 1427

The OIC device implementer should apply appropriate integrity protection of the /oic/sec/cred 1428
resources to prevent unauthorized modifications. 1429

Copyright OIC © 2015. All rights Reserved. 55

8.3.5 Certificate Credentials 1430

Certificate credentials are asymmetric keys that are accompanied by a certificate issued by a 1431
credential management service (CMS) or an external certificate authority (CA). 1432

Asymmetric key pair is generated by the OIC device or provisioned by a credential management 1433
service (CMS). 1434

A certificate enrolment protocol is used to obtain a certificate and establish proof-of-possession. 1435

The issued certificate is stored with the asymmetric key credential resource. 1436

Other objects useful in managing certificate lifecycle such as certificate revocation status are 1437
associated with the credential resource. 1438

Either an asymmetric key credential resource or a self-signed certificate credential is used to 1439
terminate a path validation. 1440

The PrivateData property in the /oic/sec/cred resource contains the private key. 1441

The PublicData property contains the issued certificate. 1442

The OptionalData property may contain revocation status. 1443

The OIC device implementer should apply hardened key storage techniques that ensure the 1444
PrivateData remains private. 1445

The OIC device implementer should apply appropriate integrity protection of the /oic/sec/cred 1446
resources to prevent unauthorized modifications. 1447

8.3.6 Password Credentials 1448

Shared secret credentials are used to maintain a PIN or password that authorizes device access 1449
to a foreign system or device that doesn’t support any other OIC credential types. 1450

The PrivateData property in the /oic/sec/cred resource contains the PIN, password and other 1451
values useful for changing and verifying the password. 1452

The PublicData property may contain the user or account name if applicable. 1453

The OptionalData property may contain revocation status. 1454

The OIC device implementer should apply hardened key storage techniques that ensure the 1455
PrivateData remains private. 1456

The OIC device implementer should apply appropriate integrity protection of the /oic/sec/cred 1457
resources to prevent unauthorized modifications. 1458

Note: This should be used for communication between an oic device and a non-OIC device. 1459

8.4 Certificate Based Key Management 1460

8.4.1 Overview 1461

To achieve authentication and transport security during communications in OIC network, 1462
certificates containing public keys of communicating parties and private keys can be used. 1463

The certificate and private key may be issued by a local or remote certificate authority(CA) when 1464
an OIC device is deployed in the OIC network and credential provisioning is supported by a 1465
credential management service (Figure 1). For the local CA, a certificate revocation list (CRL) 1466

Copyright OIC © 2015. All rights Reserved. 56

based on X.509 is used to validate proof of identity. In the case of a remote CA, Online 1467
Certificate Status Protocol (OCSP) can be used to validate proof of identity and validity. 1468

 1469

Figure 1 - Certificate Management Architecture 1470

The OIC certificate and OIC CRL (Certificate Revocation List) format is a subset of X.509 format, 1471
only elliptic curve algorithm and DER encoding format are allowed, most of optional fields in 1472
X.509 is not supported so that the format intends to meet the constrained device’s requirement. 1473

As for the certificate and CRL management in the OIC server, the process of storing, retrieving 1474
and parsing resources of the certificates and CRL will be performed at the security resource 1475
manager layer; the relevant interfaces may be exposed to the upper layer. 1476

A secure resource manager (SRM) is the security enforcement point in an OIC Server as 1477
described in Section 5.4, so the data of certificates and CRL will be stored and managed in 1478
secure virtual resource database. 1479

The request to issue a device’s certificate should be managed by a credential management 1480
service when an OIC device is newly on-boarded or the certificate of the OIC device is revoked. 1481
When a certificate is considered invalid, it must be revoked. A CRL is a data structure containing 1482
the list of revoked certificates and their corresponding devices that are not be trusted. The CRL 1483
is expected to be regularly updated (for example; every 3 months) in real operations. 1484

 1485

 1486

8.4.2 Certificate Format 1487

An OIC certificate format is a subset of X.509 format (version 2 or above) as defined in 1488
[RFC5280]. 1489

8.4.2.1 Certificate Profile and Fields 1490

The OIC certificate shall support the following fields; version, serialNumber, signature, 1491
issuer, validity, subject, subjectPublicKeyInfo, signatureAlgorithm and 1492
signatureValue. 1493

• version: the version of the encoded certificate 1494

Copyright OIC © 2015. All rights Reserved. 57

• serialNumber : certificate serial number 1495

• signature: the algorithm identifier for the algorithm used by the CA to sign this 1496
certificate 1497

• issuer: the entity that has signed and issued certificates 1498

• validity: the time interval during which CA warrants 1499

• subject: the entity associated with the subject public key field (deviceID) 1500

• subjectPublicKeyInfo: the public key and the algorithm with which key is used 1501

• signatureAlgorithm: the cryptographic algorithm used by the CA to sign this 1502
certificate 1503

• signatureValue: the digital signature computed upon the ASN.1 DER encoded 1504
OICtbsCertificate (this signature value is encoded as a BIT STRING.) 1505

 1506

The OIC certificate syntax shall be defined as follows; 1507

OICCertificate ::= SEQUENCE { 1508

 OICtbsCertificate TBSCertificate, 1509
 signatureAlgorithm AlgorithmIdentifier, 1510
 signatureValue BIT STRING 1511

} 1512

The OICtbsCertificate field contains the names of a subject and an issuer, a public key 1513
associated with the subject, a validity period, and other associated information 1514
 1515
 OICtbsCertificate ::= SEQUENCE { 1516
 version [0] 2 or above, 1517
 serialNumber CertificateSerialNumber, 1518
 signature AlgorithmIdentifier, 1519
 issuer Name, 1520
 validity Validity, 1521
 subject Name, 1522
 subjectPublicKeyInfo SubjectPublicKeyInfo, 1523
} 1524
subjectPublicKeyInfo ::= SEQUENCE { 1525
 algorithm AlgorithmIdentifier, 1526
 subjectPublicKey BIT STRING 1527
} 1528
 1529
 1530
The table below shows the comparison between OIC and X.509 certificate fields. 1531
 1532

Certificate Fields Description OIC X.509

OICtbsCert
ificate

version 2 or above Mandatory Mandatory
serialNumb
er

CertificateSerialNu
mber Mandatory Mandatory

signature AlgorithmIdentifier 1.2.840.10045.4.3.
2(ECDSA algorithm

Specified in
[RFC3279],[RFC

Copyright OIC © 2015. All rights Reserved. 58

with SHA256,
Mandatory)

4055], and
[RFC4491]

issuer Name Mandatory Mandatory
validity Validity Mandatory Mandatory
subject Name Mandatory Mandatory

subjectPub
licKeyInfo

SubjectPublicKeyIn
fo

1.2.840.10045.2.1,
1.2.840.10045.3.1.
7(ECDSA algorithm
with SHA256 based
on prime256v1
curve, Mandatory)

Specified in
[RFC3279],[RFC
4055], and
[RFC4491]

issuerUniq
ueID

IMPLICIT
UniqueIdentifier

Not supported Optional subjectUni
queID

IMPLICIT
UniqueIdentifier

extensions EXPLICIT
Extensions

signatureAlgorithm AlgorithmIdentifier

1.2.840.10045.4.3.
2(ECDSA algorithm
with SHA256,
Mandatory)

Specified in
[RFC3279],[RFC
4055], and
[RFC4491]

signatureValue BIT STRING Mandatory Mandatory
 1533
 1534

8.4.2.2 Cipher Suite for Authentication, Confidentiality and Integrity 1535

All OIC devices support the certificate based key management shall support 1536
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite as defined in [RFC7251]. To 1537
establish a secure channel between two OIC devices the ECDHE_ECDSA (i.e. the signed 1538
version of Diffie-Hellman key agreement) key agreement protocol shall be used. During this 1539
protocol the two parties authenticate each other. The confidentiality of data transmission is 1540
provided by AES_128_CCM_8. The integrity of data transmission is provided by SHA256. Details 1541
are defined in [RFC7251] and referenced therein. 1542

To do lightweight certificate processing, the values of the following fields shall be chosen as 1543
follows: 1544

• signatureAlgorithm := ANSI X9.62 ECDSA algorithm with SHA256, 1545

• signature := ANSI X9.62 ECDSA algorithm with SHA256, 1546

• subjectPublicKeyInfo := ANSI X9.62 ECDSA algorithm with SHA256 based on 1547
prime256v1 curve. 1548

The certificate validity period is a period of time, the CA warrants that it will maintain 1549
information about the status of the certificate during the time; this information field is represented 1550
as a SEQUENCE of two dates: 1551

• the date on which the certificate validity period begins (notBefore) 1552

• the date on which the certificate validity period ends (notAfter). 1553

Both notBefore and notAfter should be encoded as UTCTime. 1554
 1555
The field issuer and subject identify the entity that has signed and issued the certificate and the 1556
owner of the certificate. They shall be encoded as UTF8String and inserted in CN attribute. 1557

Copyright OIC © 2015. All rights Reserved. 59

 1558

8.4.2.3 Encoding of Certificate 1559

The ASN.1 distinguished encoding rules (DER) as defined in [ISO/IEC 8825-1] shall be used to 1560
encode certificates. 1561

8.4.3 CRL Format 1562

An OIC CRL format is based on [RFC5280], but optional fields are not supported and signature-1563
related fields are optional. 1564

8.4.3.1 CRL Profile and Fields 1565

The OIC CRL shall support the following fields; signature, issuer, this Update, 1566
revocationDate, signaturealgorithm and signatureValue 1567
 1568

• signature: the algorithm identifier for the algorithm used by the CA to sign this CRL 1569

• issuer : the entity that has signed or issued CRL. 1570

• this Update : the issue date of this CRL 1571

• userCertificate : certificate serial number 1572

• revocationDate : revocation date time 1573

• signatureAlgorithm: the cryptographic algorithm used by the CA to sign this CRL 1574

• signatureValue: the digital signature computed upon the ASN.1 DER encoded 1575
OICtbsCertList (this signature value is encoded as a BIT STRING.) 1576

The signature-related fields such as signature, signatureAlgorithm, signatureValue 1577
are optional. 1578
 1579
CertificateList ::= SEQUENCE { 1580
 OICtbsCertList TBSCertList, 1581
 signatureAlgorithm AlgorithmIdentifier, 1582
 signatureValue BIT STRING 1583
 } 1584
OICtbsCertList:: = SEQUENCE { 1585
 signature AlgorithmIdentifier OPTIONAL, 1586

issuer Name, 1587
this Update Time, 1588
revokedCertificates RevokedCertificates, 1589
signatureAlgorithm AlgorithmIdentifier OPTIONAL, 1590
signatureValue BIT STRING OPTIONAL 1591

} 1592
RevokedCertificates SEQUENCE OF SEQUENCE { 1593
 userCertificate CertificateSerialNumber, 1594
 revocationDate Time 1595
} 1596
 1597
 1598
The table below shows the comparison between OIC and X.509 CRL fields. 1599
 1600

CRL fields Description OIC X.509
OICtbsCer version Version v2 Not supported Optional

Copyright OIC © 2015. All rights Reserved. 60

tList

signature AlgorithmIdenti
fier

1.2.840.10045.4
.3.2(ECDSA
algorithm with
SHA256,Optiona
l)

Specified in
[RFC3279],
[RFC4055],
and
[RFC4491]
list OIDs

issuer Name Mandatory Mandatory
thisUpdate Time Mandatory Mandatory
nextUpdate Time Not supported Optional

revokedC
ertifica
tes

userCertif
icate

Certificate
Serial Number Mandatory Mandatory

revocation
Date Time Mandatory Mandatory

crlEntryEx
tentions Time Not supported Optional

crlExtensions Extensions Not supported Optional

signatureAlgorithm AlgorithmIdenti
fier

1.2.840.10045.4
.3.2(ECDSA
algorithm with
SHA256,Optiona
l)

Specified in
[RFC3279],
[RFC4055],
and
[RFC4491]
list OIDs

signatureValue BIT STRING Optional Mandatory
 1601
 1602

8.4.3.2 Encoding of CRL 1603

The ASN.1 distinguished encoding rules (DER method of encoding) defined in [ISO/IEC 8825-1] 1604
shall be used to encode CRL. 1605

8.4.4 Resource Model 1606

Device certificates and private keys are kept in cred resource. CRL is maintained and updated 1607
with a separate crl resource that is defined for maintaining the revocation list. 1608

The cred resource contains the certificate information pertaining to the device.The PublicData 1609
property holds the device certificate and CA certificate chain.PrivateData property holds the 1610
device private key paired to the certificate. (See Section 12.2 for additional detail regarding the 1611
/oic/sec/cred resource). 1612

A certificate revocation list resource is used to maintain a list of revoked certificates obtained 1613
through the credential management service (CMS). The OIC device must consider revoked 1614
certificates as part of certificate path verification. If the CRL resource is stale or there are 1615
insufficient platform resources to maintain a full list, the OIC device must query the CMS for 1616
current revocation status. (See Section 12.3 for additional detail regarding the /oic/sec/crl 1617
resource). 1618

8.4.5 Certificate Provisioning 1619

The credential management service (e.g. a hub or a smart phone) issues certificates and private 1620
keys for new devices. The credential management service shall have its own certificate and 1621
private key pair. The certificate is either self-signed if it acts as Root CA or signed by the upper 1622
CA in its trust hierarchy if it acts as Sub CA. In either case, the certificate shall have the format 1623
described in Section 8.5.2. 1624

Copyright OIC © 2015. All rights Reserved. 61

The CA in the credential management service shall generate a device’s certificate signed by this 1625
CA certificate, a paired private key, and then the credential management service transfer them to 1626
the device including its CA certificate chain. 1627

The sequence flow of a certificate transfer for a client-driven model is described in Figure 3. 1628

1. The credential management service retrieves information of the device that request a 1629
certificate. 1630

2. The credential management service shall transfer the issued certificate, CA chain and 1631
private key to the designated device. 1632

Device
Credential

Management
Service

POST /oic/sec/cred
[{"credid": "…＂,＂sub＂:＂…＂,＂credtyp＂:8,
"pbdata": ＂ ＂ DER-encoded device and CA certificate chain in base64",
 "pvdata" {
 "kty": "EC",
 "crv" : "P-256",
 "d":"Encoded In base64url"
 },
 "ownrs":＂…＂
 }]

When a connection is established, the OwnerPSK should be used to establish a secure connection.

RSP 2.04

PUT /oic/sec/pstat [{...Cm=bx0010,0000…}]

RSP 2.04

 1633

Figure 3 – Client-Driven Certificate Transfer 1634

8.4.6 CRL Provisioning 1635

The only pre-requirement of CRL issuing is that credential management service (e.g. a hub or a 1636
smart phone) has the function to register revocation certificates, to sign CRL and to transfer it to 1637
devices. 1638

The credential management service sends the CRL to the device. 1639

Any certificate revocation reasons listed below cause CRL update on each device. 1640

• change of issuer name 1641

• change of association between devices and CA 1642

• certificate compromise 1643

• suspected compromise of the corresponding private key 1644

CRL may be updated and delivered to all accessible devices in the OIC network. In some special 1645
cases, devices may request CRL to a given credential management service. 1646
 1647
There are two options to update and deliver CRL; 1648

Copyright OIC © 2015. All rights Reserved. 62

• credential management service pushes CRL to each device 1649

• each device periodically requests to update CRL 1650

The sequence flow of a CRL transfer for a client-driven model is described in Figure 4. 1651

1. The credential management service may retrieve the CRL resource property. 1652

2. If the device requests the credential management service to send CRL, it should transfer 1653
the latest CRL to the device. 1654

Credential
Management

Service

POST /oic/sec/crl
[{"crlid": "…",
 "tupdate": "…",
 "crldata" : "DER-encoded CRL in based64"
 }]

Device

When a connection is established, the OwnerPSK should be used to establish a secure connection.

RSP 2.04

PUT /oic/sec/pstat [{...Cm=bx0010,0000…}]

RSP 2.04

 1655

Figure 4 – Client-Driven CRL Transfer 1656

The sequence flow of CRL transferring about server-driven model is described in Figure 5. 1657

1. The device retrieves the CRL resource property tupdate to the credential management 1658
service. 1659

2. If the credential management service recognizes the updated CRL information after the 1660
designated tupdate time, it may transfer its CRL to the device. 1661

Copyright OIC © 2015. All rights Reserved. 63

Device

Credential
Management

Service

GET /oic/sec/crl tupdate=＇NULL＇ or UTCTIME

When a connection is established, the OwnerPSK should be used to establish a secure connection.

RSP 2.04

PUT /oic/sec/pstat [{...Cm=bx0010,0000…}]

RSP 2.04

POST /oic/sec/crl
[{"crlid": "…",
 "tupdate": "…",
 "crldata" : "DER-encoded CRL in based64"
 }]

 1662

Figure 5 – Server-Driven CRL Transfer 1663

9 Device Authentication 1664

When accessing a restricted resource on an OIC Server, the Server shall authenticate the OIC 1665
Client requesting the access. OIC Clients shall authenticate OIC Servers while requesting 1666
access. 1667

9.1 Device Authentication with Symmetric Key Credentials 1668

When using symmetric keys to authenticate, the server device shall include the 1669
ServerKeyExchange message and set psk_identity_hint to the server’s device ID. The client shall 1670
validate that it has a credential with the Subject ID set to the server’s device ID, and a credential 1671
type of PSK. If it does not, the client shall respond with an unknown_psk_identity error or other 1672
suitable error. 1673

If the client finds a suitable PSK credential, it shall reply with a ClientKeyExchange message that 1674
include a psk_identity_hint set to the client’s device ID. The server shall verify that it has a 1675
credential with the matching Subject ID and type. If it does not, the server shall respond with an 1676
unknown_psk_identity or other suitable error code. If it does, then it shall continue with the DTLS 1677
protocol, and both client and server shall compute the resulting premaster secret. 1678

9.2 Device Authentication with Raw Asymmetric Key Credentials 1679

When using raw asymmetric keys to authenticate, the client and the server shall include a 1680
suitable public key from a credential that is bound to their device. Each device shall verify that 1681
the provided public key matches the PublicData field of a credential they have, and use the 1682
corresponding Subject ID of the credential to identify the peer device. 1683

9.3 Device Authentication with Certificates 1684

When using certificates to authenticate, the client and server shall each include their certificate 1685
chain, as stored in the appropriate credential, as part of the selected authentication cipher suite. 1686
Each device shall validate the certificate chain presented by the peer device. Each certificate 1687
signature shall be verified until a public key or its hash is found within the /oic/sec/cred resource. 1688
Credential resources found in /oic/sec/cred are used to terminate certificate path validation. 1689

Note: Certificate revocation mechanisms are currently out of scope of this version of the 1690
specification. 1691

Copyright OIC © 2015. All rights Reserved. 64

10 Message Integrity and Confidentiality 1692

Secured communications between OIC Clients and OIC Servers are protected against 1693
eavesdropping, tampering, or message replay, using security mechanisms that provide message 1694
confidentiality and integrity. 1695

10.1 Session Protection with DTLS 1696

OIC Devices shall support DTLS for secured communications as defined in [RFC 6347]. See 1697
Section 10.2 for a list of required and optional Cipher Suites for message communication. 1698

Note: Multicast session semantics are not yet defined in this version of the security specification. 1699

10.1.1 Unicast Session Semantics 1700

For unicast messages between an OIC Client and an OIC Server, both devices shall authenticate 1701
each other. See Section 9 for details on Device Authentication. 1702

Secured unicast messages between a client and a server shall employ an appropriate cipher 1703
suite from Section 10.2. The sending device shall encrypt and sign messages as defined by the 1704
selected cipher-suite and the receiving device shall verify and decrypt the messages before 1705
processing them. 1706

10.1.2 Considerations on Export Licensing with Crypto 1707

10.2 Cipher Suites 1708

Note: Device classes are defined in RFC 7228 1709

10.2.1 Cipher Suites for Device Ownership Transfer 1710

10.2.1.1 Just Works Method Cipher Suites 1711

The oic.sec.doxm.jw owner transfer method may use the following DTLS ciphersuites. 1712

TLS_ECDH_ANON_WITH_AES_128_CBC_SHA256, 1713
TLS_ECDH_ANON_WITH_AES_256_CBC_SHA256, 1714

 1715
All OIC devices shall implement: 1716
 TLS_ECDH_ANON_WITH_AES_128_CBC_SHA256. 1717
Class-2 and lower devices MAY implement: 1718
 TLS_ECDH_ANON_WITH_AES_256_CBC_SHA256 1719
Devices above Class-2 shall implement: 1720
 TLS_ECDH_ANON_WITH_AES_128_CBC_SHA256, 1721
 TLS_ECDH_ANON_WITH_AES_256_CBC_SHA256 1722

10.2.1.2 Random PIN Method Cipher Suites 1723

The oic.sec.doxm.rdp owner transfer method may use the following DTLS ciphersuites. 1724

TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256, 1725
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA256, 1726
TLS_PSK_DHE_WITH_AES_128_CCM_8, (* 8-OCTECT authentication tag *) 1727
TLS_PSK_DHE_WITH_AES_256_CCM_8, 1728

 TLS_DHE_PSK_WITH_AES_128_CCM, (* 16-OCTECT authentication tag *) 1729
 TLS_DHE_PSK_WITH_AES_256_CCM 1730
Note: All CCM based ciphersuites implement SHA256 integrity value. 1731

See RFC4279, RFC5489 and RFC6655, RFC7251. 1732

All OIC devices shall implement at least one of the following: 1733
 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256, 1734
 TLS_PSK_DHE_WITH_AES_128_CCM_8, 1735

Copyright OIC © 2015. All rights Reserved. 65

 1736
Class-2 and lower devices may implement: 1737
 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA256, 1738
 TLS_PSK_DHE_WITH_AES_256_CCM_8, 1739
 TLS_DHE_PSK_WITH_AES_128_CCM, 1740
 TLS_DHE_PSK_WITH_AES_256_CCM 1741
 1742
Devices above Class-2 shall implement: 1743
 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256, 1744
 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA256, 1745
 TLS_PSK_DHE_WITH_AES_256_CCM_8, 1746
 TLS_DHE_PSK_WITH_AES_128_CCM, 1747
 TLS_DHE_PSK_WITH_AES_256_CCM 1748

10.2.1.3 Certificate Method Cipher Suites 1749

The oic.sec.doxm.mfgcert owner transfer method may use the following DTLS ciphersuites. 1750

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1751
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_SHA256, 1752

Using the following curves: 1753

secp256r21 (See [RFC4492]) 1754

See RFC7251. 1755

All OIC devices shall implement at least one of the following: 1756
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1757

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_SHA256, 1758
 1759
Class-2 and lower devices may implement: 1760
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1761
 1762
Devices above Class-2 shall implement: 1763
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1764
 1765

10.2.2 Cipher Suites for Symmetric Keys 1766

The following ciphersuites are defined for DTLS communication using PSKs: 1767

TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256, 1768
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA256, 1769
TLS_PSK_DHE_WITH_AES_128_CCM_8, (* 8 OCTET Authentication tag *) 1770
TLS_PSK_DHE_WITH_AES_256_CCM_8, 1771
TLS_DHE_PSK_WITH_AES_128_CCM, (* 16 OCTET Authentication tag *) 1772
TLS_DHE_PSK_WITH_AES_256_CCM, 1773

 Note: All CCM based ciphersuites implement SHA256 integrity value. 1774

See RFC4279, RFC5489 and RFC6655. 1775

All OIC devices shall implement: 1776
 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256, 1777

TLS_PSK_DHE_WITH_AES_128_CCM_8, 1778
 1779
Class-2 and lower devices may implement: 1780
 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA256, 1781
 TLS_DHE_PSK_WITH_AES_128_CCM, 1782
 TLS_DHE_PSK_WITH_AES_256_CCM, 1783
 1784
Devices above Class-2 shall implement: 1785

Copyright OIC © 2015. All rights Reserved. 66

 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256, 1786
 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA256, 1787
 TLS_PSK_DHE_WITH_AES_256_CCM_8, 1788
 TLS_DHE_PSK_WITH_AES_128_CCM, 1789
 TLS_DHE_PSK_WITH_AES_256_CCM, 1790

 1791

10.2.3 Cipher Suites for Asymmetric Credentials 1792

The following ciphersuites are defined for DTLS communication with asymmetric keys or 1793
certificates: 1794

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1795
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_SHA256, 1796

Using the following curves: 1797

secp256r21 (See [RFC4492]) 1798

See RFC7251. 1799

All OIC devices shall implement at least one of the following: 1800
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1801

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_SHA256, 1802
 1803
Class-2 and lower devices may implement: 1804
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1805
 1806
Devices above Class-2 shall implement: 1807
 TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8_SHA256, 1808
 1809

11 Access Control 1810

11.1 ACL Generation and Management 1811

This section will be expanded in a future version of the specification. 1812

11.2 ACL Evaluation and Enforcement (Normative) 1813

The OIC server enforces access control over application resources before exposing them to the 1814
requestor. The security manager in the OIC server authenticates the requestor if access is 1815
received via the secure port. If the request arrives over the unsecured port, the only ACL policies 1816
allowed are for anonymous requestors. If the anonymous ACL policy doesn’t name the requested 1817
resource access is denied. 1818

A wild card resource identifier should be used to apply a blanket policy for a collection of 1819
resources. For example, /a/light/* matches all instances of the light resource. 1820

Evaluation of local ACL resources completes when all ACL resources have been queried and no 1821
entry can be found for the requested resource for the requestor – e.g. /oic/sec/acl /oic/sec/sacl 1822
and /oic/sec/amacl do not match the subject and the requested resource. 1823

If an access manager ACL satisfies the request, the OIC server opens a secure connection to 1824
the Access Manager Service (AMS). If the primary AMS is unavailable, a secondary AMS should 1825
be tried. The OIC server queries the AMS supplying the subject and requested resource as filter 1826
criteria. The OIC server device ID is taken from the secure connection context and included as 1827
filter criteria by the AMS. If the AMS policy satisfies the Permission property is returned. 1828
 1829
If the requested resource is still not matched, the OIC server returns an error. The requester 1830
should query the OIC server to discover the configured AMS services. The OIC client should 1831

Copyright OIC © 2015. All rights Reserved. 67

contact the AMS to request an sacl (/oic/sec/sacl) resource. Performing the following operations 1832
implement this type of request: 1833
 1834

1) OIC client: Open secure connection to AMS. 1835
2) OIC client: GET /oic/sec/acl?device=”urn:uuid:XXX…”,resource=”URI” 1836
3) AMS: constructs a /oic/sec/sacl resource that is signed by the AMS and returns it in 1837

response to the GET command. 1838
4) OIC client: POST /oic/sec/sacl [{ …sacl… }] 1839
5) OIC server: verifies sacl signature using AMS credentials and installs the ACL 1840

resource if valid. 1841
6) OIC client: retries original resource access request. This time the new ACL is 1842

included in the local acl evaluation. 1843
 1844
The ACL contained in the /oic/sec/sacl resource should grant longer term access that satisfies 1845
repeated resource requests. 1846

12 Security Resources (Normative) 1847

 1848

 1849

Figure 2 – OIC security resources (crl resource is added) 1850

 1851

12.1 Device Owner Transfer Resource 1852

The /oic/sec/doxm resource contains the set of supported device owner transfer methods. 1853

Security resource are discoverable through the /oic/res resource. Resource discovery processing 1854
respects the CRUDN constraints supplied as part of the security resource definitions contained in 1855
this specification. 1856

Owner Transfer Method (OTM) Resource Definition: 1857

Copyright OIC © 2015. All rights Reserved. 68

Fixed URI Resource Type
Title

Resource Type
ID (“rt” value)

Interf
aces

Description Related
Function
al
Interacti
on

/oic/sec/doxm Device Owner
Transfer Methods

urn:oic.sec.dox
m

oic.if.d
ef

Resource for supporting
device owner transfer

Configurat
ion

Table 10 – Owner Transfer Method resource definition 1858
 1859
Owner Transfer Method Properties Definition: 1860

Propert
y Title

Prop
erty
Nam

e

Value
Type

Valu
e
Rule

Uni
t

Acc
ess
Mod
e

Man
dato
ry

Instan
ce

Description

Owner
Transfer
Method

Oxm OxmType - R Yes Multipl
e

URN identifying the owner-
transfer-method and the
organization that defined
the method.

Oxm
Selection

Oxm
Sel

OxmType - R Yes Single The Oxm that was selected
for device ownership
transfer.

Supporte
dCredent
ial Types

sct oic.sec.cr
edtype

bitma
sk

 R Yes Single Identifies the types of
credentials the device
supports. The SRM sets
this value at framework
initialization after
determining security
capabilities.

Owned Owne
d

Boolean T|F R Yes Single Indicates whether or not the
device ownership has been
established. FALSE
indicates device is
unowned.

DeviceID
Format

DidF
ormat

UINT8 0-255 R Yes Single Enumerated device ID
format.

[0 = URN] (e.g.
urn:uuid:XXXX-XXXX-
XXXX-XXXX)

Copyright OIC © 2015. All rights Reserved. 69

DeviceID Devic
eID

OCTET[] - R Yes Single DeviceID assigned to this
instance of the OIC
framework. DidFormat
determines how to interpret
the OCTET string.
/doxm.DeviceID informs all
other resources containing
a device ID including /oic/d.
The DeviceID value should
not be presumed valid until
Owned = True.

There can be multiple OIC
devices per platform. /oic/p
contains a platform
identifier that should not be
considered as the
DeviceID. Refer to the OIC
Core specification for more
information on /oic/p and
/oic/d

Device
Owner

DevO
wner

oic.sec.s
vc

- R Yes Single URI identifying a service
that is the device owner.
This should be any value
chosen by the device
owner.

Resource
Owner

Rown
er

oic.sec.s
vc

- R Yes Single This resource’s owner.
Typically this is the
bootstrap service that
instantiated this resource

Table 11 – Owner Transfer Method Properties definition 1861

The owner transfer method resource contains an ordered list of owner transfer methods where 1862
the first entry in the list is the highest priority method and the last entry the lowest priority. 1863

The device manufacturer configures this resource with the most desirable (most secure) methods 1864
with high priority and least desirable with low priority. The network management tool queries this 1865
list at the time of on boarding when the network management tool selects the most appropriate 1866
method. 1867

Subsequent to an owner transfer method being chosen the agreed upon method shall be entered 1868
into the /doxm resource using the OxmSel property. 1869

Owner transfer methods consist of two parts, a URN identifying the vendor or organization and 1870
the specific method. 1871

 <OxmType> ::= "urn:" <NID> ":" <NSS> 1872

 <NID> :: = <Vendor-Organization> 1873

 <NSS> ::= <Method> | {<NameSpaceQualifier> “.”} <Method> 1874

 <NameSpaceQualifier> ::= String 1875

 <Method> ::= String 1876

 <Vendor-Organization> ::= String 1877

Copyright OIC © 2015. All rights Reserved. 70

When an owner transfer method successfully completes, the Owned property is set to ‘1’ (TRUE). 1878
Consequently, subsequent attempts to take ownership of the device will fail. 1879

The Secure Resource Manager (SRM) generates a device identifier (DeviceID) that is stored in 1880
the /oic/sec/doxm resource in response to successful ownership transfer. 1881

Owner transfer methods should communicate the DeviceID to the service that is taking 1882
ownership. The service should associate the DeviceID with the OwnerPSK in a secured database. 1883

Once owned, the bootstrap service (oic.sec.bss) should change the owned state to ‘0’ (FALSE). 1884

12.1.1.1 OIC defined owner transfer methods 1885

Value Type
Name

Value Type
URN

Description

OICJustWorks urn:oic:oic.sec.d
oxm.jw

The just-works method relies on anonymous Diffie-Hellman
key agreement protocol to allow an on-boarding tool to
assert ownership of the new device. The first on-boarding
tool to make the assertion is accepted as the device owner.
The just-works method results in a shared secret that is
used to authenticate the device to the on-boarding tool and
likewise authenticates the on-boarding tool to the device.
The device allows the on-boarding tool to take ownership
of the device, after which a second attempt to take
ownership by a differnet on-boarding tool will fail.

Note: The just-works method is subject to a man-in-the-
middle attacker. Precautions should be taken to provide
physical security when this method is used.

OICSharedPin urn:oic:oic.sec.d
oxm.rdp

The new device randomly generates a PIN that is
communicated via an out-of-band channel to a device on-
boarding tool. An in-band Diffie-Hellman key agreement
protocol establishes that both endpoints possess the PIN.
Possession of the PIN by the on-boarding tool signals the
new device that device ownership can be asserted.

OICMfgCert urn:oic:oic.sec.d
oxm.mfgcert

The new device is presumed to have been manufactured
with an embedded asymmetric private key that is used to
sign a Diffie-Hellman exchange at device on-boarding. The
manufacturer certificate should contain platform hardening
information and other security asserances assertions.

12.2 Credential Resource 1886

The /oic/sec/cred resource maintains credentials used to authenticate the OIC Server to OIC 1887
Clients and support services as well as credentials used to verify OIC Clients and support 1888
services. 1889

Multiple credential types are anticipated by the OIC framework, including pair-wise pre-shared 1890
keys, asymmetric keys, certificates and others. The credential resource uses a DeviceID to 1891
distinguish the OIC Clients and support services it recognizes by verifying an authentication 1892
challenge. 1893

Device Credential Resource Definition: 1894

Copyright OIC © 2015. All rights Reserved. 71

Fixed URI Resource
Type Title

Resource
Type ID (“rt”
value)

Interf
aces

Description Related
Functiona
l
Interactio
n

/oic/sec/cred Credentials urn:oic.sec.cred oic.if.d
ef

Resource containing
credentials for device

authentication,
verification and data

protection

Security

Table 12 – Device Credential resource definition 1895
 1896

Device Credential Properties Definition: 1897

Copyright OIC © 2015. All rights Reserved. 72

Property
Title

Propert
y Name

Value
Type

Valu
e
Rule

U
n
i
t

Acc
ess
Mod
e

Man
dato
ry

Insta
nce’

Description

Credentia
l ID

CredID UINT16 0 –
64K-

1

- R Yes Single Short credential ID for local
references from other resources

Subject
ID

SubjectI
D

oic.uuid URI - R Yes Single Identifies the subject (e.g.
device) to which this credential
applies.

Role ID RoleID oic.sec.
role

URI - R No Multip
le

Identifies the role(s) the subject
is authorized to assert.

Credentia
l Type

CredTyp
e

oic.sec.
credtyp

e

(UINT1
6)

One
of:

[0 |
1 | 2
| 4 |
8 |
16]

- R Yes Single 0: no security mode

1: symmetric pair-wise key

2: symmetric group key

4: asymmetric key

8: certificate

16: PIN /password

32: asymmetric encryption key

Public
Data

PublicD
ata

oic.sec.
jwk,

string

OCTET[
]

- - R No Single 1:2: ticket, public SKDC values

4, 32: Public key value

8: certificate

Private
Data

PrivateD
ata

oic.sec.
jwk,

oic.sec.
tee,

String,

OCTET[
]

- - - Cond
ition
al

Opti
onal

Single 1:2: symmetric key

4: 8, 32: Private asymmetric key

16: password hash, password
value, security questions

This value shall not be disclosed

If the platform hosts a trusted
execution environment or secure
element then this value should be
a handle to the actual object.

Optional
Data

Optional
Data

OCTET[
]

 R No Single 1, 2, 4, 8, 32: revocation status
information

Period Period String - - R No Single Period as defined by RFC5545.
The credential should not be used
if the current time is outside the
Period window.

Credentia
l Refresh
Method

Crm oic.sec.
crm

 - R No Single Credentials with a Period
property are refreshed using the
credential refresh method (crm)
according to the type definitions
for oic.sec.crm

Resource
owner

Rowner oic.sec.
svc

 R Yes Multip
le

Refers to the service resource(s)
that should instantiate/update
this resource. Rowner status has
full (C, R, U, D, N) permission.

Table 13 - Device Credential Property definition 1898

Copyright OIC © 2015. All rights Reserved. 73

All secure device accesses shall have an /oic/sec/cred resource that protects the end-to-end 1899
interaction. 1900

The /oic/sec/cred resource can be created and modified by the services named in the ‘Rowner’ 1901
property. 1902

ACLs naming /oic/sec/cred resources should further restrict access beyond CRUDN access 1903
modes. 1904

12.2.1 Properties of the Credential Resource 1905

12.2.1.1 Credential ID 1906

Credential ID (CredID) is a local reference to a /oic/sec/cred instance. The Secure Resource 1907
Manager (SRM) generates it. CredID shall be used to disambiguate resource instances that have 1908
the same SubjectID. 1909

12.2.1.2 Subject ID 1910

Subject ID identifies the device or service to which a credential resource shall be used to 1911
establish a secure session, verify an authentication challenge-response or to authenticate an 1912
authentication challenge. 1913

A SubjectID that matches the OIC Server’s own DeviceID identifies credentials that authenticate 1914
this device. 1915

SubjectID shall be used to identify a group to which a group key is used to protect shared data. 1916

12.2.1.3 Role ID 1917

Role ID identifies the set of roles that have been granted to the SubjectID. The asserted role or 1918
set of roles shall be a subset of the role values contained in the RoleID property. 1919

If a credential contains a set of roles, ACL matching succeeds if the asserted role is a member of 1920
the role set in the credential. 1921

12.2.1.4 Credential Type 1922

The Credential Type is used to interpret several of the other property values whose contents can 1923
differ depending on the type of credential. These properties include Public Data, Private Data 1924
and Optional Data. The CredType value of ‘0’ (“no security mode”) is reserved for testing and 1925
debugging circumstances. Production deployments should not allow provisioning of credentials 1926
of type ‘0’. The SRM should introduce checking code that prevents its use in production 1927
deployments. 1928

12.2.1.5 Public Data 1929

Public Data contains information that provides additional context surrounding the issuance of the 1930
credential. For example, it might contain information included in a certificate or response data 1931
from a Key Management Service. It might contain wrapped data such as a SKDC issued ticket 1932
that has yet to be delivered. 1933

12.2.1.6 Private Data 1934

Private Data contains the secret information that is used to authenticate the device, protect or 1935
unprotect data or verify an authentication challenge-response. 1936

Private Data shall not be disclosed outside of the SRM’s trusted computing base. A secure 1937
element or trusted execution environment should be used to implement the SRM’s trusted 1938
computing base. In this situation, the Private Data contents should be a handle or reference to 1939
secure storage resources. 1940

Copyright OIC © 2015. All rights Reserved. 74

12.2.1.7 Optional Data 1941

Optional Data contains information that is optionally supplied, but facilitates key management, 1942
scalability or performance optimization. For example, if the Credential Type identifies certificates, 1943
it contains a certificate revocation status value. 1944

12.2.1.8 Period 1945

The Period property identifies the validity period for the credential. If no validity period is 1946
specified the credential lifetime is undetermined. Constrained devices that do not implement a 1947
date-time capability shall obtain current date-time information from it’s Credential Management 1948
Service. 1949

12.2.1.9 Credential Refresh Method Type Definition 1950

The oic.sec.crm defines the credential refresh methods that the CMS shall implement. 1951

Copyright OIC © 2015. All rights Reserved. 75

Value
Type
Name

Value Type
URN

Applicable
Credential
Type

Description

Provision
ing

Service

oic.sec.crm.pro All A credential management service initiates re-issuance of
credentials nearing expiration. The OIC Server should delete
expired credentials to manage storage resources. The
Resource Owner property references the provisioning
service. The OIC Server uses its /oic/sec/svc resource to
identify additional key management service that supports this
credential refresh method.

Pre-
shared

Key

oic.sec.crm.psk [1] The OIC Server performs ad-hoc key refresh by initiating a
DTLS connection with the OIC Device prior to credential
expiration using a Diffie-Hellman based ciphersuite and the
current PSK. The new DTLS MasterSecret value becomes
the new PSK. The OIC Server selects the new validity period.
The new validity period value is sent to the OIC Device who
updates the validity period for the current credential. The
OIC Device acknowledges this update by returning a
successful response or denies the update by returning a
failure response. The OIC Server uses its /oic/sec/svc
resource to identify a key management service that supports
this credential refresh method.

Random
PIN

oic.sec.crm.rdp [16] The OIC Server performs ad-hoc key refresh following the
oic.sec.crm.psk approach, but in addition generates a
random PIN value that is communicated out-of-band to the
remote OIC Device. The current PSK + PIN are hashed to
form a new PSK’ that is used with the DTLS ciphersuite. I.e.
PSK’ = SHA256(PSK, PIN). The OIC Server uses its
/oic/sec/svc resource to identify a key management service
that supports this credential refresh method.

SKDC oic.sec.crm.skdc [1, 2, 4, 32] The OIC Server issues a request to obtain a ticket for the
OIC Device. The OIC Server updates the credential using the
information contained in the response to the ticket request.
The OIC Server uses its /oic/sec/svc resource to identify the
key management service that supports this credential refresh
method. The OIC Server uses its /oic/sec/svc resource to
identify a key management service that supports this
credential refresh method.

PKCS10 oic.sec.crm.pk1
0

[8] The OIC Server issues a PKCS#10 certificate request
message to obtain a new certificate. The OIC Server uses its
/oic/sec/svc resource to identify the key management service
that supports this credential refresh method. The OIC Server
uses its /oic/sec/svc resource to identify a key management
service that supports this credential refresh method.

Table 14 - Credential Refresh Method type definition 1952

12.2.2 Key Formatting 1953

12.2.2.1 Symmetric Key Formatting 1954

Symmetric keys shall have the following format: 1955

 128-bit key: 1956

Copyright OIC © 2015. All rights Reserved. 76

Name Value Type Description

Length 16 OCTET Specifies the number of 8-bit octets following Length

Key opaque OCTET
Array

16 byte array of octets. When used as input to a PSK function
Length is omitted.

 256-bit key: 1957

Name Value Type Description

Length 32 OCTET Specifies the number of 8-bit octets following Length

Key opaque OCTET
Array

32 byte array of octets. When used as input to a PSK function
Length is omitted.

12.2.2.2 Asymmetric Keys 1958

Note: Asymmetric key formatting is not available in this revision of the specification. 1959

12.2.2.3 Asymmetric Keys with Certificate 1960

Key formatting is defined by certificate definition. 1961

12.2.2.4 Passwords 1962

Technical Note: Password formatting is not available in this revision of the specification. 1963

12.2.3 Credential Refresh Method Details 1964

12.2.3.1.1 Provisioning Service 1965

The resource owner identifies the provisioning service. If the OIC Server determines a credential requires 1966
refresh and the other methods do not apply or fail, the OIC Server will request re-provisioning of the 1967
credential before expiration. If the credential is allowed to expire, the OIC Server should delete the 1968
resource. 1969

12.2.3.1.2 Pre-Shared Key 1970

Using this mode, the current PSK is used to establish a Diffie-Hellmen session key in DTLS. The 1971
TLS_PRF is used as the key derivation function (KDF) that produces the new (refreshed) PSK. 1972

PSK = TLS_PRF(MasterSecret, Message, length); 1973

• MasterSecret – is the MasterSecret value resulting from the DTLS handshake 1974
using one of the above ciphersuites. 1975

• Message is the concatenation of the following values: 1976

o RM - Refresh method – I.e. “oic.sec.crm.psk” 1977

o DeviceID_A is the string representation of the device ID that supplied the 1978
DTLS ClientHello. 1979

o DeviceID_B is the device responding to the DTLS ClientHello message 1980

• Length of Message in bytes. 1981

Both OIC Server and OIC Client use the PSK to update the /oic/sec/cred resource’s PrivateData 1982
property. If OIC Server initiated the credential refresh, it selects the new validity period. The OIC 1983
Server sends the chosen validity period to the OIC Client over the newly established DTLS 1984
session so it can update it’s corresponding credential resource for the OIC Server. 1985

Copyright OIC © 2015. All rights Reserved. 77

12.2.3.1.3 Random PIN 1986

Using this mode, the current unexpired PIN is used to generate a PSK following RFC2898. The 1987
PSK is used during the Diffie-Hellman exchange to produce a new session key. The session key 1988
should be used to switch from PIN to PSK mode. 1989

The PIN is randomly generated by the OIC Server and communicated to the OIC Client through 1990
an out-of-band method. The OOB method used is out-of-scope. 1991

The pseudo-random function (PBKDF2) defined by RFC2898. PIN is a shared value used to 1992
generate a pre-shared key. The PIN-authenticated pre-shared key (PPSK) is supplied to a DTLS 1993
ciphersuite that accepts a PSK. 1994

 PPSK = PBKDF2(PRF, PIN, RM, DeviceID, c, dkLen) 1995

The PBKDF2 function has the following parameters: 1996

 - PRF – Uses the DTLS PRF. 1997

 - PIN – Shared between devices. 1998

 - RM - Refresh method – I.e. “oic.sec.crm.rdp” 1999

 - DeviceID – UUID of the new device. 2000

 - c – Iteration count initialized to 1000, incremented upon each use. 2001

 - dkLen – Desired length of the derived PSK in octets. 2002

Both OIC Server and OIC Client use the PPSK to update the /oic/sec/cred resource’s 2003
PrivateData property. If OIC Server initiated the credential refresh, it selects the new validity 2004
period. The OIC Server sends the chosen validity period to the OIC Client over the newly 2005
established DTLS session so it can update it’s corresponding credential resource for the OIC 2006
Server. 2007

12.2.3.1.4 SKDC 2008

A DTLS session is opened to the /oic/sec/svc with svctype=”oic.sec.cms” that supports the 2009
oic.sec.crm.skdc credential refresh method. A ticket request message is delivered to the 2010
oic.sec.cms service and in response returns the ticket request. The OIC Server updates or 2011
instantiates an /oic/sec/cred resource guided by the ticket response contents. 2012

12.2.3.1.5 PKCS10 2013

A DTLS session is opened to the /oic/sec/svc with svctype=”oic.sec.cms” that supports the 2014
oic.sec.crm.pk10 credential refresh method. A PKCS10 formatted message is delivered to the 2015
service. After the refreshed certificate is issued, the oic.sec.cms service pushes the certificate to 2016
the OIC Server. The OIC Server updates or instantiates an /oic/sec/cred resource guided by the 2017
certificate contents. 2018

 2019

12.2.3.2 Resource Owner 2020

The Resource Owner property allows credential provisioning to occur soon after device on-2021
boarding before access to support services has been established. It identifies the entity 2022
authorized to manage the /oic/sec/cred resource in response to device recovery situations. 2023

12.3 Certificate Revocation List 2024

12.3.1 CRL Resource Definition 2025

Device certificates and private keys are kept in cred resource. CRL is maintained and updated 2026
with a separate crl resource that is newly defined for maintaining the revocation list. 2027
 2028

Copyright OIC © 2015. All rights Reserved. 78

Fixed URI Resource
Type Title

Resource
Type ID (“rt”
value)

Interf
aces

Description Related
Functiona
l
Interactio
n

/oic/sec/crl CRLs urn:oic.sec.crl Resource containing
CRLs for device

certificate revocation

Security

 2029
 2030

12.3.2 CRL Resource 2031

Property
Title

Property
Name

Valu
e
Typ
e

Valu
e
Rule

Un
it

Acces
s
Mode

Man
dat
ory

Instance’ Description

CRL Id CRLId UIN
T16

0 –
64K-

1

- R Yes Single CRL ID for references
from other resources

This
Update

ThisUpdate Strin
g

- - R Yes Single This indicates the time
when this CRL has been
updated.(UTC)

CRL Data CRLData strin
g

OCT
ET[]

- - R No Single CRL data based on
CertificateList in CRL
profile

Technical Note: CRL resource should be defined below for each property. 2032

12.4 Security Services Resource 2033

The /oic/sec/svc resource is used by an OIC device to identify the support services that shall be 2034
used to obtain or update security resources. Support services are identified using an OIC 2035
DeviceID and require a secure communications channel. The OIC Server and support service 2036
shall mutually authenticate. The /oic/sec/svc resource informs the OIC Server regarding which 2037
credentials are used to authenticate and verify a given support service. Support services are 2038
recognized by a type designation. A support service should implement multiple service types. 2039

Services Resource Definition: 2040

Fixed URI Resource
Type Title

Resource
Type ID
(“rt” value)

Interfaces Description Related
Functional
Interaction

/oic/sec/svc Services urn:oic.sec.s
vc

oic.if.def The services resource
contains a list of

services that are used
to configure OIC

devices

Configuration

Table 15 – Secure Service resource definition 2041

 2042

Security Service Properties Definition: 2043

Copyright OIC © 2015. All rights Reserved. 79

Property
Title

Property
Name

Value
Type

Value
Rule

Uni
t

Acce
ss
Mod
e

Man
dato
ry

Inst
ance

Description

Support
Service
DeviceID

svcid oic.uuid - R Yes Single Identifies the
support service

Service
Types

svct oic.sec.s
vctype

 R Yes Multip
le

Identifies the type
of support
implemented by
the support
service.

Supported
Credential
Types

sct oic.sec.c
redtype

bitmask R Yes Single Identifies the types
of credentials the
support service
recognizes.

Server
Credential
ID

scid UINT16 0 – 64K-1 R Yes Single Local reference to
a credential the
OIC device uses to
authenticate to the
support service.

Client
Credential
ID

ccid UINT16 0 – 64K-1 R Yes Single Local reference to
a credential the
OIC device uses to
verify the support
service.

Credential
Refresh
Methods

crms oic.sec.c
rm

 R No Multip
le

Identifies the
credential refresh
methods supported
by this support
service. If the
Service Type
svt=”oic.sec.cms”
then crms SHALL
be specified.

Resource
Owner

rowner oic.sec.s
vc

 R Yes Single Identifies the
support service
that can instantiate
/ update this
resource. This
refers to an entry
in this the
/oic/sec/svc
resource. This
resource shall be
instantiated with a
resource owner
when device
ownership is
established.

Table 16 - Security Service resource properties definition 2044

Each secure end-to-end connection between an OIC device and its support service shall identify 2045
the credentials used to mutually authenticate. A support service should allow multiple 2046

Copyright OIC © 2015. All rights Reserved. 80

authentication methods. The ‘SupportedCreds’ property is used to determine which credential 2047
type is appropriate when authenticating to the support service. 2048

Security Service Type Definition: 2049
The security service type oic.sec.svctype defines services that perform device and security 2050
management. 2051

Type Name Type URN Description

Device Owner
Transfer Service

urn:oic.sec.doxs Service type for (re-)taking ownership of the OIC device into the
network

Bootstrap Service urn:oic.sec.bss Service type for a bootstrap service that should be used to (re-)
provision the /oic/sec/svc resource.

Credential
Management

Service

urn:oic.sec.cms Service type for a credential provisioning and management

Access
Management

Service

urn:oic.sec.ams Service type for an ACL provisioning and management

Unspecified urn:* Service type wildcard that satisfies any service type.

Table 17 – Secure Service type definitions 2052

Support services can proactively seek to establish a secure connection with an OIC device. They 2053
inquire as to which support services are supported and have accompanying credentials. 2054

An OIC device identifies acceptable service types used during normal operation by supplying the 2055
service type URN. 2056

The asterisk ‘*’ is used when a specific support service type is unspecified. 2057

12.5 ACL Resources 2058

All resources hosted by an OIC Server are required to match an ACL policy. ACL policies can be 2059
expressed using three ACL resource types: /oic/sec/acl, /oic/sec/amacl and /oic/sec/sacl. The 2060
subject (e.g. DeviceID of the OIC Client) requesting access to a resource shall be authenticated 2061
prior to applying the ACL check. Resources that are available to anyone can use a wildcard 2062
subject reference. All resources accessible via the unsecured communication channel shall be 2063
named using the wildcard subject. 2064

12.5.1 OIC Access Control List (ACL) BNF defines ACL structures. 2065

ACL structure in Backus-Naur Form (BNF) notation: 2066

<ACL> <ACE>,{<ACE>};
<ACE> <SBACE> | <RBACE>;
<SBACE> <SubjectId>, <ResourceRef>, <Operation>,

[<Validity>,{<Validity>}];
<RBACE> <RoleId>,<ResourceRef>,<Operation>,[<Validity>,{<Validity>}];
<RoleId> [<Authority>], ‘/’, [<RoleName>];
<RoleName> [URI]
<Authority> [UUID]
<ResourceRef> [<SSID>] | [<DeviceID>], ’/’, [<ResourceName>,’/’,<Number>]
<ResourceName> <URI_String>
<SubjectId> <DeviceID>, <GroupId>;
<SSID> <UInt16>

Figure 16: BNF Definition of OIC ACL 2067

Copyright OIC © 2015. All rights Reserved. 81

12.5.2 ACL Resource 2068

The /oic/sec/acl resource contains access control list entries governing access to OIC Server 2069
hosted resources. 2070

OIC ACL Resource definition: 2071

Fixed URI Resource Type
Title

Resource
Type ID (“rt”
value)

Interface
s

Description Related
Functional
Interaction

/oic/sec/acl ACL urn:oic.sec.acl oic.if.def Resource for
managing access

Security

Table 18 - Local ACL resource definition 2072
 2073

OIC ACL Property definition 2074

 2075

Table 19 - Local ACL Property definition 2076

Local ACL resources supply policy to a resource access enforcement point within an OIC stack 2077
instance. The OIC framework gates OIC client access to OIC server resources. It evaluates the 2078
subject’s request using policy in the ACL. 2079

Resources named in the ACL policy should be fully qualified or partially qualified. Fully qualified 2080
resource references should include the device identifier of a remote device hosting the resources. 2081
Partially qualified references imply the local resource server is hosting the resource. If a fully 2082
qualified resource reference is given, the intermediary enforcing access shall have a secure 2083
channel to the resource server and the resource server shall verify the intermediary is authorized 2084
to act on its behalf as a resource access enforcement point. 2085

Row

Property
Name

Opr Instance
s

Mand
atory

Type Range Description

infor
mativ
e

normative norm
ative

normative normati
ve

normative normative normative

0 Subject R Single Yes String - URN identifying the subjects
{Subject} or {Role} who should
access {Resource}.

1 Resource(s) R Multiple Yes String Fully
qualified
URI –
local URI

URN identifying the resources
that have {Permission} rights.
NULL matches no resource.
Resource path ending in
“<path>/*” ‘asterisk’ is a wild card
that matching all resource
instances at location <path>.

2 Permission R Single Yes UINT16 0-65535 Access policy in least significant
bits.
1st lsb: C(Create),
2nd lsb: R(Read, Observe,
Discover),
3rd lsb: U(Write, Update)
4th lsb: D(Delete)
5th lsb: N (Notify)

3 Period R Multiple* No String - Period as defined by RFC5545
*Multiple Period/Recurrence tuple
sets.

4 Recurrence R Multiple No String - Recurrence rule as defined by
RFC5545

5 Rowner(s) R Multiple Yes oic.sec.
svc

oic.sec.bs
s,
oic.sec.am
s

Provisioning service authorized to
read, create, update and delete
this object.

Copyright OIC © 2015. All rights Reserved. 82

Resource servers SHOULD include references to device and ACL resources where access 2086
enforcement is to be applied. However, access enforcement logic shall not depend on these 2087
references for access control processing as access to server resources will have already been 2088
granted. 2089

Local ACL resources identify an Rowner service that is authorized to instantiate and modify this 2090
resource. This prevents non-terminating dependency on some other ACL resource. Nevertheless, 2091
it should be desirable to grant access rights to ACL resources using an ACL resource. 2092

12.5.3 Access Manager ACL Resource 2093

Access manager ACL resource definition: 2094

Fixed URI Resource Type
Title

Resource
Type ID (“rt”
value)

Interface
s

Description Related
Functional
Interaction

/oic/sec/amacl Managed ACL urn:oic.sec.ama
cl

oic.if.def Resource for
managing access

Security

Table 20 - Access manager ACL resource definition 2095

Access manager services Property definition: 2096

Row

Property
Name

Opr Instances Mand
atory

Type Range Description

0 Resource(s
)

R Multiple* Yes String - URN identifying the resource
instance to be accessed. (E.g.
/oic/d).

1 Ams(s) R Multiple* Yes oic.sec.svc oic.sec.ams The AM service that should
issue an access sacl on behalf
of the requester. *Multiple AMs
are backups in case the
primary AM is not available.

2 Rowner(s) R Multiple Yes oic.sec.svc oic.sec.bss,
oic.sec.
ams

Provisioning service authorized
to modify this object.

Table 21 - Access manager ACL Property definition 2097
 2098

12.5.4 Signed ACL Resource 2099

Signed ACL resource definition: 2100

Fixed URI Resource Type
Title

Resource
Type ID (“rt”
value)

Interface
s

Description Related
Functional
Interaction

/oic/sec/sacl Signed ACL urn:oic.sec.sacl oic.if.def Resource for
managing access

Security

 2101

Table 22 – Signed ACL resource definition 2102

 2103

Signed ACL property definition: 2104

Row

Property
Name

Opera
tions

Instanc
es

Mand
atory

Type Range Description

0 Acl R Multiple* Yes oic.sec.acl - A local ACL resource
containing an access policy
specific to the subject’s

Copyright OIC © 2015. All rights Reserved. 83

resource request.
1 Ams R Single Yes oic.sec.svc oic.sec.ams The access sacl issuer

2service.
2 Signature R Single Yes oic.sec.pk9

oic.sec.jws
 Signature bits over the sacl.

The signature structure
defines the signature format.
(e.g. JWS (draft-ietf-jose-json-
web-signature-41), PKCS#9
(RFC2985) etc…)

Table 23 – Signed ACL Property definition 2105

12.5.5 Extended ACL Resource 2106

12.6 Provisioning Status Resource 2107

The /oic/sec/pstat resource maintains the OIC device provisioning status. OIC device 2108
provisioning should be client-directed or server-directed. Client-directed provisioning relies on an 2109
OIC Client device to determine what, how and when OIC Server resources should be instantiated 2110
and updated. Server-directed provisioning relies on the OIC Server to seek provisioning when 2111
conditions dictate. Server-directed provisioning depends on configuration of the /oic/sec/svc and 2112
/oic/sec/cred resources, at least minimally, to bootstrap the OIC Server with settings necessary 2113
to open a secure connection with appropriate support services. 2114

Provisioning Status Resource Definition: 2115

Fixed URI Resource Type
Title

Resource
Type ID (“rt”
value)

Interface
s

Description Related
Functional
Interaction

/oic/sec/pstat Provisioning
Status

urn:oic.sec.psta
t

oic.if.def Resource for
managing device

provisioning
status

Configuration

Table 24 – Provisioning Status resource definition 2116

Provisioning Status Properties Definition: 2117

Copyright OIC © 2015. All rights Reserved. 84

Prop
erty
Title

Propert
y Name

Value
Type

Value
Rule

Uni
ts

Acc
ess
Mod
e

Mand
atory

Insta
nce

Description

Is
Oper
ation

al

IsOp Boolean T|F - R Yes Single Device can function even
when Cm is non-zero. Device
will only service requests
related to satisfying Tm
when IsOp is FALSE.

Curre
nt

Mode

Cm
oic.sec.d

pm

0 –
64K-1

- RW Yes Single Specifies the current device
mode.

Targe
t

Mode

Tm
oic.sec.d

pm

0 –
64K-1

- RW No Single Specifies a target device
mode the device is

attempting to enter.

Devic
e ID

DeviceI
D

urn:oic.u
uid

- - R No Single Specifies the device to which
the provisioning status

applies. If not specified, it
applies to {this} device.

Oper
ation

al
Mode

Om oic.sec.d
pom

0–255 RW Yes Single Current provisioning services
operation mode

Supp
orted
Mode

Sm oic.sec.d
pom

0-255 R Yes Multipl
e

Supported provisioning
services operation modes

Com
mit

Hash

Ch oic.sec.s
ha256

0-
UINT2

56

- R Yes Single Sha256 hash value of all
provisioning commands that
have been committed by the

device.

Table 25 – Provisioning Status Properties definition 2118

The provisioning status resource /oic/sec/pstat is used to enable OIC devices to perform self-2119
directed provisioning. Devices are aware of their current configuration status and a target 2120
configuration objective. When there is a difference between current and target status, the device 2121
should consult the /oic/sec/svcs resource to discover whether any suitable provisioning services 2122
exist. The OIC device should request provisioning if configured to do so. The /oic/sec/pstat?Om 2123
property will specify expected device behavior under these circumstances. 2124

Self-directed provisioning enables devices to function with greater autonomy to minimize 2125
dependence on a central provisioning authority that should be a single point of failure in the 2126
network. 2127

The device computes a hash of the CoAP POST or PUT command that was successfully applied 2128
by the OIC Server. The OIC Server supplies the current CommitHash property when requesting 2129
provisioning; the server extends the hash with the POST or PUT command. If the client fails to 2130
commit the POST or PUT, the CommitHash property will not reflect the uncommitted command. 2131

Device Provisioning Mode Type Definition: 2132

The provisioning mode type is a 16-bit mask enumerating the various device provisioning modes. 2133
“{ProvisioningMode}” should be used in this document to refer to an instance of a provisioning 2134
mode without selecting any particular value. 2135

Copyright OIC © 2015. All rights Reserved. 85

Type Name Type URN Description

Device
Provisioning Mode

urn:oic.sec.dpm Device provisioning mode is a 16-bit bitmask describing various
provisioning modes

 2136

Device Provisioning Mode Low-Byte: 2137

Value Device Mode Description

bx0000,0000 (0) Normal Device mode for normal operation

bx0000,0001 (1) Reset Device reset mode enabling manufacturer reset
operations

bx0000,0010 (2) Take Owner Device pairing mode enabling owner transfer
operations

bx0000,0100 (4) Bootstrap Service Bootstrap service provisioning mode enabling
instantiation of a bootstrap service

bx0000,1000 (8) Security
Managerment

Services

Service provisioning mode enabling instantiation of
device security services and related credentials

bx0001,0000 (16) Provision
Credentials

Credential provisioning mode enabling instantiation of
pairwise device credentials using a management

service of type urn:oic.sec.cms

 bx0010,0000 (32) Provision ACLs ACL provisioning mode enabling instantiation of device
ACLs using a management service of type urn:oic.sec.

ams

 bx0100,0000 (64) <Reserved> Reserved for later use

bx1000,0000 (128) <Reserved> Reserved for later use

 2138

Device Provisioning Mode High-byte: 2139

Value Device Mode Description

bx0000,0000 –
bx1111,1111

<Reserved> Reserved for later use

 2140
Device Provisioning Operation Mode Type Definition: 2141

The provisioning operation mode type is a 8-bit mask enumerating the various provisioning 2142
operation modes. 2143

Type Name Type URN Description

Device
Provisioning

OperationMode

urn:oic.sec.dpom Device provisioning operation mode is a 8-bit bitmask describing
various provisioning operation modes

 2144

Device Provisioning Operation Mode Bits: 2145

Copyright OIC © 2015. All rights Reserved. 86

Value Operation Mode Description

bx0000,0000 (0) Multiple devices
have different
provisioning

services

Provisioning related services are placed in different
devices. Hence, a provisioned device should establish
multiple DTLS sessions for each service. This condition

exists when bit 0 is FALSE.

bx0000,0001 (1) Single device has
all provisioning

services

All provisioning related services are in the same
device. Hence, instead of establishing multiple DTLS
sessions with provisioning services, a provisioned
device establishes only one DTLS session with the
device. This condition exists when bit 0 is TRUE.

bx0000,0010 (2) Provisioning service
in control of
provisioning

Device supports provisioning service control of this
device’s provisioning operations. This condition exists
when bit 1 is TRUE. When this bit is FALSE this device

controls provisioning steps.

bx1111,11xx <Reserved> Reserved for later use

13 Core Interaction Patterns Security 2146

13.1 Observer 2147

13.2 Subscription/Notification 2148

13.3 Groups 2149

13.4 Publish-subscribe Patterns and Notification 2150

14 Security Hardening Guidelines/ Execution Environment Security 2151

Many TGs in OIC have security considerations for their protocols and environments. These 2152
security considerations are addressed through security mechanisms specified in the security 2153
specifications for OIC. However, effectiveness of these mechanisms depend on security 2154
robustness of the underlying hardware and software platform. This section defines the 2155
components required for execution environment security. 2156

14.1 Execution environment elements 2157

Execution environment within a computing device has many components. To perform security 2158
functions in a robustness manner, each of these components has to be secured as a separate 2159
dimension. For instance, an execution environment performing AES cannot be considered secure 2160
if the input path entering keys into the execution engine is not secured, even though the 2161
partitions of the CPU, performing the AES encryption, operate in isolation from other processes. 2162
Different dimensions (called elements going forward) of the execution environment are listed 2163
below. To qualify as a secure execution environment (SEE), the corresponding SEE element 2164
must qualify as secure. 2165

• (secure) Storage 2166

• (Secure) Execution engine 2167

• (trusted) Input/output paths 2168

• (Secure) Time Source/clock 2169

• (random) number generator 2170

• (approved) cryptographic algorithms 2171

• Hardware Tamper (protection) 2172

Copyright OIC © 2015. All rights Reserved. 87

Note that software security practices (such as those covered by OWASP) is outside scope of this 2173
specification, as development of secure code is a practice to be followed by the open source 2174
development community. This specification will however address the underlying platform 2175
assistance required for executing software. Examples are secure boot and secure software 2176
upgrade. 2177

Each of the elements above are described in the following subsections. 2178

14.1.1 Secure Storage (Informative) 2179

Secure storage refers to the physical method of housing sensitive or confidential data (“Sensitive 2180
Data”). Such data could include but not be limited to symmetric or asymmetric private keys, 2181
certificate data, network access credentials, or personal user information. Sensitive Data 2182
requires that its integrity be maintained, whereas Critical Sensitive Data requires that both its 2183
integrity and confidentiality be maintained. 2184

It is strongly recommended that IoT device makers provide reasonable protection for Sensitive 2185
Data so that it cannot be accessed by unauthorized devices, groups or individuals for either 2186
malicious or benign purposes. In addition, since Sensitive Data is often used for authentication 2187
and encryption, it must maintain its integrity against intentional or accidental alteration. 2188

 2189

A partial list of Sensitive Data is outlined below: 2190

Table 26 Examples of Sensitive Data 2191

Data Integrity protection Confidentiality protection

Owner PSK (Symmetric Keys) Yes Yes

Service provisioning keys Yes Yes

Asymmetric Private Keys Yes Yes

Certificate Data and Signed
Hashes

Yes Not required

Public Keys Yes Not required

Access credentials (e.g. SSID,
passwords, etc.)

Yes Yes

ECDH/ECDH Dynamic Shared
Key

Yes Yes

 Root CA Public Keys Yes Not required

Device and Platform IDs Yes Not required

 2192

Exact method of protection for secure storage is implementation specific, but typically a 2193
combination of hardware and software methods are used. 2194

Copyright OIC © 2015. All rights Reserved. 88

14.1.1.1 Hardware secure storage 2195

Hardware secure storage is recommended for use with critical Sensitive Data such as symmetric 2196
and asymmetric private keys, access credentials, personal private data. Hardware secure 2197
storage most often involves semiconductor-based non-volatile memory (“NVRAM”) and includes 2198
countermeasures for protecting against unauthorized access to Critical Sensitive Data. 2199

Hardware-based secure storage not only stores Sensitive Data in NVRAM, but also provides 2200
protection mechanisms to prevent the retrieval of Sensitive Data through physical and/or 2201
electronic attacks. It is not necessary to prevent the attacks themselves, but an attempted attack 2202
should not result in an unauthorized entity successfully retrieving Sensitive Data. 2203

Protection mechanisms should provide JIL Moderate protection against access to Sensitive Data 2204
from attacks that include but are not limited to: 2205

1) Physical decapping of chip packages to optically read NVRAM contents 2206

2) Physical probing of decapped chip packages to electronically read NVRAM contents 2207

3) Probing of power lines or RF emissions to monitor voltage fluctuations to discern the bit 2208
patterns of Critical Sensitive Data 2209

4) Use of malicious software or firmware to read memory contents at rest or in transit within 2210
a microcontroller 2211

5) Injection of faults that induce improper device operation or loss or alteration of Sensitive 2212
Data 2213

14.1.1.2 Software Storage 2214

It is generally NOT recommended to rely solely on software and unsecured memory to store 2215
Sensitive Data even if it is encrypted. Critical Sensitive Data such as authentication and 2216
encryption keys should be housed in hardware secure storage whenever possible. 2217

Sensitive Data stored in volatile and non-volatile memory shall be encrypted using acceptable 2218
algorithms to prevent access by unauthorized parties through methods described in section 2219
14.1.1.1. 2220

14.1.1.3 Additional Security Guidelines and Best Practices 2221

Below are some general practices that can help ensure that Sensitive Data is not compromised 2222
by various forms of security attacks: 2223

1) FIPS Random Number Generator (“RNG”) – Insufficient randomness or entropy in the 2224
RNG used for authentication challenges can substantially degrade security strength. For 2225
this reason, it is recommended that a FIPS 800-90A-compliant RNG with a certified noise 2226
source be used for all authentication challenges. 2227

2) Secure download and boot – To prevent the loading and execution of malicious software, 2228
where it is practical, it is recommended that Secure Download and Secure Boot methods 2229
that authenticate a binary’s source as well as its contents be used. 2230

3) Deprecated algorithms –Algorithms included but not limited to the list below are 2231
considered unsecure and shall not be used for any security-related function: 2232

a. SHA-1 2233

b. MD5 2234

c. RC4 2235

d. RSA 1024 2236

Copyright OIC © 2015. All rights Reserved. 89

4) Encrypted transmission between blocks or components – Even if critical Sensitive Data is 2237
stored in Secure Storage, any use of that data that requires its transmission out of that 2238
Secure Storage should be encrypted to prevent eavesdropping by malicious software 2239
within an MCU/MPU. 2240

14.1.2 Secure execution engine 2241

Execution engine is the part of computing platform that processes security functions, such as 2242
cryptographic algorithms or security protocols (e.g. DTLS). Securing the execution engine 2243
requires the following 2244

• Isolation of execution of sensitive processes from unauthorized parties/ processes. This 2245
includes isolation of CPU caches, and all of execution elements that needed to be 2246
considered as part of trusted (crypto) boundary. 2247

• Isolation of data paths into and out of execution engine. For instance both unencrypted 2248
but sensitive data prior to encryption or after decryption, or cryptographic keys used for 2249
cryptographic algorithms, such as decryption or signing. See trusted paths for more 2250
details. 2251

14.1.3 Trusted input/output paths 2252

Paths/ ports used for data entry into or export out of trusted/ crypto-boundary needs to be 2253
protected. This includes paths into and out secure execution engine and secure memory. 2254
 2255
Path protection can be both hardware based (e.g. use of a privileged bus) or software based 2256
(using encryption over an untrusted bus). 2257

14.1.4 Secure clock 2258

Many security functions depend on time-sensitive credentials. Examples are time stamped 2259
Kerberos tickets, OAUTH tokens, X.509 certificates, OSCP response, software upgrades, etc. 2260
Lack of secure source of clock can mean an attacker can modify the system clock and fool the 2261
validation mechanism. Thus an SEE needs to provide a secure source of time that is protected 2262
from tampering. Note that trustworthiness from security robustness standpoint is not the same as 2263
accuracy. Protocols such as NTP can provide rather accurate time sources from the network, but 2264
are not immune to attacks. A secure time source on the other hand can be off by seconds or 2265
minutes depending on the time-sensitivity of the corresponding security mechanism. Note that 2266
secure time source can be external as long as it is signed by a trusted source and the signature 2267
validation in the local device is a trusted process (e.g. backed by secure boot). 2268

14.1.5 Approved algorithms 2269

An important aspect of security of the entire ecosystem is the robustness of publicly vetted and 2270
peer-reviewed (e.g. NIST-approved) cryptographic algorithms. Security is not achieved by 2271
obscurity of the cryptographic algorithm. To ensure both interoperability and security, not only 2272
widely accepted cryptographic algorithms must be used, but also a list of approved cryptographic 2273
functions must be specified explicitly. As new algorithms are NIST approved or old algorithms 2274
are deprecated, the list of approved algorithms must be maintained by OIC. All other algorithms 2275
(even if they deemed stronger by some parties) must be considered non-approved. 2276

The set of algorithms to be considered for approval are algorithms for 2277

• Hash functions 2278

• Signature algorithms 2279

• Encryption algorithms 2280

• Key exchange algorithms 2281

• Pseudo Random functions (PRF) used for key derivation 2282

Copyright OIC © 2015. All rights Reserved. 90

This list will be included in this or a separate security robustness rules specification and must be 2283
followed for all security specifications within OIC. 2284

14.1.6 Hardware tamper protection 2285

Various levels of hardware tamper protection exist. We borrow FIPS 140-2 terminology (not 2286
requirements) regarding tamper protection for cryptographic module 2287

• Production-grade (lowest level): this means components that include conformal sealing 2288
coating applied over the module’s circuitry to protect against environmental or other 2289
physical damage. This does not however require zeroization of secret material during 2290
physical maintenance. This definition is borrowed from FIPS 140-2 security level 1. 2291

• Tamper evident/proof (mid-level), This means the device shows evidence (through covers, 2292
enclosures, or seals) of an attempted physical tampering. This definition is borrowed from 2293
FIPS 140-2 security level 2. 2294

• Tamper resistance (highest level), this means there is a response to physical tempering 2295
that typically includes zerioization of sensitive material on the module. This definition is 2296
borrowed from FIPS 140-2 security level 3. 2297

It is difficult of specify quantitative certification test cases for accreditation of these levels. 2298
Content protection regimes usually talk about different tools (widely available, specialized and 2299
professional tools) used to circumvent the hardware protections put in place by manufacturing. If 2300
needed, OIC can follow that model, if and when OIC engage in distributing sensitive key material 2301
(e.g. PKI) to its members. 2302

14.2 Execution Environment security profiles (for discussion) 2303

Given that IoT verticals and devices will not be of uniform capabilities, a one-size-fits all security 2304
robustness requirements meeting all IOT applications and services will not serve the needs of 2305
OIC and security profiles of varying degree of robustness (trustworthiness), cost and complexity 2306
have to be defined. To address a large ecosystem of vendors, the profiles can only be defined as 2307
requirements and the exact solutions meeting those requirements are specific to the vendors 2308
open or proprietary implementations and thus in most part outside scope of this document. 2309

To align with the rest of OIC specifications, where device classifications follow IETF RFC 7228 2310
(Terminology for constrained node networks) methodology, we limit the number of security 2311
profiles to a maximum of 3. However, our understanding is OIC capabilities criteria for each of 3 2312
classes will be more fit to the current IoT chip market than that of IETF. 2313

Given the extremely low level of resources at class 0, our expectation is that class 0 devices are 2314
either capable of no security functionality or easily breakable security that depend on 2315
environmental (e.g. availability of human) factors to perform security functions. This means the 2316
class 0 will not be equipped with an SEE. 2317

Platform class SEE Robustness level

0 No N/A

1 Yes Low

2 Yes High

 Technical Note: This analysis acknowledges that these platform classifications do not take into 2318
consideration of possibility of security co-processor or other hardware security capability that 2319
augments classification criteria (namely CPU speed, memory, storage). 2320

Copyright OIC © 2015. All rights Reserved. 91

14.2.1.1 Next steps 2321

Define levels of security for each of the security elements for each of the 3 classes. 2322

Define what is needed from each of the elements for secure boot and attestation. 2323

Develop a list of sensitive data for OIC security spec 2324

Develop a list of approved algorithms 2325

Develop a list of security mechanisms that use time sensitive data (for secure clock) 2326

 2327

14.3 Secure Boot 2328

14.3.1 Concept of software module authentication. 2329

In order to ensure that all components of a device are operating properly and have not been 2330
tampered with, it is best to ensure that the device is booted properly. There may be multiple 2331
stages of boot. The end result is an application running on top an operating system that takes 2332
advantage of memory, CPU and peripherals through drivers. 2333

The general concept is the each software module is invoked only after a cryptographic integrity 2334
verification is complete. The integrity verification relies on the software module having been 2335
hashed (e.g. SHA_1, SHA_256) and then signed with a cryptographic signature algorithm with 2336
(e.g. RSA), with a key that only a signing authority has access to. 2337

After the data is signed with the signer’s signing key (a private key), the verification key (the 2338
public key corresponding to the private signing key) is provided for later verification. For lower 2339
level software modules, such as bootloaders, the signatures and verification keys are inserted 2340
inside tamper proof memory, such as One time programmable memory or TPM. For higher level 2341
software modules, such as application software, the signing is typically performed according to 2342

private key

Data

Hash function (e.g. SHA256)

Signature algorithm
(RSA encryption, ECDSA)

Signature
Data

Signer
keys

public key
Certificate

Secure Storage/ TPM

Copyright OIC © 2015. All rights Reserved. 92

the PKCS#7 format (IETF CMS RFC), where the signedData format includes both indications for 2343
signature algorithm, hash algorithm as well as the signature verification key (or certificate). The 2344
secure boot specification however does not require use of PKCS#7 format. 2345

 2346

 2347

data

data

Signature

Verification key

Increasing

Memory

address

The verification module first decrypts the signature with the verification key (public key of the 2348
signer). The verification module also calculates a hash of the data and Then compares the 2349
decrypted signature (the original) with the hash of data (actual) and if the two values match, the 2350
software module is authentic. 2351

 2352

14.3.2 Secure Boot process 2353

Depending on the device implementation, there may be several boot stages. Typically, in a PC/ 2354
Linux type environment, the first step is to find and run the BIOS code (first-stage bootloader) to 2355
find out where the boot code is and then run the boot code (second-stage boot loader). The 2356
second stage bootloader is typically the process that loads the operating system (Kernel) and 2357
transfers the execution to the where the Kernel code is. Once the Kernel starts, it may load 2358
external Kernel modules and drivers. 2359

Data

Hash function (e.g. SHA256)
Signature algorithm
(RSA decryption, ECDSA)

Stored
Verification
key

Stored signature

Hashed Data Decrypted Signature

 Match?

Copyright OIC © 2015. All rights Reserved. 93

When performing a secure boot, it is required that the integrity of each boot loader is verified 2360
before executing the boot loader stage. As mentioned, while the signature and verification key 2361
for the lowest level bootloader is typically stored in tamper-proof memory, the signature and 2362
verification key for higher levels should be embedded (but attached in an easily accessible 2363
manner) in the data structures software. 2364

14.3.3 Robustness requirements 2365

To qualify as high robustness secure boot process, the signature and hash algorithms shall be 2366
one of the approved algorithms, the signature values and the keys used for verification shall be 2367
stored in secure storage and the algorithms shall run inside a secure execution environment and 2368
the keys shall be provided the SEE over trusted path. 2369

14.3.3.1 Next steps 2370

Develop a list of approved algorithms and data formats 2371

14.4 Attestation 2372

14.5 Software Update 2373

14.6 Non-OIC Endpoint interoperability 2374

15 Appendix A: Access Control Examples 2375

15.1 Example OIC ACL Resource 2376

The OIC Server is required to verify that any hosted resource has authorized access by the OIC 2377
Client requesting access. The /oic/sec/acl resource is co-located on the resource host so that the 2378
resource request processing should be applied securely and efficiently. This example shows how 2379
a /oic/sec/acl resource could be configured to enforce access control locally on the OIC Server. 2380

The second local ACL (e.g. /oic/sec/acl/1) 2381
Property
Name

Proper
ty ID

Property
Instance ID

Value Notes

Subject 0 0 Uuid:XXXX-…-XX01 Subject with ID …01 should access
resources {1,0} and {1,1} with permission
{2}

Resource 1 0 {Device1}/oic/sh/light/* If resource {light, ANY} @ host1 was
requested, by subject {0,0}, {0,1} or {0,2}
then grant access with permission 0h001F.

Resource 1 1 {Device2}/oic/sh/temp/0 If resource {temp,0} @ host2 was
requested, by subject {0,0}, {0,1} or {0,2}
then grant access with permission 0h001F.

Permission 2 - 0h001F C,R,U,D,N permission is granted
Period 3 0

20150101T180000Z/201
50102T070000Z

The period starting at 18:00:00 UTC, on
January 1, 2015 and ending at 07:00:00
UTC on January 2, 2015

Recurrence 4 0 RRULE:FREQ=WEEKLY
;UNTIL=20150131T0700
00Z

Repeats the {period} every week until the
last day of Jan. 2015.

Rowner 5 0 oic.sec.svc?rt=”oic.sec.
ams”

An ACL provisioning and management
service should be identified as the resource
owner.

Table 27 - Example acl resource 2382

 2383

15.2 Example Access Manager Service 2384

The Access Manager Service (AMS) should be used to centralize management of access policy, 2385
but requires OIC Servers to open a connection to the AMS whenever the named resources are 2386
accessed. This example demonstrates how the /oic/sec/amacl resource should be configured to 2387
achieve this objective. 2388

Copyright OIC © 2015. All rights Reserved. 94

Access Manager Service Resource (e.g. /oic/sec/amacl/0) 2389
Property
Name

Prope
rty ID

Property
Instance ID

Value Notes

Resource 0 0 {Device1}/oic/sh/light/* If the {Subject} wants to access the
/oic/sh/light/* resources at host1 and
an AM sacl was supplied then use the
{1} sacl validation credential to
enforce access.

Resource 0 1 {Device2}/oma/3 If the {Subject} wants to access the
/oma/3 resource at host2 and an AM
sacl was supplied then use the {1}
sacl validation credential to enforce
access.

Resource 0 2 /* If the {Subject} wants to access any
local resource and an AM sacl was
supplied then use the {1} sacl
validation credential to enforce
access.

OIC
Access
manager

1 0 href://<address>/oic/sec/am/0 Forwarding reference for where
requestor should obtain a signed ACL.

OIC
Access
manager

1 1 href://<address>/oic/sec/am/1 Secondary forwarding reference for
where requestor should obtain a
signed ACL.

Rowner 2 0 oic.sec.svc?rt=”oic.sec.ams” An ACL provisioning and management
service should be identified as the
resource owner.

Table 28 - Example access manager resource 2390

	1 Scope
	2 Normative References
	3 Terms, Definitions, Symbols and Abbreviations
	3.1 Terms and definitions
	3.2 Symbols and Abbreviations
	3.3 Conventions

	4 Document Conventions and Organization
	4.1 Notation
	4.2 Data types
	4.3 Document structure
	4.4 Document Sections

	5 Security Overview (Informative)
	5.1 Access control (Informative)
	5.1.1 ACL Architecture (Informative)
	5.1.1.1 Use of local ACLs
	5.1.1.2 Use of Access Manager Service

	5.1.2 Access control scoping levels (Informative)

	5.2 Onboarding and provisioning Overview
	5.2.1 On-Boarding
	5.2.2 Establishing a Device Owner

	5.3 Bootstrap process and Security bootstrapping
	5.3.1 Provisioning a bootstrap service
	5.3.2 Provisioning other services
	5.3.3 Credential provisioning
	5.3.4 Role assignment and provisioning
	5.3.5 ACL provisioning

	5.4 Secure Resource Manager
	5.5 Credential Overview

	6 Security for the Discovery Process
	6.1 Security Considerations for Discovery
	6.2 Discoverability of security resources

	7 Security Provisioning
	7.1 Device Identity (Normative)
	7.1.1 Device Identity for Devices with UAID
	7.1.1.1 Validation of UAID

	7.2 Device Ownership (Informative)
	7.3 Device Ownership Transfer Methods (Informative)
	7.3.1 OTM implementation requirements (Normative)
	7.3.2 Just-Works Owner Transfer Method (Normative)
	7.3.2.1 Just-works Owner Transfer Method Pseudo-Random Function
	7.3.2.2 Security Considerations

	7.3.3 Random PIN Based Owner Transfer Method
	7.3.3.1 Random PIN Owner Transfer Sequence
	7.3.3.2 Security Considerations

	7.3.4 Manufacturer Certificate Based Owner Transfer Method
	7.3.4.1 Certificate Profiles
	7.3.4.2 Certificate Owner Transfer Sequence Security Considerations
	7.3.4.3 Manufacturer’s Certificate Owner Transfer Sequence
	7.3.4.4 Security Considerations

	7.3.5 OIC Decentralized Public Key (DECAP) Owner Transfer Method
	7.3.5.1 OIC Device Public Key States
	7.3.5.2 OIC Cipher Suite
	7.3.5.3 UAID generation

	7.3.6 Vendor Specific Owner Transfer Methods (Normative)
	7.3.6.1 Vendor-specific Owner Transfer Sequence Example
	7.3.6.2 Security Considerations

	7.4 Provisioning
	7.4.1 Provisioning Flows
	7.4.1.1 Client -directed Provisioning
	7.4.1.2 Server -directed Provisioning
	7.4.1.3 Server-directed Provisioning Involving Multiple Support Services

	7.5 Bootstrap Example

	8 Security Credential Management
	8.1 Overview
	8.2 Credential Lifecycle
	8.2.1 Creation
	8.2.2 Deletion
	8.2.3 Refresh
	8.2.4 Revocation

	8.3 Credential Types
	8.3.1 Pair-wise Symmetric Key Credentials
	8.3.2 Group Symmetric Key Credentials
	8.3.3 Asymmetric Authentication Key Credentials
	8.3.4 Asymmetric Key Encryption Key Credentials
	8.3.5 Certificate Credentials
	8.3.6 Password Credentials

	8.4 Certificate Based Key Management
	8.4.1 Overview
	8.4.2 Certificate Format
	8.4.2.1 Certificate Profile and Fields
	8.4.2.2 Cipher Suite for Authentication, Confidentiality and Integrity
	8.4.2.3 Encoding of Certificate

	8.4.3 CRL Format
	8.4.3.1 CRL Profile and Fields
	8.4.3.2 Encoding of CRL

	8.4.4 Resource Model
	8.4.5 Certificate Provisioning
	8.4.6 CRL Provisioning

	9 Device Authentication
	9.1 Device Authentication with Symmetric Key Credentials
	9.2 Device Authentication with Raw Asymmetric Key Credentials
	9.3 Device Authentication with Certificates

	10 Message Integrity and Confidentiality
	10.1 Session Protection with DTLS
	10.1.1 Unicast Session Semantics
	10.1.2 Considerations on Export Licensing with Crypto

	10.2 Cipher Suites
	10.2.1 Cipher Suites for Device Ownership Transfer
	10.2.1.1 Just Works Method Cipher Suites
	10.2.1.2 Random PIN Method Cipher Suites
	10.2.1.3 Certificate Method Cipher Suites

	10.2.2 Cipher Suites for Symmetric Keys
	10.2.3 Cipher Suites for Asymmetric Credentials

	11 Access Control
	11.1 ACL Generation and Management
	11.2 ACL Evaluation and Enforcement (Normative)

	12 Security Resources (Normative)
	12.1 Device Owner Transfer Resource
	12.1.1.1 OIC defined owner transfer methods

	12.2 Credential Resource
	12.2.1 Properties of the Credential Resource
	12.2.1.1 Credential ID
	12.2.1.2 Subject ID
	12.2.1.3 Role ID
	12.2.1.4 Credential Type
	12.2.1.5 Public Data
	12.2.1.6 Private Data
	12.2.1.7 Optional Data
	12.2.1.8 Period
	12.2.1.9 Credential Refresh Method Type Definition

	12.2.2 Key Formatting
	12.2.2.1 Symmetric Key Formatting
	12.2.2.2 Asymmetric Keys
	12.2.2.3 Asymmetric Keys with Certificate
	12.2.2.4 Passwords

	12.2.3 Credential Refresh Method Details
	12.2.3.1.1 Provisioning Service
	12.2.3.1.2 Pre-Shared Key
	12.2.3.1.3 Random PIN
	12.2.3.1.4 SKDC
	12.2.3.1.5 PKCS10
	12.2.3.2 Resource Owner

	12.3 Certificate Revocation List
	12.3.1 CRL Resource Definition
	12.3.2 CRL Resource

	12.4 Security Services Resource
	12.5 ACL Resources
	12.5.1 OIC Access Control List (ACL) BNF defines ACL structures.
	12.5.2 ACL Resource
	12.5.3 Access Manager ACL Resource
	12.5.4 Signed ACL Resource
	12.5.5 Extended ACL Resource

	12.6 Provisioning Status Resource

	13 Core Interaction Patterns Security
	13.1 Observer
	13.2 Subscription/Notification
	13.3 Groups
	13.4 Publish-subscribe Patterns and Notification

	14 Security Hardening Guidelines/ Execution Environment Security
	14.1 Execution environment elements
	14.1.1 Secure Storage (Informative)
	14.1.1.1 Hardware secure storage
	14.1.1.2 Software Storage
	14.1.1.3 Additional Security Guidelines and Best Practices

	14.1.2 Secure execution engine
	14.1.3 Trusted input/output paths
	14.1.4 Secure clock
	14.1.5 Approved algorithms
	14.1.6 Hardware tamper protection

	14.2 Execution Environment security profiles (for discussion)
	14.2.1.1 Next steps

	14.3 Secure Boot
	14.3.1 Concept of software module authentication.
	14.3.2 Secure Boot process
	14.3.3 Robustness requirements
	14.3.3.1 Next steps

	14.4 Attestation
	14.5 Software Update
	14.6 Non-OIC Endpoint interoperability

	15 Appendix A: Access Control Examples
	15.1 Example OIC ACL Resource
	15.2 Example Access Manager Service

